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ON CONVERGENCE OF TRANSFINITE SEQUENCES

PAVEL KOSTYRKO, Bratislava

In paper [1] relations of some kinds of the convergence of functional sequen-
ces are considered. We shall be interested in a similar question, but we shall
consider transfinite functional sequences.

Let X be a T:-topological space which satisfies the first axiom of countabi-
lity. The sequence {x¢}e<g, where a2 e X and the index & belecngs to the set
of all ordinal numbers less than the ordinal number g, will be called the tran-
finite sequence of the type § (t.s.t. 5). If a t.s.t. § (f > 2, 2 — the first un-

countable ordinal) converges to the point x (lim x¢ = x, x¢ — ), then the
g

point x is unique and there exists u (¢ < f) such that for each & > y e =

holds.

Further we shall consider t.s.t. Q.

Let X + 0 and (Y, o) be a metric space which has two elements at least
and let {fe}e<o be a functional t.s.t. Q (fe: X — 7).

Definition 1. We shall say that a functional t.s.t. 2 {feleco converges
poitntwise (on X ) to a function fif for each x € X lim fe(x) = f(x).

E->Q
Definition of the pointwise convergence (of a transfinite sequence of real

functions of the real variable) appeared and the basic properties were studied
in paper [3].

Definition 2. We shall say that a functional t.s.t. Q2 {fele<qo converges
(on X) uniformly to a function f if for cach ¢ > 0 there exists u(u << ) such
that for every & > u and each x € X o(fe(x), f(x)) < ¢ holds.

Definition of uniform convergence (of a transfinite sequence of real functions
of the real variable) and some of its properties are considered in paper [2].

Definition 3. Let X be a topological space. We shall say that a functional
1.5.t. Q {fe}e<o converges (on X) locally uniformly to f if for each compact C
(C = X) the functional t.s.t. 2 {fe | C}ecqo converges uniformly to f|C.

Definition 4. We shall say that a functional t.st. 2 {fe}eco converges
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(on X ) quasi-uniformly to f if for each » € X lim fe(x) = f(x) and to every
£-5Q
e > 0 and every no < 2 there exists n, no < n < 2, such that inf o fe(x), f(x))

€<y
< ¢ for each v € X.

It is easy to see that the introduced kinds of convergences are introduced
analogically to the well-known types of convergences of sequences of the type
® (v — the first non-finite ordinal). Let (A) and (B) be two of the introduced
kinds of convergences. Futher we shall say that the convergences (A) and (B)
are equivalent (on X) if a functional t.s.t. Q {f:}e<co converges to f (on X)
in the sense {A) if and only if it converges to f in the sense (B).

The following theorem gives necessary and sufficient conditions (sufficient
conditions. respectively necessary and sufficient conditions for some classes
of spaces) for the equivalence of the introduced types of convergences.

Theorem 1. Let the sets X and Y have the introduced meaning.

(1) Pointwise and uniform convergences are equivalent (on X ) if and only if
X 15 a countable set.

(ii) Let X be a topological space. Pointwise and locally uniform convergences
are equivalent (on X ) if and only if X has the following property: Every compact
C (C < X) is a countable set.

(iii) Pointwise and quasi-uniform convergences are equivalent (on X ) if and
only if X s a countable set.

(iv) Uniform and quasi-uniform convergences are equivalent (on X ) if and
only if X is a countable set.

(v) Let X be a topological space the set of points of condensation X¢ of which
is void. Then pointwise and locally uniform convergences are equivalent (on X ).

(vi) Let X be a topological space and let X = |J Cn (Cn,n < o, arecompacts).

n<o
Then uniform and locally uniform convergences are equivalent (on X ).

(vii) Let X be a countable topological space. Then locally wniform and quasi-
-uniform convergences are equivalent (on X ).

(viil) Let X be a locally compact topological space. Then pointwise and locally
uniform convergences are equivalent (on X ) if and only if X¢ = 0.

(ix) Let X be a topological space with the property: Every com pact is a countable
set. Then locally uniform and quasi-uniform convergences are equivalent (on X)
if and only if X is a countable set.

For the proof of Theorem 1 we shall use the following lemma.

