Matematický časopis

Eva Gedeonová

Jordan-Hölder Theorem for Lines

Matematický časopis, Vol. 22 (1972), No. 3, 177--198
Persistent URL: http://dml.cz/dmlcz/126520

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

JORDAN-HÖLDER THEOREM FOR LINES

EVA GEDEONOVÁ, Bratislava

The aim of this paper is to find such nonmodular lattices in which the Jordan-Hölder theorem for lines is true. The notion of a line is a natural generalization of the notion of a chain in a lattice. M. Kolibiar in his paper [2] has shown that two neighbouring elements of a connected line in a modular lattice are comparable and form a priminterval. He has also shown that the Jordan-Hölder theorem for lines is true in modular lattices. We shall prove that if every two comparable neighbouring elements of any connected line in a finite lattice form a priminterval, then this lattice is modular (see Theorem 1). Hence two neighbouring elements of a connected line in a semimodular lattice need not form a priminterval. But the Jordan-Hölder theorem for lines holds for some semimodular lattices by considering the correspondence of simple pairs of lines. It can be shown that if a lattice has a connected line which has two uncomparable neighbouring elements, then this lattice contains lines with different lengths. If a lattice is p-modular (i. e. it does not contain a sublattice with diagram in Figure 1) then any two neighbouring elements of any its connected line are comparable. In this paper it is proved that the Jordan-Hölder theorem for lines is valid in a p-modular and semimodular lattice. An example of a p-modular and semimodular lattice which is not modular is given.

Basic concepts and properties

Throughout the paper S denotes a lattice. Let $a, b, x \in S$. We say that x is between a and b and write $a x b$ if $(a \cap x) \cup(x \cap b)=x=(a \cup x) \cap(x \cup b)$. When the lattice S is a chain then $a x b$ iff $a \leqq x \leqq b$ or $b \leqq x \leqq a$. The relation "between" in S possesses the following properties:
$\left(\alpha_{1}\right) \quad x y z$ implies $z y x$
$\left(\alpha_{2}\right) \quad x y z$ and $x z y$ imply $y=z$
(t_{1}) $\quad x y z$ and $x z u$ imply $y z u$.

Four different elements $a, b, c, d \in S$ form a pseudolinear quadruple when they satisfy $a b c, b c d, c d a$, $d a b$. If $a x b$, then $a \cap b \leqq x \leqq a \cup b$. Clearly, $a x b$ and $a \leqq b$ implies $a \leqq x \leqq b$.

If A, B are subsets of some lattices and a bijection φ from A onto B is given, so that $a b c$ if and only if $\varphi(a) \varphi(b) \varphi(c)$, we say that A, B are b-equivalent. A subset A of S is called a line if there exists a b-equivalent chain to A. An element a is an endelement of a line A, if $a \in A$ and for any two elements of the line A is $a y x$ or $a y x$. Evidently, a chain in S is a line in S. The relation 'between" in a line has the following property:
($\left.t_{2}\right) \quad x y z, y z u$ and $y \neq z$ imply $x y u$.
Let A be a line in S with an endelement a. For $x, y \in A$ set $x \prec y$ iff $a x y$. Evidently, (A, \prec) is a chain and $x y z, x, y, z \in A$, if and only if $x \prec y \prec z$ or $z<y<x$. A line $A \subset S$ is called connected when it has the following property: If $x \in S$ and if there exist elements $a, b \in A$, such that $a x b$ and $A \cup\{x\}$ is a line in S, then $x \in A$.

In paper [2] the following equivalent definition of a line is given: A subset of a lattice is a line if and only if it satisfies the following two conditions:
(i) for all three elements $x, y, z \in A$ one (at least) of the relations $x y z, y z x$, $z x y$, holds.
(ii) A does not contain a pseudolinear quadruple.

In the paper [4] there is the following statement: If a subset A of a lattice has more then four elements and satisfies the condition (i) of the preceding definition then A is a line.

Let A be a line in S. Two elements $a, b \in A, a \neq b$, are called neighbouring if $\{x \mid x \in A, a x b\}=\{a, b\}$.

An interval $[a, b](=\{x \in S \mid a \leqq x \leqq b\}), a \neq b$, is called priminterval if $[a, b]=\{a, b\}$. If $[a, b]$ is a priminterval we say that b covers a, and denote $a \triangleleft b$. Two elements $a, b \in S$ are incomparable, if neither $a \leqq b$ nor $b \leqq a$ holds, we write $a \| b$.

We say that the lattice S satisfies the upper priminterval condition, if for every two elements $a, b \in S, a \cap b \triangleleft b$ implies $a \triangleleft a \cup b$. Dually, we say that the lattice S satisfies the lower priminterval condition, if for every two elements $a, b \in S, a \triangleleft a \cup b$ implies $a \cap b \triangleleft b$.

Neighbouring elements in a line

Definition 1. A line A in S has the property (α) if every two neighbouring comparable elemente of A form a priminterval.

Theorem 1. If every connected line in a lattice S has the property (α), then the lattice S satisfies the lower and the upper priminterval conditions.

Proof. Let $u, v \in S, u \| v, u \cap v \triangleleft v$. The elements $u, u \cup v, v$ form a line. Let K be a connected line which contains the elements $u, u \cup v, v$. Let K contain an element x such that $x \neq u, x \neq u \cup v, u x(u \cup v)$. Consequently,

$$
\begin{equation*}
u \prec x \prec u \cup v . \tag{1}
\end{equation*}
$$

Since $x \in K$, uxv. Then

$$
\begin{equation*}
x=(u \cap x) \cup(x \cap v)=u \cup(x \cap v) \tag{2}
\end{equation*}
$$

From (1) it follows $u \cap v \leqq x \cap v \leqq v$. In view of $u \cap v \triangleleft v$ either $u \cap v=$ $=x \cap v$ or $x \cap v==v$. Assuming $u \cap v=x \cap v$ we get from (2) $x=u \cup$ $\cup(u \cap v)=u$, which cannot be by (1). If $x \cap v=v$, then by (2) $x=u \cup v$, which is impossible by (1).

Consequently, in the line K there does not exist an element x such that $u x(u \cup v), u \neq x \neq u \cup v$. It means that the elements $u, u \cup v$ are neighbouring elements of the line K. Considering the fact that the line K has the property (α), we have $u \triangleleft u \cup v$.

We have proved the upper priminterval condition. The lower priminterval condition follows by duality.

Lemma 1. Let A be a subset of a lattice S having the following properties:
(i) There exist two elements $a, b \in A$ such that $a \cap b \in A$ and $A^{\prime}=[a \cap b, a] \cap A, A^{\prime \prime}=[a \cap b, b] \cap A$ are chains.
(ii) $A^{\prime} \cup A^{\prime \prime}=A$
(iii) If $x, y \in A\left(A^{\prime \prime}\right), x \geqq y, z \in A^{\prime \prime}(A)$, then $x y z$

Then A is a line with endelements a, b.
Proof. The set $\overparen{A}^{\prime \prime} \oplus A^{\prime}$ is a chain $\left(\breve{A}^{\prime \prime}\right.$ is a dual chain to $A^{\prime \prime}, \oplus$ means
 Let $\varphi: \breve{A}^{\prime \prime} \oplus A^{\prime} \rightarrow A$ be an identical morphism. We shall denote the relation 'between,, in the chain $A^{\prime \prime} \oplus A^{\prime}$ as $(x, y, z) \beta$. If $x, y, z \in \breve{A}^{\prime \prime}\left(A^{\prime}\right)$, then $(x, y, z) \beta \Leftrightarrow$ $\Leftrightarrow \varphi(x) \varphi(y) \varphi(z)$. If $x \in \breve{A}^{\prime \prime}, y, z \in A^{\prime}$, then $(x, y, z) \beta$ implies $y \leqq z$, from which it follows $\varphi(x) \varphi(y) \varphi(z)$ by (iii). If $x, y \in \breve{A}^{\prime \prime}, z \in A^{\prime}$, then $(x, y, z) \beta$ implies $x \geqq y$, hence $\varphi(x) \varphi(y) \varphi(z)$ by (iii). Clearly, $\varphi(x) \varphi(y) \varphi(z)$ implies $(x, y, z) \beta$.

