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ON j-PANCYCLIC GRAPHS 

VASIL JACOS 

I. Introduction 

In [1] J . M a l k e v i t c h formulated the following problem: for which 
n (n ^ 5) does there exist a planar graph Gj with n vertices such that Gj 
contains cycles of every length m for 3 ^ m (^j) ^ n with 4 ^ j ^ n — 1. 
In [2] a slightly more general problem is solved. I n Par t I I I of this paper 
an analogous result will be proved without the assumption of planarity. Par t IV 
is devoted to solving a similar problem for digraphs. 

II. Notions and symbols 

A path of length n in a graph G is a finite sequence 

S = (Vo, Xi, Vi, X2, ..., Vn-1, Xn, Vn) , 

where Vi (i = 0, 1, . . . , n) are vertices of G and Xj (j = 1, 2, . . . , n) is an edge 
connecting Vj-i to v$. If G has no multiple edges, we shall write 

s = (v0)vi, ...,vn-i,vn) . 

A path 8 is closed if VQ = vn and it is a cycle if all the vertices are distinct 
(except vo = vn) and n ^ 3. 

Analogously a directed path in a digraph G is a sequence 

S = (Vo, Xi, Vi,X2, V2, ..., Xn, Vn) , 

where Vi are vertices of G and xj is a directed edge from vj-± to vj. We shall 
call s a directed cycle of length n if n ^ 3, vo = vn and the vertices v±, v%, 
V3, ...,vn are distinct. 

Consider natural numbers n and j such tha t 3 ^ j ^ n. 

Definition. A graph (digraph) G with n vertices is 
a) pancyclic if it contains cycles (directed cycles) of every length m for 3 ^ 

^ m ^ n, 
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b) j-pancyclic if it contains cycles (directed cy<&es) of every length m for 
3 ^ m ^ n and m ^j. 

III. Generalization of a theorem concerning j-pancyclic graphs 

In [2], where a J-pancyclic graph was assumed to be planar in every case, 
the problem stated by J . M a l k e v i t c h in [1] is solved. The solution has 
taken the form of the following theorem: 

Theorem 1. If (n,j) e {(5, 3), (5, 4), (6, 3), (6, 5)}, then there exists no j-pan
cyclic planar graph with n vertices. For any other combination of n and j the 
always exists a j-pancyclic planar graph with n vertices. 

We shall now show that the planarity assumption may be omitted. This 
will be done by proving the following theorem: 

Theorem 2. Let n and j be natural numbers such that 3 ^ j ^ n. If (n, j) e 
G {(5, 3), (5, 4), (6, 3), (6, 5)}, then there exists no j-pancyclic graph with n vertices. 
For any other value of n and j there always exists a j-pancyclic graph with n ver
tices. 

Proof . To prove the non-existence of a J-pancyclic graph with n vertices 
for (7i, j) e {(5, 3), (5, 4), (6, 3), (6, 5)} we have only to consider that if such 
a graph existed it would have to contain (in addition to Hamiltonian cycles) 
cycles of length 4, 3, 5 or 3, respectively, which easily leads to a contradiction. 
To complete the proof, it is only necessary to prove, for all other pairs (n, j), 
the existence of a j-pancyclic planar graph with n vertices, which has been 
done already in the proof of the corresponding theorem in [2], 

The problem which was examined in [2] would have a more interesting 
solution if the graphs were restricted to being 3-connected. 

IV. j-pancyclic digraphs 

Theorem 3. Let n,j be natural numbers such that 3 ^ j ^ n. Then there 
exists a j-pancyclic digraph with n vertices. 