Lemma. A functional {.s.t. Q {fe}e< o converges (on X ) uniformly to f if and
only if there exists u (u < Q) such that for every & > pand each x € X fe(x) = f(x).
Proof of Theorem 1. (i): If X is a countable set, then the equivalence of
pointwise and uniform convergences is obvious (with respect to the Lemma).
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Let X be an uncountable set. Then it is possible to choose from X a t.s.t. 2
{re}e< o of different terms. Let a, b e Y, a + b. Let us construct a functional
t.s.t. 2 in the following way: fe(ry) = b for #: & < 5 < Q and fe(x) = a for

re X — J {a}. Obviously foreach x € X lim fs(x) = «, hence the functional
E<n-.Q £«
t.8.t. 2 {feleco converges pointwise to f(x) == a. It is possible to see with

respect to the Lemma that {f:}e<o does not converge to f uniformly, because
for every u (u < Q) fu(xy) = b * f(ru) holds.

(ii): Let every compact (/ (C' = X) be a countable set. Then according
to (i) pointwise and uniform convergences on every compact are equivalent,
therefore pointwise and locally uniform convergences are equivalent (on X).

If there exists a compact (" (' = X), which is not a countable set, then with
respect to (i) there exists on ' a convergent functional t.s.t. 2 {ge}eco and
a function ¢ such that the convergence ge — g is pointwise but not uniform.
Then the functional t.s.t. 2 {fe}eco of functions on X (fe|C' = g¢, fela) = «
for & ¢ C') converges pointwise to f(f|C = g, f(xr) = a for « ¢ C) but not locally
uniform. Hence pointwise and locally uniform convergences are not equivalent
(on X).

(iii): We shall use the following property of quasi-uniform convergence:
A functional t.s.t. Q {fe}eco converges to f quasi-uniformly if and only if for
each x e X lim fs(x) = f(x) and for every 5y < Q there exists 5, 70 < n < 2

E5Q

such that inf o(f:(r), f(+)) = 0 holds for each 2 € X.

2y E< )
Let X be a countable set. It suffices to show that from the pointwise con-
vergence of a functional t.s.t. 2 {fi}eco there follows the quasi-uniform con-
vergence. We can easy verify that there is u (1 < 2) such that for every & > u

and each € X fe(r) = f(x) holds. Therefore lim fe(xr) = f(x) holds for each
£->0

xr € X and also for any no < Q inf o(fs(x), f(2)) — 0, where 5 = max {p, no + 1},
M<5<y
hence fe -~ [ quasi-uniformly.

Let X be an uncountable set. Then we can repeat the construction of the
functional t.s.t. Q {feleco from part (i). This functional t.s.t. 2 converges
pointwise, but it does not converge quasi-uniformly, because there exists
no (o = 1) such that forevery n < 2 inf o(fe(xy), f(2y)) = o(a, b) > 0holds.

7<é<7
(iv): If X is a countable set then the equivalence of uniform and quasi-

-uniform convergences is evident.

Let X be an uncountable set. Then it is possible to choose in X a t.s.t. Q
{rete< o of different terms. Let @, be Y, a + b. Let us construct a functional
t.s.t. Q2 {fe}e< o as follows: fe(xg) = b and fe(x) = a for x + x¢. We show that
Je—f (f(x) = a) quasi-uniformly. Indeed, for each € X lim fe(x) = f(x) and

E->Q
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for any no < Q2 thereexists y = 7o + 2 such that inf o(fe(x), f(x)) = 0 holds
Ne<E<n
for each x € X. But from the Lemma it follows immediately that the con-

vergence fz — f is not uniform.

(v): With respect to (ii) it is sufficient to prove the statement: If X is a to-
pological space with the property X¢ = ), then every compact C (C < X)
is a countable set. The assumption X¢ = @) implies that for each a € X there
exists its open neighbourhood U, such that U, is a countable set. If 4 (4 < X)
is any uncountable set then the family {U; : 2 € A} is an open cover of 4 from
which is not possible to choose a finite subcover. Hence 4 is not a compact.

(vi): The proof follows immediately from the Lemma.

(vii): Let a functional t.s.t. 2 {fs}e<o converge on X locally uniformly to f.
Then (because a singleton {x} is compact) hm fe(x) = f(x) holds for each x € X.

It is easy to see that there exists y << Q2 such that for any & > u fe(x) = f(2)
holds for each « € X. Therefore according to Lemma, fe = f uniformly and with
respect to (iv) f¢ — f quasi-uniformly. If f; - f quasi-unifcrmly, then according
to (iii) f¢ — f pointwise and with respect to (ii) f¢ — f locally uniformly.

(viii): The proof of (viii) is a consequence of (i) and of the following sta-
tement: If X is a locally compact topological space then every compact
C (C < X) is countable if and only if X¢ = ). Indeed, if X¢ = (J, we can show
in the same way as in the proof of (v) that each compact C (€ = X) is coun-
table. If X¢ + 0, then for each .« e X¢ there exists its neighbourhood U,
such that U, is an uncountable compact.