Lemma 2. If A is a line with endelements $a, b, a \| b, a \cap b \in A$, then $A=$ $-A^{\prime} \cup A^{\prime \prime}$, where $A^{\prime}=A \cap[a \cap b, a], A^{\prime \prime}=A \cap[a \cap b, b], A^{\prime}, A^{\prime \prime}$ are chains.

Proof. The line A is b-equivalent with some chain B hence there cxists
a bijection φ from A onto B. Let $A_{1}=\{x \in A \mid \varphi(x) \leqq \varphi(a \cap b)\}$ and $A_{2}=$ $=\{x \in A \mid \varphi(x) \geqq \varphi(a \cap b)\}$. Then $A=A_{1} \cup A_{2}$. If $a \in A_{1}$, then $A_{1}=A^{\prime}$, $A_{2}=A^{\prime \prime}$. If $x, y \in A^{\prime}$, then $x \leqq a, y \leqq a$. From $\operatorname{axy}(a y x)$ it follows $y \leqq$ $\leqq x \leqq a(x \leqq y \leqq a)$. Therefore A^{\prime} is a chain.

Remark. If A is a line with endelements $a, b, a \| b, a \cap b \in A$, then we shall denote the set $A \cap[a \cap b, a]$ by A^{\prime} and the sct $A \cap[a \cap b, b]$ by $A^{\prime \prime}$.

Lemma 3. Let A be a line in the lattice S with endelements $a, b, a \| b, a \cap b \in A$. Let an element $u \in[a \cap b, a] \cup[a \cap b, b]$ satisfy the following conditions:
(i) $a u b$
(ii) $A^{\prime} \mathbf{\cup}\{u\}$ or $A^{\prime \prime} \mathbf{\cup}\{u\}$ is a chain.

Then the set $A \cup\{u\}$ is a line.
Proof. The conditions (i), (ii) of Lemma 1 are fulfilled. Thus it remains to prove the condition (iii). Let $u \in[a \cap b, a]$. We shall consider three possibilities, the others are symmetrical.
a) If $x, y \in A^{\prime \prime}, x \leqq y$, then

$$
\begin{equation*}
x=x \cup(a \cap b)=(x \cap y) \cup(a \cap b)=(x \cap y) \cup(x \cap u) \tag{1}
\end{equation*}
$$

Since A is a line and a is an endelement, then $a x y$, hence

$$
\begin{equation*}
x=(x \cup a) \cap(y \cup x) \geqq(x \cup u) \cap(y \cup x) \geqq x \tag{2}
\end{equation*}
$$

$u x y$ holds by (1) and (2).
b) Let $x \in A^{\prime}, y \in A^{\prime \prime}, x \geqq u$. Considering the fact that $a u b$, we get $u=$ $=(u \cup a) \cap(u \cup b) \geqq(u \cup x) \cap(u \cup y) \geqq u$. Since the second identity holds, trivially xuy follows.
c) Let $x \in A^{\prime}, y \in A^{\prime \prime}, x \leqq u$. Since $a x y$,

$$
x=(a \cup x) \cap(x \cup y) \geqq(u \cup x) \cap(x \cup y) \geqq x
$$

The second identity holds trivially, hence uxy.
Lemma 4. The relation xab implies $x \cap a \geqq x \cap b$.
Proof. From $x a b$ we get $a=(x \cup a) \cap(a \cup b) \geqq x \cap b$. Hence $x \cap a \geqq$ $\geqq x \cap b$.

Theorem 2. Let K be a line in the lattice S with endelements $a, b a \| b$. Thon

$$
K^{\cap}=\{a \cap x \mid x \in K\} \cup\{b \cap x \mid x \in K\}
$$

is a line in S with endelements a, b.
Proof. For every element $x \in K$, $a x b$. Hence by Lemma $4 a \cap x \geqq a \cap b$ and $b \cap x \geqq a \cap b$. Therefore

$$
K^{\cap}=\left(K^{\cap} \cap[a \cap b, a]\right) \mathbf{\cup}\left(K^{\cap} \cap[a \cap b, b]\right)
$$

which means that the condition (ii) of Lemma 1 is fulfilled. We show that the condition (i) holds too. Let $x, y \in K^{\cap} \cap[a \cap b, a]$. Hence, there exist elements $x_{1}, y_{1} \in K$ such that

$$
x=a \cap x_{1}, \quad y=a \cap y_{1}
$$

Either $a x_{1} y_{1}$ or $a y_{1} x_{1}$ holds, therefore either $a \cap x_{1} \geqq a \cap y_{1}$ or $a \cap y_{1} \geqq$ $\geqq a \cap x_{1}$ by Lemma 4 , hence $x \geqq y$ or $y \geqq x$. We see that the condition (i) is fulfilled.

It remains to prove the validity of the condition (iii) of Lemma 1. Let $x, y \in K^{\cap} \cap[a \cap b, a]$ and

$$
\begin{equation*}
x>y \tag{1}
\end{equation*}
$$

and let $z \in K^{\cap} \cap[a \cap b, b]$. Hence, there exist elements $x_{1}, y_{1}, z_{1} \in K$ such that

$$
x=x_{1} \cap a, \quad y=y_{1} \cap a, \quad z=z_{1} \cap b
$$

Either $a x_{1} y_{1}$ or $a y_{1} x_{1}$ holds. From the relation $a y_{1} x_{1}$ there follows $a \cap y_{1} \geqq$ $\geqq a \cap x_{1}$ by Lemma 4 , hence $y \geqq x$, which is impossible by (1). Since $x \neq y$, we get $x_{1} \neq y_{1}$. Therefore

$$
\begin{equation*}
a x_{1} y_{1}, \quad x_{1} \neq y_{1} \tag{2}
\end{equation*}
$$

The elements x_{1}, y_{1}, z_{1} satisfy one of the relations: a) $z_{1} x_{1} y_{1}$, b) $x_{1} z_{1} y_{1}$, c) $x_{1} y_{1} z_{1}$.
a) Let $z_{1} x_{1} y_{1}$. Since $y_{1} \in K, a y_{1} b$. This and the relation (2) imply the relation $x_{1} y_{1} b$, by $\left(\mathrm{t}_{1}\right)$. From this and from the relation $z_{1} x_{1} y_{1}$ there follows the relation $z_{1} y_{1} b$, by (t_{2}), which implies by Lemma 4

$$
\begin{equation*}
b \cap y_{1} \geqq b \cap z_{1} \tag{3}
\end{equation*}
$$

The relation (3) and $a y_{1} b$ imply $y=a \cap y_{1}=a \cap\left(\left(a \cap y_{1}\right) \cup\left(b \cap y_{1}\right)\right) \geqq$ $\geqq a \cap\left(\left(a \cap y_{1}\right) \cup\left(b \cap z_{1}\right)\right)=a \cap(y \cup z) \geqq x \cap(y \cup z)=(x \cup y) \cap(y \cup z) \geqq$ $\geqq y$, hence

$$
y=(x \cup y) \cap(y \cup z)
$$

Since the second identity holds trivially, we get $x y z$.
b) Let $x_{1} z_{1} y_{1}$. The relation $a y_{1} b$ and (2) imply the relation $x_{1} y_{1} b$, by (t_{1}). From this and from $x_{1} z_{1} y_{1}$ it follows that by $\left(\mathrm{t}_{1}\right) z_{1} y_{1} b$. From this $x y z$ follows exactly as in the case a).
c) Let $x_{1} y_{1} z_{1}$. This relation and (1) imply $y \leqq(x \cup y) \cap(y \cup z)=$ $x \cap(y \cup z)=\left(a \cap x_{1}\right) \cap\left(\left(a \cap y_{1}\right) \cup\left(b \cap z_{1}\right)\right) \leqq\left(a \cap x_{1}\right) \cap\left(y_{1} \cup z_{1}\right)=$ $a \cap\left(x_{1} \cap\left(y_{1} \cup z_{1}\right)\right) \leqq a \cap\left(\left(x_{1} \cup y_{1}\right) \cap\left(y_{1} \cup z_{1}\right)=a \cap y_{1}=y\right.$. The second identity is easy to prove, hence $x y z$.