Proof . For 3 ^ n ^ 4 the conclusion is trivial, for n = 6 and j = 4 it is 
proved by fig. 1. For n = 5, 3 ^ j ^ 5; n = 6, j = 3, 5, 6 and n ^ 1, 3 ^ 
fg j <; n we shall prove the theorem by constructing a j-pancyclic graph with 

n vertices. In doing so, we shall have to distinguish two cases. 
A. Let 3 ^ j < n. 
Construct a directed cycle of length n and call its vertices, in the following 

order, v\, v<z, ..., Vj-i,Vj, ...,vn. Then construct the remaining directed edges 
as follows: 
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(a) If n 

-add directed 

+ 1 <j ^ n — 1, connect by a directed edge v\ to vy9 then 

edges (Vq9 Vi) for 3 ^ q < j — 1, and (vy, #r) for j + 2 g r <; n. 
A directed graph constructed in this way (see fig. 2) contains no directed cycle 
of length j but does contain a cycle of length m for every m such that 3 ^ m ^ n 
and m 7-= j . 

Each such cycle is constructed 
1. either from some of the vertices v±,V2, ..., Vj-i9 

2. or from some of the vertices Vj9 vj+x, ...9vn9v\9 

3. or by extending a directed path s = (v±91;2, . . . , Vj) along the directed 
edges (VJ9 vq) for j + 2 g # ^ n. In the first case the cycle has the form 

(vi,v2, ...,Vi,vi) with i<j 

In the second case the corresponding form is 

(vk,...,vn9vi9Vj9vt) for lc>j 

.and the cycle has length ^ n—j + 2 which, since -f- 1 < j , does not 

Fig. 2 
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exceed j — 1. In the third case the 
length of the cycle is greater than j , 
since extending a directed path s to 
pass over any one of the vertices Vj, 
Vj+i,...,vn can only lead to a cycle 
whose length is at least J + 1. Thus the 
graph contains no cycle of length j . 

It remains to prove that it does 
contain cycles of length m for 3 ^ m ^ 
^ n and m 7-= j . For 3 ^ m ^ j — 1 
the cycle 

{vi,vz,vz, . . . , vm, Vi) 

Fig.З 

Fig. 4 
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Fig. 5 

is the required one; for j + 1 ^ m ^ n the required cycle is 

(b) lîj< 
П 

(V\, V2, . . . , Vj, Vj+n+l-m, .•> Vn, V\) . 

+ 1, we construct a directed edge connecting the vertex 

v± to Vj. We proceed to add directed edges (vq, vi) for J+l^g^ft— 1, 
q ^ 2j — 2. I n addition to this, we connect V2/-1 to V2. Such a directed graph 
(see fig. 3) contains no cycles of length j and contains a cycle of length m for 
every m such that 3 g m ^ n and m •=£ j . The non-existence of a cycle of length 
j and the existence of the other cycles is shown by a reasoning similar to that 
of (a). 

ft] 
(c) For j = — + 1 we shall distinguish two cases: 

z 
1. If n > 6, n == 0 (mod 2), then we connect v± to Vj-± by a directed edge, 

likewise vs to Vi and Vj-i to v^ for j + 2 ^ g ^ w — 1 . In addition to this, 
we connect vy-2 to v; (see fig. 4). In such a directed graph it is easy to verify 
tha t there is no cycle of length j while there is a cycle of length m for 3 ^ 
^ m (^j) ^ n. 

2. For ft ^ 5, ft == 1 (mod 2) we connect vi to Vj and tty to v3 for j + 3 g 
^ g ^ ft. In addition to this we connect Vj-i to tty+i. A digraph constructed 
in this way (see fig. 5) is easily seen to contain no cycle of length j while at the 
same time containing a cycle of length m for all m such that 3 g m ^ ft 
and m =fij. 
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B. Let j = n. 
Construct a cycle of length n-\ and call its vertices, in sequence, v±, vz...~ 

Vn-i- Add another vertex vn which does not belong to the cycle. Add directed 
adges (vq, v±) for 3 <^ q ^ n, q =7-= n — 1 and also the directed edge (vn, vn-\). 

Fig. 6 

Evidently this graph (see fig. 6) contains no cycle of length j but does con
tain a cycle of length m for all m such that 3 ^ m ^ n — 1. 

This completes the proof of our theorem. 
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