(ix): If X is a countable set, then according to (vii) locally uniform and
quasi-uniform convergences are equivalent.

If X is an uncountable set, then it is possible to choose in X a t.s.t. 2 of
different terms. Let «, be Y, a + b. We construct the functional t.s.t. Q
{fe}e< 0 and fin the same way as in the proof of (i). If C is a compact (according
to the assumption the set C' is countable) and u. the first ordinal with the
property uc > n for each 7 in the set {5 : x, € C}, then for every & > puc fe(x) =
= f(z) holds for each « € C, hence fr — f locally uniformly. On the other hand
there exists 7o << 2 (o = 1) such thatforany n < 2 inf o(fe(xy)), flay)) =

Ne<E<n
= o(a, b) > 0, therefore the convergence f: — f is not quasi-uniform.

Theorem 1 is therefore completely proved.

It is easy to see that the condition X¢ = @ from part (v) of Theorem 1 is
only sufficient but is not necessary to the statement. The following example
shows it.

Example 1. Let R be the set of all rational numbers of the interval <0, 1)
and let {X,:r € R} be a family of sets with these properties: X is one-point
set (Xo = {xo}), for r >0 every set X, is uncountable and for » + s X, N

236



N Xs = 0. Let us define a metric p on X = U {X,:7€ R} in the following
way: If v e X,, ye X5, v + y then p(z, y) = max {r, s}, o(x, ) = 0. The
set {r:p(x, ) < e} =uU {X;:reR, r <e} is uncountable for each ¢ >0,
hence X¢ =+ ). Every point « + z, is an isolated point of the space X ({y:
oly, x) < r} == {x} for x € X,). Therefore for any compact C (C < X) and
for each » € R the set ¢ N X, is finite, hence C is a countable set and with
respect to part (i) of Theorem 1 pointwise and locally uniform convergences
on X are equivalent.

Remark 1. Example 1 shcws, that the assumption of alocally compactness
of the space X in part (viii) of Theorem 1 is essential. Each neighbourhood of
20 contains an uncountable set X, (re(0,1)). If 2, yeX,, = +y,
then o(x, y) = r > 0, hence X is not a locally compact space, X¢ + 0, but
pointwise and locally uniform convergences on X are equivalent.

The assumption X = |J Cu, Cy are compacts, of part (vi) of Theorem 1is
n<w

essential. The following example shows it.

Example 2. Let X = {£:£ < Q}, (&, n) =1 for & % 5 and (&, &) = 0.
Let ¢, be Y, a £ b. Let us define the functional t.s.t. Q {fe}e<o as follows:
fe(&) = b, fe(n) = a for n + & This functional t.s.t. 2 converges locally uni-
formly to the function f(x) = a. Indeed, C is a compact in (X, p) if and only
if C is a finite set. If pu. = max {x: x e C} then for & > p. fe(x) = f(x) holds
for e C. From the Lemma there follows the locally uniform convergence
fe—>f. But from the Lemma it follows immediately that the convergence
fe—fon X is not uniform.

Remark 2. The assumption of the countability of the set X in part (vii)
of Theorem 1 is essential. It follows immediately from the proof of part (ix).

Yemark 3. Sequences of the type w arc considered also with respect to
the continuous convergence. It would be possible to define this type of con-
vergence for a functional t.s.t. Q as follows: Let X and Y be metric spaces
and let {fe}eco (fe: X > Y) be functional t.s.t. 2. We shall say that f: —f
(f: X —Y) continuously, if for each convergent t.s.t. Q2 {we}eco, xe— 2,
Sfe(we) — f(x) holds. However, it is easy to see that continuous and pointwise
convergences are equivalent on any X. It suffices to show that pointwise
convergence implies continuous convergence. If z¢—> x, then there exists
u < 2 such that x¢ = @ holds for every & > u, therefore for & > u fi(xs) =
= fe(x) = flx).

In Theorem 1 the question of equivalence of functional t.s.t. 2 is not solved
completely. It woud be interesting to solve this question: Is the sufficient
condition of part (vi) (of part (vii)) of Theorem 1 also the necessary condition
for the equivalence of convergences? If not, then find the necessary and
sufficient condition.

237



Futher we shall consider a metric space Z of transfinite sequence of the
type Q.