Definition 2. Let K be a line with endelements a, b. The pair of elements $x, y \in K$ is called a simple pair $\langle x, y\rangle$ with respect to a if axy and the elenient.s x, y are neighbouring in the line K.

Remark. If we shall consider a line with endelements a, b, we shall call a simple pair $\langle x, y\rangle$ with respect to a shortlv a simple pair $\langle x, y\rangle$.

Lemma 5. Let K be a line with endelements $a, b, a \| b$. Let $\langle x, y\rangle$ be a simple pair of the line K and $x \nsupseteq y(x \nsubseteq y)$. Then $\langle x \cap b, y \cap b\rangle(\langle x \cap a, y \cap a)$ is a simple pair of the line K^{n}.

Proof. We suppose $x \not \geqq y$. Evidently, axy and ayb. From these two relations there tollows by (t_{1})

$$
\begin{equation*}
x y b . \tag{1}
\end{equation*}
$$

This implies by Lemma 4

$$
\begin{equation*}
y \cap b \geqq x \cap b, \quad x \cap y \geqq x \cap b \tag{2}
\end{equation*}
$$

It $y \cap b=x \cap b$, then (1), (2) imply $y=(x \cap y) \cup(y \cap b)=(x \cap y) \cup$ $\cup(x \cap b)=(x \cap y)$. Hence $y \leqq x$, which is impossible (we have supposed $x \nsupseteq y$). Hence $x \cap b<y \cap b$. The line K^{\cap} fulfils the conditions (i), (ii), (iii) of Lemma 1 (see the proof of Theorem 2). From the condition (iii) it follows

$$
a(x \cap b)(y \cap b)
$$

It remains to show that the elements $x \cap b, y \cap b$ are neighbouring in the line K^{\cap}. If $c \in K^{\cap}$ exists such that

$$
\begin{equation*}
y \cap b>c>x \cap b \tag{3}
\end{equation*}
$$

then, since $c \in K^{\cap \prime \prime}$, there exists an element $c_{1} \in K$ such that $c=c_{1} \cap b$. Since x, y are neighbouring elements of the line K, either $c_{1} x y$ or $x y c_{1}$. The relation $c_{1} x y$ cannot hold, because the relations $c_{1} x y$ and $x y b$ imply $c_{1} x b$ by (t_{2}), which implies $b \cap x \geqq b \cap c_{1}=c$, contrary to (3). On the other hand the relations $x y c_{1}$ and axy imply $a y c_{1}$ by (t_{2}). From this and from $a c_{1} b$ we have $y c_{1} b$ by (t_{1}). By Lemma $4 c=b \cap c_{1} \geqq b \cap y$, which is also impossible. We see that the elements $x \cap b, y \cap b$ are neighbouring in the line K^{\cap}. The assertion in the brackets can be proved analogously.

Lemma 6. Let K be a line with endelements $a, b, a \| b$. Let $\left\langle x_{i}, y_{i}\right\rangle, i=1,2$, be two simple pairs of the line K different from each other. If $x_{i} \geqq y_{i}, i=1,2$ $\left(x_{i} \neq y_{i}, i=1,2\right)$, then $b \cap x_{1} \neq b \cap x_{2}\left(a \cap y_{1} \neq a \cap y_{2}\right)$.

Proof. By assumption, $a x_{i} y_{i}, i=1,2$. Since $a y_{i} b, i=1$, 2, we get by (t_{1})

$$
\begin{equation*}
x_{i} y_{i} b, \quad i=1,2 \tag{1}
\end{equation*}
$$

Since the pairs $\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle$ are different from each other, $x_{1} \neq x_{2}$. Let

$$
\begin{equation*}
b \cap x_{1}=b \cap x_{2} \tag{£}
\end{equation*}
$$

We can consider $x_{1} x_{2} b$, because the case $x_{2} x_{1} b$ is symmetrical. The relations $x_{1} x_{2} b$ and (2) imply $x_{2}=\left(x_{2} \cap x_{1}\right) \cup\left(x_{2} \cap b\right)=\left(x_{2} \cap x_{1}\right) \cup\left(x_{1} \cap b\right) \leqq x_{1}$, hence

$$
\begin{equation*}
x_{2} \leqq x_{1} . \tag{3}
\end{equation*}
$$

Considering the fact, that $x_{1} x_{2} b$ and x_{1}, y_{1} are neighbouring elements, we get $x_{1} y_{1} x_{2}$. This and (3) gives

$$
y_{1}=\left(x_{1} \cap y_{1}\right) \cup\left(y_{1} \cap x_{2}\right)=\left(x_{1} \cap y_{1}\right) .
$$

Hence $y_{1} \leqq x_{1}$, which contradicts the assumption. The assertion in the brackets can be proved analogously.

Definition 3. Let K be a finite line. The length αK of the line K is the number of its simple pairs.

Definition 4. The line K has the property (β), if any two neighbouring elements of the line K are comparable.

Theorem 3. Let K be a finite line of the lattice S with endelements $a, b, a \| b$. Then
a) if the line K has the property (β), then $\mathrm{d} K=\mathrm{d} K^{\cap}$.
b) if the line K has not the property (β), then $\mathrm{d} K<\mathrm{d} K^{\cap}$.

Proof. Let us denote the set of all simple pairs of the line $K\left(K^{n}\right)$ by $K^{*}\left(K^{\cap *}\right)$. Let us define a map φ from the set K^{*} into the set $K^{\cap *}$ as follows. Let $\langle x, y\rangle \in K^{*}$. If $x>y$, then $\varphi(\langle x, y\rangle)=\langle a \cap x, a \cap y\rangle$ and if $x \nexists y$, then $\varphi(\langle x, y\rangle)=\langle b \cap x, b \cap y\rangle$. By Lemma $5 \varphi(\langle x, y\rangle)$ are simple pairs of the line K^{n}. We show that the $\operatorname{map} \varphi$ is $1-1$. Let $\left\langle x_{1}, y_{1}\right\rangle \neq\left\langle x_{2}, y_{2}\right\rangle$. If $x_{1} \ngtr y_{1}$, $x_{2} \ngtr y_{2}$ or $x_{1}>y_{1}, x_{2}>y_{2}$, then $\varphi\left(\left\langle x_{1}, y_{1}\right\rangle\right) \neq \varphi\left(\left\langle x_{2}, y_{2}\right\rangle\right)$ by Lemma 6. If $x_{1} \nsupseteq y_{1}, x_{2}>y_{2}$, then $\varphi\left(\left\langle x_{1}, y_{1}\right\rangle\right)=\left\langle b \cap x_{1}, b \cap y_{1}\right\rangle \in K^{\prime *}$ and $\varphi\left(\left\langle x_{2}, y_{2}\right\rangle=\right.$ $=\left\langle a \cap x_{2}, a \cap y_{2}\right\rangle \in K^{\prime}$. The case $x_{1}>y_{1}, x_{2} \not ⿻ y_{2}$ is similar to the preceding case. We have already proved that $\left\langle x_{1}, y_{1}\right\rangle \neq\left\langle x_{2}, y_{2}\right\rangle$ implies $\varphi\left(\left\langle x_{1}, y_{1}\right\rangle\right) \neq$ $\neq \varphi\left(\left\langle x_{2}, y_{2}\right\rangle\right)$.

We first assume that the line K has the property (β). We show that p is a map from the set K^{*} onto the set $K^{\cap *}$. Let $\langle c, d\rangle \in K^{\cap *}$. By Lemma 2 either $c \in K^{\cap^{\prime}}$ or $c \in K^{\cap \prime \text {. Let, for example, } c \in K^{\cap \prime} \text {. Then }}$

$$
\begin{equation*}
a \cap b \leqq c<d \tag{1}
\end{equation*}
$$

Since $c, d \in K^{\cap \prime}$, there exist $x, y \in K$ such that

$$
\begin{equation*}
c=x \cap b, \quad d=y \cap b \tag{2}
\end{equation*}
$$

If there were $y x b$, then by Lemma 4 there would be $x \cap b \geqq y \cap b$, hence $c \geqq d$, which contradicts (1). Consequently $x y b$ and since $a x b$, hence by (t_{1})
$a x y$.
The relation $x \geqq y$ implies $x \cap b \geqq y \cap b$, hence $c \geqq d$, which contradicts (1). Hence $x \nsupseteq y$. Since the line K is finite, there exist elements $x_{i}(i=1,2, \ldots, n)$ such that

$$
x=x_{1} \prec x_{2} \prec \ldots \prec x_{n-1} \prec x_{n}=y
$$

$(x \prec y \Leftrightarrow a x y, x, y \in K)$ and $\left\langle x_{i}, x_{i+1}\right\rangle, i=1,2, \ldots, n-1$, are simple pains. From $x \geqq y$ and from the property (β) it follows that there exist an $i, 1 \leqq$ $\leqq i \leqq n-1$, such that

$$
\begin{equation*}
x_{i}<x_{i, 1} \tag{4}
\end{equation*}
$$

In view of $x \prec x_{i} \prec x_{i+1} \prec y \prec b$ there holds $x x_{i} b$ and $x_{i+1} y b$. Hence by Lemma 4 it follows

$$
c=x \cap b \leqq x_{i} \cap b \leqq x_{i+1} \cap b \leqq y \cap b=d
$$

By Lemma $5 \varphi\left(\left\langle x_{i}, x_{i+1}\right\rangle\right)=\left\langle x_{i} \cap b, x_{i+1} \cap b\right\rangle$, hence $\quad x_{i} \cap b \neq x_{i+1} \cap b$. Considering the fact that $\langle c, d\rangle$ is a simple pair, we see that

$$
\langle c, d\rangle=\left\langle x_{i} \cap b, x_{i+1} \cap b\right\rangle=\varphi\left(\left\langle x_{i}, x_{i+1}\right\rangle\right) .
$$

Let us assume that the line K has not the property (β). Then there exist two neighbouring elements c, d of the line K, which are incomparable. Let $a c d$. Since $c \geqq d, \varphi(\langle c, d\rangle)=\langle b \cap c, b \cap d\rangle$. By Lemma 5 the elements $a \cap c$, $a \cap d$ form the simple pair $\langle a \cap c, a \cap d\rangle$. Let $\langle x, y\rangle \in K^{*}$ such that $\varphi(\langle x, y\rangle)=$ $=\langle a \cap x, a \cap y\rangle=\langle a \cap c, a \cap d\rangle$. Then $x>y$. Since $c \nsubseteq d, x \nsubseteq y$ and $c \| d$, it follows by Lemma 6 that $a \cap d \neq a \cap y$. But this contradicts the fact that $\varphi(\langle x, y\rangle)=\langle a \cap x, a \cap y\rangle$. Hence no simple pairs are mapped on the simple pair $\langle a \cap c, a \cap d\rangle$. This gives $\mathrm{d} K<\mathrm{d} K^{\cap}$.

Remark. The last theorem shows that if a finite lattice contained a connected line K with endelements a, b, which has not the property (β), then in this lattice the Jordan-Hölder Theorem for lines would not hold. Let us find a sufficient condition that every line of the lattice S have the property (β).

Definition 5. A lattice S is partly modular (p-modular), iff for every $a, b, a_{1}, b_{1} \in S$, which satisfy the condition

$$
\begin{equation*}
\left(a_{1} \cup b\right) \cap a=a_{1}, \quad\left(a \cup b_{1}\right) \cap b=b_{1} \tag{1}
\end{equation*}
$$

we have $a_{1} \cup b_{1}=\left(a_{1} \cup b\right) \cap\left(a \cup b_{1}\right)$.

Theorem 4. A lattice S is p-modular of and only if it does not contain a sublattice with the diagram of Figure 1.

Proof. If a lattice contains a sublattice of Figure 1, then by Definition 5 it is not p-modular.

Now we assume that the lattice S does not contain a sublattice with the diagram of Figure 1. Let $a, b, a_{1}, b_{1} \in S$ and let (1) of the Definition 5 hold. If $a \leqq b$, then by (1), $a_{1}=a$ and $\left(a \cup b_{1}\right) \cap b \leqq\left(b \cup b_{1}\right) \cap b=b$, hence $b_{1} \leqq b$. Then $a_{1} \cup b_{1}=a \cup b_{1}=(a \cup b) \cap\left(a \cup b_{1}\right)=\left(a_{1} \cup b\right) \cap\left(a \cup b_{1}\right)$. The case $a \geqq b$ is symmetrical. Let $a \| b$. Let us denote $a_{2}=a \cup b_{1}, b_{2}=$ $-a_{1} \cup b$. Then from (1) it follows

$$
\begin{equation*}
a \cap b \leqq a_{1} \leqq a \leqq a_{2} \leqq a \cup b, \quad a \cap b \leqq b_{1} \leqq b \leqq b_{2} \leqq a \cup b \tag{2}
\end{equation*}
$$

and also $a_{1} \cup b_{1} \leqq a_{2} \cap b_{2}$. If $a_{1} \cup b_{1}<a_{2} \cap b_{2}$ and no two elements would be equal in (2), then the sublattice of the lattice S, generated by the elements $a, b, a_{1}, b_{1}, a_{2}, b_{2}$, would have the diagram of Figure 1. Therefore $a_{1} \cup b_{1}=$

Fig. 1

- $a_{2} \cap b_{2}$. If some two elements are equal in (2), then it is easy to prove that $a_{1} \cup b_{1}=a_{2} \cap b_{2}$.

Theorem 5. A lattice is p-modular if and only if it satisfies one of the following conditions.
(i) For every $a, b, a_{1}, b_{1} \in S, a \| b:$ If $\left\{a, a_{1}, b_{1}, b\right\}$ is a line with endelements a, b, then $a\left(a_{1} \cup b_{1}\right) b$.
(ii) For every $a, b, a_{1}, b_{1} \in S, a \| b$: If $\left\{a, a_{1}, b_{1}, b\right\}$ is a line with endelements a, b, then $a\left(a_{1} \cap b_{1}\right) b$.
(iii) For every $a, b, a_{1}, b_{1}, c_{2}, b_{2} \in S, \quad a \| b: \quad$ If
$a_{2} \cap b=b_{1}, b_{2} \cap a=a_{1}, a_{1} \cup b=b_{2}, b_{1} \cup a=a_{2}$, then $a_{1} \cup b_{1}=a_{2} \cap b_{2}$.
Proof. Clearly, a lattice is p-modular if and only if it satisfies the condition (iii) (see the proof of the Theorem 4).

We shall prove that the conditions (iii) and (ii) are equivalent. Let lattice S satisfy the condition (ii) and let the elements $a, b, a_{1}, b_{1}, a_{2}, b_{2} \in S, a \quad b$ satisfy the conditions

$$
\begin{equation*}
a_{2} \cap b=b_{1}, \quad b_{2} \cap a=a_{1}, \quad a_{1} \cup b=b_{2}, \quad b_{1} \cup a=a_{2} \tag{1}
\end{equation*}
$$

If $a_{1}=a$, then $b_{2}=a_{1} \cup b=a \cup b \geqq a_{2}$. Hence $a_{2} \cap b_{2}=a_{2}=a \cup b_{1}=$ $=a_{1} \cup b_{1}$ and condition (iii) is fulfilled. The case $b_{1}=b$ is analogous. Suppose now that $a_{1} \neq a, b_{1} \neq b$. We show that $\left\{a, a_{2}, b_{2}, b\right\}$ is a line withend elements a, b. According to the suppositions (1) there holds $a_{2} \leqq\left(a \cup a_{2}\right) \cap\left(b \cup a_{2}\right)=$ $=a_{2} \cap\left(b \cup a_{2}\right)=a_{2}$ and $a_{2} \geqq\left(a \cap a_{2}\right) \cup\left(b \cap a_{2}\right)=a \cup b_{1}=a_{2}$. Therefore $a a_{2} b$. In a similar manner it can be shown that $a b_{2} b$. Therefore the set $\left\{a, a_{2}, a \cup\right.$ $\left.\cup b, b_{2}, b\right\}$ forms a line by the dual statement to Lemma 3. Clearly, the set $\left\{a, a_{2}, b_{2}, b\right\}$ forms a line, hence $a\left(a_{2} \cap b_{2}\right) b$. From this it follows

$$
\begin{gathered}
a_{2} \cap b_{2}=\left(a \cap a_{2} \cap b_{2}\right) \cup\left(a_{2} \cap b_{2} \cap b\right)= \\
=\left(a \cap\left(b_{1} \cup a\right) \cap b_{2}\right) \cup\left(a_{2} \cap\left(a_{1} \cup b\right) \cap b\right)=\left(a \cap b_{2}\right) \cup\left(a_{2} \cap b\right)= \\
=a_{1} \cup b_{1} .
\end{gathered}
$$