Theorem 2. Let (X, ¢) be a metric space and Z = X X¢ (Xe = X, §<C Q)
§<Q
be a metric space with the metric p(a,b) = sup {min}{1, o(ac, be)}} (@ = {ac}e<o,
£

b = {be}ecn). Let Ay = {a = {ag}eco€Z: lim az = x} (xe€ X). Then the set
£-50
Ay ts closed for each x € X.

Proof. Let x€ X and let am = {a}"}, ., > a = {as}e<o(ame Az). We show
that @ € 4,. For every m = 1, 2, ... there exists the ordinal ay, (am < 2) such that
ay =x holds whenever am < £ <. Let « be the first ordinal, greater than each
am (m=1,2,...). Then « < 2 and for every &, « < & < 2 the sequence
{al'};_y is constant (al' = x). Obviously for each &, « < &< Q, ag=a. If
there exists & (a < & < 2) such that ag, + x, then lim @ = v + a, and

m—>o
it is a contradiction to the assumption a™ — a. Hence lim a; = x, a € A;.
£->Q
Remark 4. The statement of Theorem 2 does not hold if the set Z =

= X X¢ (Xg = X, X has two points at least) is considered with respect to the

E<Q _
product topology. It is easy to show that for any points x, ye X A, N4y £ 0
holds (M — closure of the set ). We construct a net{a?,yel} (I = {y:y <
< Q), av ={al}; o€ Az, a? >a = {agjeco€ Ay as follows: Let us put

a} =y for £ <<y and af = x for y < & Obviously lim af = &, hence av € 4,
§->Q
for each y e l. Since for each &€l lima = y and the convergence in the
>0
product topology is the pointwise convergence a = {y}e<o € Ay.

Theorem 3. Let (X, o) be a metric space without isolated points and let the
space (Z, o) and the sets Az (x € X) have the same meaning like in Theorem 2.
Then the set A = |J Az has the complement dense in Z and every of the sets

relY
Ay is nowhere dense in Z.

Proof. Let ¢ > 0. We show that every open sphere K(a, ¢) == {b : p(a, b) <
< ¢} © Z contains an element of Z — 4. We can suppose @ = {a¢}eco € 4.

Hence there is x € X such that lim a¢ = x. As X has no isolated points (ac-
550

cording to the assumption) there exists y € X, y + x such that o(x, y) < e.
Let o be the first ordinal with the property: For each &, a < £ <2 Q as =«
holds. Let I, and I be disjoint cofinal subsets of the set I = {£: & < Q}. Let
I, U I» = I and let for each £ € Iz o < & hold. Then the element b = {be}e< 0
(bg = ag for £, and b = y for &€ 1lz) belongs so Z — A and o(a, b) <
< oz, y) < e
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To prove the second part of the statement of Theorem 3 it suffices to show
that for each x e X the set Z — A, is dense in Z. Since A, = A, (according
to Theorem 2) the ralations Z — A, == Z — Ay > Z — A hold. The last set

is according to the first part of the statement dense in Z, therefore Z — A,
is also dense in Z.

Theorem 4. Let X be a countable set and let (X, o) be a metric space without

isolated points. Let the space (Z, p) and the set A have the same meaning like in
Theorem 3. Then A is Fy and of the first category in Z.

Proof. According to the assumption X = (J {x.}, hence 4 = | 4,,. With
n=1 n=1
respect so Theorem 2 each of the sets 4, (n = 1,2,...) is closed — 4 is F;

in Z. ¥From Theorem 3 it follows that each of the scts 4, (n=1,2,...) is
nowhere dense — A is of the first category in Z.
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SUTAZ MLADYCH PRACOVNIKOV V MATEMATIKE

Jednota slovenskych matematikov a fyzikov vypisuje na rok 1972 sttaZ mladych
pracovrdkov v matematike.

SlitaZe sa moZu zucastnit ¢lenovia JSMF, ktorych vek v roku 1972 neprekroci
30 rukov. Do sutaZe sa prijimaju vedecké prdce z matematiky (jednotlivé alebo subor
prac), ktoré boli publikované alebo prijaté redakénou radou niektorého odborného
¢asopisu.

Hlavny vybor JSMF — na navrh komisie pre posidenie do3lych préc — odmeni
najlepSie prace cenami.

Prihlasky s osobnymi uddajmi a dvoma exemplarmi prihlasovanych prac treba
poslat najneskor$ie do 15. janudra 1972 na adresu Jednota slovenskych matematikov
a fyzikov, Stefanikova 41, Bratislava.

Matematickd sekcia JSMF
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