(We have applied the relations (1)). We get $a_{2} \cap b_{2}=a_{1} \cup b_{1}$, as claimed.
Suppose now that the lattice S satisfies the condition (iii). Let the set $\left\{a, a_{1}, b_{1}, b\right\}$ be a line with endelements a, b. Well shall prove that the elements

$$
a, b,\left(b \cup b_{1}\right) \cap a,\left(a \cup a_{1}\right) \cap b, a \cup a_{1}, b \cup b_{\star}
$$

Satisfy the conditions (1). Evidently, the first two conditions are fulfilled. Since $a b_{1} b, a a_{1} b$, it follows

$$
\begin{align*}
& \left(b \cup b_{1}\right) \cap a=\left(b \cup b_{1}\right) \cap\left(\left(b_{1} \cup a\right) \cap a\right)=b_{1} \cap a \tag{2}\\
& \left(a \cup a_{1}\right) \cap b=\left(a \cup a_{1}\right) \cap\left(\left(a_{1} \cup b\right) \cap b\right)=a_{1} \cap b \tag{3}
\end{align*}
$$

(2) gives

$$
\begin{gather*}
\left(\left(b \cup b_{1}\right) \cap a\right) \cup b=\left(b_{1} \cap a\right) \cup b=\left(b_{1} \cap a\right) \cup\left(b_{1} \cap b\right) \cup b= \tag{4}\\
=b_{1} \cup b
\end{gather*}
$$

Analogously (3) implies
$\left(\left(a \cup a_{1}\right) \cap b\right) \cup u=a_{1} \cup a$.
The relations (4), (5) are the second two conditions of (1) for our elements. Since the lattice S satisfies the condition (iii), we get

$$
\begin{equation*}
\left(a \cup a_{1}\right) \cap\left(b \cup b_{1}\right)=\left(\left(a \cup a_{1}\right) \cap b\right) \cup\left(\left(b \cup b_{1}\right) \cap a\right) \tag{6}
\end{equation*}
$$

(2), (3), (6) yield

$$
\begin{equation*}
\left(a \cup a_{1}\right) \cap\left(b \cup b_{1}\right)=\left(a_{1} \cap b\right) \cup\left(a \cap b_{1}\right) \tag{7}
\end{equation*}
$$

Since $a a_{1} b_{1}, a_{1} b_{1} b$ and (7) holds, we get $a_{1} \cap b_{1}=\left(\left(a \cup a_{1}\right) \cap\left(a_{1} \cup b_{1}\right)\right) \cap$ $\cap\left(\left(b \cup b_{1}\right) \cap\left(b_{1} \cup a_{1}\right)\right)=\left(a \cup a_{1}\right) \cap\left(b \cup b_{1}\right) \cap\left(a_{1} \cup b_{1}\right)=\left(\left(a_{1} \cap b\right) \cup\right.$ $\left.\cup\left(a \cap b_{1}\right)\right) \cap\left(b_{1} \cup a_{l}\right)=\left(a_{1} \cap b\right) \cup\left(a \cap b_{1}\right)$. From this and from (6), (7) it follows $\left(a \cup a_{1}\right) \cap\left(b \cup b_{1}\right)=a_{1} \cap b_{1}=\left(\left(a \cup a_{1}\right) \cap b\right) \cup\left(\left(b \cup b_{1}\right) \cap a\right)$. From this relation we get

$$
\begin{gathered}
a_{1} \cap b_{1} \leqq\left(a \cup\left(a_{1} \cap b_{1}\right)\right) \cap\left(b \cup\left(a_{1} \cap b_{1}\right)\right) \leqq\left(a \cup a_{1}\right) \cap\left(b \cup b_{1}\right)=a_{1} \cap b_{1} \\
a_{1} \cap b_{1} \leqq\left(a \cap a_{1} \cap b_{1}\right) \cdot \cup\left(b \cap a_{1} \cap b_{1}\right)=\left(a \cap\left(b \cup b_{1}\right)\right) \cup\left(b \cap\left(a \cup a_{1}\right)\right)= \\
=a_{1} \cap b_{1} .
\end{gathered}
$$

From the two last relations we get $a\left(a_{1} \cap b_{1}\right) b$, which proves our assertion.
The equivalency of the conditions (i), (iii) can be proved analogously.
Lemma 9. If $x a b$, then $x(a \cap b) b(x(a \cup b) b)$.
Proof. From the relation $x a b$ it follows

$$
\begin{aligned}
& x \cup a=x \cup(a \cap x) \cup(a \cap b)=(a \cap b) \cup x, \\
& a \cap b=(a \cup x) \cap(a \cup b) \cap b=(a \cup x) \cap b .
\end{aligned}
$$

These two relations imply

$$
a \cap b \leqq((a \cap b) \cup x) \cap((a \cap b) \cup b)=(a \cup x) \cap b=a \cap b
$$

Therefore $a \cap b=((a \cap b) \cup x) \cap((a \cap b) \cup b)$. The dual relation is evident, hence $x(a \cap b) b$. The assertion in brackets can be obtained by duality.

Lemma 10. If the elements x, y, a, b belong to a line K, and $x a b, x y a$, then $x y(a \cap b)(x y(a \cup b))$.

Corollary. The relation xab implies $x a(a \cap b)(x a(a \cup b))$.
Proof. From $x a b$ and $x y a$ it follows that $y a b$ by $\left(\mathrm{t}_{1}\right)$. The last relation and $x y a$ gives $x y b$ by (t_{2}) (if $y=a$, then $x y b$, too). By the preceding Lemma from $y a b$ it follows that $y(a \cap b) b$. But this and $x y b$ imply $x y(a \cap b)$ by $\left(\mathrm{t}_{1}\right)$. The assertion in brackets is dual.

Theorem 6. Let S be a p-modular lattice. Then every connected line in the lattice S has the property (β), which means that any two neighbouring elements of any connected line are comparable.

Proof. Let S be a p-modular lattice. Let K be a connected line in S, which has not the property (β). Hence there exist $a, b \in K, a \| b, a, b$ neighbouring elements in the line K. We shall prove that $\{a \cap b\} \cup K$ is a line. To this end, it is sufficient to show:

1. For any $x, y \in K$ one of the relations holds: $x(a \cap b) y, x y(a \cap b), y x(a \cap b)$.
2. If the set $\{a \cap b\} \cup K$ contains exactly four elements, then these elements do not form a pseudolinear quadruple.

We first prove the assertion l. We have considered the following cases. 1. $x a b, y a b, 2 . x a b, a b y, 3 . y a b, a b x$, 4. $a b x, a b y$. In view of the symmetry it suffices to consider the cases 1 . and 2 . In the first case if $x y a$, then the relations $x a b$, $x y a$ imply $x y(a \cap b)$ by Lemma 10. If $y x a$, then from $y a b$ it follows by Lemma 10 that $y x(a \cap b)$. If $x a y$, then $x<a<y$ or $y<a<x$. From the suppositions $a \neq b$ and 1 it follows that $x<a<b$ and $y<a<b$ or $b<a<x$ and $b<a<y$. Hence $x=a$ or $y=a$. Therefore $y x a$ or $x y a$, which was considered. In the case 2 the set $\{x, a, b, y\}$ forms a line. Since the lattice S is p-modular and $x \| y$ (if $x \leqq y$ or $y \leqq x$, then $\{x, a, b, y\}$ is a chain contrary to $a \| b$) we get $x(a \cap b) y$ by Theorem 5, (ii).

We show the validity of 2 . Since $a \| b$, it cannot be $a b(a \cap b)$ or $b a(a \cap b)$. Hence we have $a(a \cap b) b$. Therefore the elements $a, b, a \cap b, c$ of the set $\{a \cap b\} \cup K$ can form a pseudolinear quadruple only in this way:

$$
a(a \cap b) b,(a \cap b) b c, b c a, c a(a \cap b)
$$

The relation $b c a$ contradicts the fact that the elements a, b are neighbouring in K.

Since $a \| b$, we have $K \cup\{a \cap b\} \supsetneq K$, which is a contradiction to the supposition that K is a connected line.

Jordan-Hölder Theorem for Lines

Lemma 11. If $a b x$, aby and there exist an element u such that $x \leqq u \leqq y$, then abu.

$$
\text { Proof. } \begin{aligned}
b & \leqq(a \cup b) \cap(b \cup u) \leqq(a \cup b) \cap(b \cup y)=-b, \\
b & \geqq(a \cap b) \cup(b \cap u) \geqq(a \cap b) \cup(b \cap x)=b .
\end{aligned}
$$

Theorem 7. Let S be a p-modular lattice. Let K be a finite connocted line uith endelements $a, b \in S, a \| b$. Then the line K^{\cap} is connected.

Proof. If K^{\cap} is not connected then there exist elements $a_{1}, b_{1}, c \in S$ such
that $a_{1}, b_{1} \in K^{\cap}, c \notin K^{\cap}, u_{1} c b_{1}$ and $K^{\cap} \mathbf{u}\{c\}$ is a line. Hence $a \prec a_{1} \prec c \prec$ $\prec b_{1} \prec b$, whence $a c b$.

Since the line K^{\cap} is finite, there exist $x, y \in K^{\cap}$ such that x, y are neighbouring elements of the line K^{\cap} and $x c y$. Let $x, y \in K^{\cap \prime \prime}$ and let $x<y$. Then

$$
\begin{equation*}
x<c<y \leqq b \tag{2}
\end{equation*}
$$

We shall show that there exists an element $u \in S, u \notin K$, such that $a u b$ and $K \cup\{u\}$ is a line, hence the line K is not connected, which is a contradiction with the supposition. Therefore the hypothesis that the line K^{\cap} is not connected is contradictory.

Since the lattice S is p-modular and the clements x, y form a simple pair $\langle x, y\rangle$, by Theorem 3 there exists $\left\langle x_{1}, y_{1}\right\rangle \in K^{*}$ such that $\varphi\left(\left\langle x_{1}, y_{1}\right\rangle\right)=\langle x, y\rangle$. From the construction of the map φ it follows that

$$
\begin{equation*}
x_{1}<y_{1}, x=x_{1} \cap b, y=y_{1} \cap b \tag{3}
\end{equation*}
$$

Let $u=x_{1} \cup c$. Since $x_{1}<y_{1}$ and $c<y \leqq y_{1}$ we get

$$
\begin{equation*}
x_{1} \leqq u \leqq y_{1} \tag{4}
\end{equation*}
$$

Further, we shall show that

$$
\begin{equation*}
x_{1} \cup c=u=(a \cup c) \cap y_{1} \tag{5}
\end{equation*}
$$

Since $a x y$, we get by Corollary of Lemma 10 that $(a \cup x) x y$. Therefore $\{a \cup x, x, y\}$ is a line. The relation axy implies $x=(a \cup x) \cap(x \cup y)=$ $-(a \cup x) \cap y$ and this implies $a \cup x \| y$. If $(a \cup x) c y$, then $\{a \cup x, x, c, y\}$ is a line by Lemma 3. But $a x y$ and $x c y$ imply $a x c$ by (t_{1}), $a x c$ and $x c y(x \neq c$, $a, x, c, y \in K^{\cap} \mathbf{u}\{c\}$) imply acy by (t_{2}), acy implies by Corollary of Lemma 10 $(a \cup c) c y$. Finally, $a c y,(a \cup c) c y$ and $a \leqq a \cup x \leqq a \cup c$ imply $(a \cup x) c y$ by Lemma 11. Proving $x \leqq x_{1} \leqq a \cup x$ and $(a \cup x) x_{1} y$ we get that $\{a \cup x$, $\left.x_{1}, x, c, y\right\}$ is a line. But, since $x=x_{1} \cap b$ (see (3)) and $a x_{1} b\left(x_{\perp} \in K\right)$, we have

$$
\begin{equation*}
x \cup a=\left(x_{1} \cap b\right) \cup\left(\left(x_{1} \cap a\right) \cup a\right)=x_{1} \cup a \tag{6}
\end{equation*}
$$

hence $x_{1} \leqq a \cup x$. (Clearly $x \leqq x_{1}$). Since $\left\langle x_{1}, y_{1}\right\rangle$ is a simple pair, we have $x_{1} y_{1} b$, which yields, by Lemma $9, x_{1}\left(y_{1} \cap b\right) b$, hence $x_{1} y b$ (see (3)). The relations $a x_{1} b, x_{1} y b$ imply $a x_{1} y$ by (t_{1}), whence by Corollary of Lemma $10\left(a \cup x_{1}\right) x_{1} y$. Hence

$$
(a \cup x) x_{1} y
$$

by (6). Since $\left\{a \cup x, x_{1}, x, c, y\right\}$ is a line, the set $\left\{a \cup x, x_{1}, c, y\right\}$ is a line too. Since the lattice S is p-modular it follows by Theorem $5(1)$ that

$$
(a \cup x)\left(x_{1} \cup c\right) y
$$

In view of this and of (2), (4), (6), $x_{1} y_{1} b$ we have

$$
\begin{aligned}
x_{1} \cup c= & \left(a \cup x \cup x_{1} \cup c\right) \cap\left(x_{1} \cup c \cup y\right)=(a \cup x \cup c) \cap\left(x_{1} \cup y\right)= \\
& =(a \cup c) \cap\left(\left(x_{1} \cap y_{1}\right) \cup\left(y_{1} \cap b\right)\right)=(a \cup c) \cap y_{1} .
\end{aligned}
$$

This proves (5).
Next we show that $a u b$.

Since

$$
c \geqq\left(x_{1} \cap c\right) \cup(c \cap b)=\left(x_{1} \cap c\right) \cup c=c
$$

and, with respect to (5), (3), (2) and acy,

$$
\begin{gathered}
c \leqq\left(x_{1} \cup c\right) \cap(c \cup b)=(a \cup c) \cap y_{1} \cap b=(a \cup c) \cap y=- \\
=(a \cup c) \cap(c \cup y)=c
\end{gathered}
$$

we get $x_{1} c b$. From $a x_{1} b\left(x_{1} \in K\right)$ and $x_{1} c b$ it follows that $a x_{1} c$ by $\left(\mathrm{t}_{1}\right)$. Since $a x_{1} c, x_{1} c b, a x_{1} b$ and $a c b$ (see (1)) and the elements a, x_{1}, c, b do not form a pseudolinear quadruple (the relation $c b a$ is not possible) the set $\left\{a, x_{1}, c, b\right\}$ is a line. By Theorem 5, (i) $a\left(x_{1} \cup c\right) b$, therefore the relation (7) is proved.

We shall now show that

$$
\begin{equation*}
x_{1} \neq u, \quad u \neq y_{1} \tag{8}
\end{equation*}
$$

If $u=x_{1}$, then $c \leqq c \cup x_{1}=u=x_{1}$ and $c \leqq b$ (see (2)), hence $c \leqq x_{1} \cap b=x$, contrary to (2). If $u=y_{1}$, then $(c \cup a) \cap y_{1}$ (see (5)) hence $y_{1} \leqq c \cup a$. In view of $a c b$ we have $c=(a \cup c) \cap(b \cup c) \geqq y_{1} \cap b=y$, thus $c \geqq y$, which contradicts (2).

It remains to show that $K \cup\{u\}$ is a line, that is:
A) For any $e, f \in K$ one of the relations euf, efu, feu holds.
B) If the set $K \cup\{u\}$ contains exactly four elements, then these elements do not form a pseudolinear quadruple.
A) We have to consider the following cases a) $e x_{1} y_{1}, f x_{1} y_{1}$, b) $e x_{1} y_{1}, x_{1} y_{1} f$. The other two cases are symmetrical.
a) Let $e x_{1} y_{1}, f x_{1} y_{1}$ and let efx. Then efy. The relations efx x_{1}, ef y_{1} and $x_{1} \leqq u \leqq y_{1}$ (see (4)) imply efu by Lemma 11. If fex then, analogously, feu.
b) Let $e x_{1} y_{1}, x_{1} y_{1} f$. Since $a x_{1} y_{1}$, there exists a linear ordering of the line K such that $a \prec e \prec x_{1} \prec y_{1} \prec f \prec b$. This implies $a e x_{1}$ and $a \rho y_{1}$. Since $x_{1} \leqq$
$\leqq u \leqq y_{1}$ by (4), aeu by Lemma 11 holds. Analogously it can be shown that $u f b$. These two relations imply, by Lemma 4,

$$
\begin{equation*}
u \cap f \geqq u \cap b, u \cup f \leqq u \cup b, u \cup e \geqq u \cap a, u \cup e \leqq u \cup a \tag{9}
\end{equation*}
$$

This and the relation $a u b$ (see (7)) imply

$$
\begin{aligned}
& u \leqq(u \cup f) \cap(u \cup e) \leqq(u \cup a) \cap(u \cup b)=u \\
& u \geqq(u \cap e) \cup(u \cap f) \geqq(u \cap a) \cup(u \cap b)=u
\end{aligned}
$$

This proves that euf.
B) The set $K \cup\{u\}$ contains the elements x_{1}, y_{1}, u and let it contain the element $t \in K, t \neq x_{1}, t \neq y_{1}$. Since $x_{1} \leqq u \leqq y_{1}$ and the elements x_{1}, y_{1} form a simple pair, the elements x_{1}, y_{1}, u, t can form a pseulinear quadruple only in this way

$$
x_{1} u y_{1}, u y_{1} t, y_{1} t x_{1}, t x_{1} u
$$

The relation $y_{1} t x_{1}$ contradicts the supposition.
Definition 6. A lattice S satisfies the condition (γ), if to any two elements $a, b \in S, a \| b$ and to any connected finite line with endelements a, b there exists a connected line with the same length and the same endelements, containing the element $a \cap b$.

Theorem 8. A lattice S is p-modular if and only if any its sublattice satisfies the condition (γ).

Proof. If the lattice S is not p-modular, then it contains a sublattice with the diagram of Figure 1, by Theorem 4. The line $\left\{a, a_{1}, b_{2}, b\right\}$ and the line $\left\{a, a_{1}, a \cap b, b_{1}, b\right\}$ are connected and they have different lengths.

Let the lattice S be p-modular. Let K be a finite connected line with endelements $a, b, a \| b$. The line K^{n} is connected by Theorem 7. The line K has the property (β) according to Theorem 6 , hence $\mathrm{d} K=\mathrm{d} K^{\cap}$ by Theorem 3. We found to K a connected line K^{\cap} with endelements $a, b, a \cap b \in K^{\cap}$ and with the same length.

Definition 7. A lattice S is upper semimodular if to any three elements $a, b, x \in S$

$$
\begin{equation*}
a \| b, \quad a \cup b>x>a \tag{1}
\end{equation*}
$$

there exists at least one t such that

$$
a \cup b>t \geqq b \quad \text { and } \quad(x \cap t) \cup a=x .
$$

(Definition 7 is from [3]).
Remark. Every modular lattice is p-modular, but the lattice of Figure 2
is p-modular and is neither upper semimodular nor modular. The lattice of Figure 3 is upper semimodular, but is not p-modular.

Fig. 2

Fig. 3

Theorem 9. Let S be an upper semimodular lattice. If K is a connected line in S with endelements $a, b \in S, a \| b, a \cap b \in K$, then for any two neighbouring elements $c, d \in K$ either $c \triangleleft d$ or $d \triangleleft c$.

Proof. Let, for instance, $c, d \in K^{\prime}(=K \cap[a \cap b, a])$ and let $c>d$, where c, d are neighbouring elements in K. Let $[d, c]$ not form a priminterval, thus there exists an element $u \in S, c>u>d$. Since $c, d \in K^{\prime}$, we get

$$
\begin{equation*}
a \geqq c>u>d \geqq a \cap b \tag{1}
\end{equation*}
$$

Since the line K is connected the set $K \mathbf{u}\{u\}$ does not form a line. The condition (ii) of Lemma 3 is fulfilled, hence the condition (i) of Lemma 3 is not fulfilled and the relation aub does not hold. Hence

$$
\begin{equation*}
u<a \cap(u \cup b) \tag{2}
\end{equation*}
$$

Since $c \in K$, we get $a c b$. This and (1) gives

$$
c=(a \cup c) \cap(c \cup b)=a \cap(b \cup c) \geqq a \cap(b \cup u) .
$$

Therefore either a) $c>a \cap(b \cup u)$ or b$) c=a \cap(b \cup u)$.
a) Let $t=a \cap(b \cup u)$, hence $c>t$ and $t>u$ by (2). This and (1) gives

$$
\begin{equation*}
c>t>d \tag{3}
\end{equation*}
$$

We show that $a t b: t \geqq(a \cap t) \cup(b \cap t) \geqq(c \cap t) \cup(b \cap t)=t \cup(b \cap t)=t$, $t \leqq(a \cup t) \cap(b \cup t) \leqq(a \cup c) \cap(b \cup(a \cap(b \cup u))) \leqq a \cap(b \cup(b \cup u))=$ $=a \cap(b \cup u)=t$ (see (1), (3)).

The set $K \cup\{t\}$ is a line by Lemma 3 and $t \notin K$ which contradicts the assumption.
b) Let $c=a \cap(b \cup u)$. We show that the conditions (1) of Definition 7 are fulfilled by the elements $u, b \cup d, c$. We first show that $u \| b \cup d$. If $u \leqq$ $\leqq b \cup d$, then $d=(a \cup d) \cap(b \cup d) \geqq a \cap u=u$ (since $d \in K$, we have $a d b$ and $a>u$ by (1)), thus $d \geqq u$, which contradicts (1). If $b \cup d \leqq u$, then $b \leqq u$. This and $u<a$ (see (1)) give $b<a$, contrary to the assumption. Consequently, $u \| b \cup d$. From $c=a \cap(b \cup u)$ it follows that $c \leqq b \cup u$. If $c=b \cup u$, then $b \leqq c \leqq a$ contrary to the assumption. Since $c<b \cup u$ and $u<c((1))$, we get

$$
(b \cup d) \cup u=b \cup u>c>u
$$

Since the elements $u, b \cup d, c$ satisfy the conditions (1) of Definition 7 and the lattice S is upper semimodular, there exists an element z such that

$$
\begin{equation*}
b \cup u>z \geqq b \cup d \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
(c \cap z) \cup u=c \tag{5}
\end{equation*}
$$

Thus $c \geqq c \cap z$. If $c \cap z=c$, then $c \cup z=z$. Combining the relations (4), (1) and $c \cup z=z$ we get

$$
b \cup u=(b \cup d) \cup u \leqq z \cup u \leqq z \cup c=z
$$

hence $b \cup u \leqq z$, which contradicts (4).
Therefore $c>c \cap z$. According to (4) $z \geqq b \cup d$, hence $z \geqq d$. This gives $c \cap z \geqq c \cap d=d$. If $c \cap z=d$, the relation (5) would not hold. We have shown that

$$
\begin{equation*}
c>c \cap z>d \tag{6}
\end{equation*}
$$

We next show that $a(c \cap z) b$. Since $b \cup(c \cap z) \leqq(b \cup d) \cup(c \cap z) \leqq z \cup$ $\cup(c \cap z)=z$ and $a \cap(b \cup(c \cap z)) \leqq a \cap(b \cup c)=c$, we get $a \cap(b \cup$ $\cup(c \cap z)) \leqq c \cap z$. (We have used the relations (1), (4) and $a c b$). Then

$$
c \cap z \leqq(a \cup(c \cap z)) \cap(b \cup(c \cap z))=a \cap(b \cup(c \cap z)) \leqq c \cap z
$$

It is easy to prove the second identity. We have proved that the element $c \cap z$ satisfies the suppositions of Lemma 3. Hence $K \cup\{c \cap z\}$ is a line, $c \cap z \notin K$, which contradicts the fact that K is a connected line. Hence the assumption that $[d, c]$ is not a priminterval is contradictory.

Corollary. If a lattice S is upper semimodular and K is a connected line with endelements $a, b, a \| b, a \cap b \in K$, then $K=K^{\prime} \cup K^{\prime \prime}$, where $K^{\prime}, K^{\prime \prime}$ are connected chains between $a, a \cap b$ and $b, a \cap b$.

Remark. Two intervals of a lattice are called transposes when they can be written as $[a \cap b, a]$ and $[b, a \cup b]$ for suitable a, b. Likewise, two intervals $[x, y]$ and $\left[x^{\prime}, y^{\prime}\right]$ are called projective if and only if there exists a finite sequence $[x, y],\left[x_{1}, y_{1}\right], \ldots,\left[x^{\prime}, y^{\prime}\right]$ in which any two successive intervals are transposes. From paper [1] it follows that the following theorem is true.

Let the lattice S be upper semimodular, K, L be connected chains in S with endelements $a, b(a<b)$ and K be a finite chain, then the following holds:

1. The chain L is finite and has the same length as K.
2. There exists a 1 - 1 mapping of the primintervals of the chain K onto the primintervals of the chain L such that the corresponding primintervals are projective.

Lemma 12. Let the lattice S be p-modular and upper semimodular. Let K, L be finite connected lines with endelements a, b. Then there exists a $1-1$ correspondence between the set of simple pairs of the line K and the set of simple pairs of the line L such that the corresponding simple pairs are projective.

Proof. We shall say that the lines are in the relation \mathscr{P}, if there exists a 1 - 1 mapping of the set K^{*} onto the set L^{*} such that the corresponding simple pairs are projective. We show that $L \mathscr{P} L^{\cap}$. According to Theorem 3 and Theorem 6 there exists a $1-1$ mapping φ of the set L^{*} onto the set $L^{\cap *}$.

Let $\varphi(\langle x, y\rangle)=\langle b \cap x, b \cap y\rangle$. In view of the definition of the mapping φ in the proof of Theorem 3 we have $x<y, b \cap x<b \cap y$. We have

$$
x \cap(b \cap y)=x \cap y \cap b=x \cap b
$$

Since $\langle x, y\rangle$ is a simple pair, we get $a x y$. From this it follows that $x y b$, hence

$$
x \cup(b \cap y)=(x \cap y) \cup(y \cap b)=y
$$

Therefore the simple pairs $\langle x, y\rangle,\langle b \cap x, b \cap y\rangle$ are transposed. Analogously, if $\varphi(\langle x, y\rangle)=\langle a \cap x, a \cap y\rangle$, then $\langle x, y\rangle,\langle a \cap x, a \cap y\rangle$ are transposed, hence $L \mathscr{P} L^{\cap}$.

Since the lattice S is upper semimodular, in view of the Corollary to Theorem $9 L^{\cap}=L^{\cap \prime} \cup L^{\cap \prime \prime}$, where $L^{\cap^{\prime}}, L^{\cap \prime}$ are connected chains between $a \cap b, a$ and $a \cap b, b$. Analogously, $K^{\wedge^{\prime}}, K^{\cap \prime}$ are connected chains between $a \cap b, a$ and $a \cap b, b$. According to Remark following Theorem 9, $L^{\cap^{\prime}} \mathscr{P} K^{\cap^{\prime}}$, $L^{\cap " \mathscr{P}} K^{\cap "}$, hence $L^{\cap} \mathscr{P} K^{\cap}$.

Since $L \mathscr{P} L^{\cap}$ and $K \mathscr{P} K^{\cap}, L^{\cap} \mathscr{P} K^{\cap}$ and the relation \mathscr{P} is symmetrical and transitive, we have $L \mathscr{P} K$ as claimed.

Lemma 13. Let L be an infinite line with endelements $a, b, a \| b$. Then the line L^{n} is infinite too.

Proof. Let us map any element $x \in L$ onto the ordered pair ($a \cap x, b \cap x$): $\varphi(x)=(a \cap x, b \cap x)$. We show that the mapping is $1-1$. If $\varphi(x)=\varphi(y)$, then

$$
\begin{equation*}
a \cap x=a \cap y, \quad b \cap x=b \cap y \tag{1}
\end{equation*}
$$

Since $x, y \in L$, we can, for instance, consider that $a x y$, hence $x y b$. This and (1) give

$$
\begin{aligned}
& x=(a \cap x) \cup(x \cap y)=(a \cap y) \cup(x \cap y) \leqq y \\
& y=(x \cap y) \cup(y \cap b)=(x \cap y) \cup(b \cap x) \leqq x,
\end{aligned}
$$

hence $x=y$.
If the line L is infinite, then the set of ordered pairs $\{(a \cap x, b \cap x) \mid x \in L\}$ is infinite too, hence $L^{\cap}=\{a \cap x \mid x \in L\} \cup\{b \cap x \mid x \in L\}$ cannot be finite.

Theorem 10. Let the lattice S be p-modular and upper semimodular. Let K, L $b e$ connected lines with endelements $a, b, a \| b$. Let the line K be finite. Then there exists $a 1-1$ mapping of the set of simple pairs of the line K onto the set of simple pairs of the line L such that the corresponding simple pairs are projective.

Proof. If the line L is finite, then the assertion follows from Lemma 12. If the line L is infinite, then the line L^{\cap} is infinite by Lemma 13 and hence the connected line \bar{L} which contains L^{\cap} is infinite too. Since the lattice S is upper semimodular, K^{n} is connected and there holds

$$
\bar{L}^{\prime} \mathscr{P} K^{\cap \prime} \text { and } \bar{L}^{\prime \prime} \mathscr{P} K^{\cap} .
$$

Hence the chains $\bar{L}^{\prime}, \bar{L}^{\prime \prime}$ are finite, which contradicts the fact that \bar{L} is infinite. Hence the assumption that the L is infinite is false.

Remark Clearly if a lattice is lower semimodular (a dual definition to Definition 7) and p-modular, then Theorem 10 is true.

Example

Consider the lattice $A G_{n}(D)$ of affine subspaces of the n-dimensional vector space D^{n} over a field D which has not the characteristic 2. Affine subspaces are defined as subsets of D^{n} containing with every two a, b all points of the form $a+\lambda(b-a), \lambda \in D$. It is well known that this lattice is lower semimodular and it is not modular. We shall show that this lattice is p-modular too.

The elements of the lattice $A G_{n}(D)$ have a form $a+A$ where A is a vector subspace of the D^{n} and a is an element of D^{n}.

We first prove

1. a) The meet of two elements $a+A, b+B$ of the lattice $A G_{n}(D)$ is either \emptyset or $z+(A \cap B)$, where $z \in(a+A) \cap(b+B)$.
b) The join of two elements $a+A, b+B$ of $A G_{n}(D)$ is $a+(\overline{b-a} \oplus A \oplus B)$. where $\overline{b-a}$ is the vector subspace of D^{n} generated by $b-a$ and $A \oplus B$ is the lattice-join of A and B in the lattice of all vector subspaces of D^{n}.

Proof. a) If $(a+A) \cap(b+B) \neq 0$, then there exists an element $z \in a \perp$ $+A, z \in b+B$. Hence $a+A=z+A, b+B=z+B$. This implies

$$
(a+A) \cap(b+B)=(z+A) \cap(z+B) \supset z+(A \cap B)
$$

If $x \in z+A$ and $x \in z+B$, then $x=z+a, x=z+b$ for some $a \in A$, $b \in B$. Hence $a=b$ and $a \in A \cap B$, which follows $x=z+a \in z+(A \cap B)$.
b) Clearly, $(a+A) v(b+B) \subset a+(\overline{b-a} \oplus A \oplus B)$. Let $x \in a+$ $+(\overline{b-a} \oplus A \oplus B)$. Then $x=a+\alpha(b-a)+a_{1}+b_{1}, a_{1} \in A, b_{1} \in B . \alpha \in D$. If $\alpha=1$ then $x=a_{1}+b_{1}+b$. We can write

$$
x=\left(a+a_{1}\right)+\frac{1}{2}\left(y-\left(a+a_{1}\right)\right)
$$

where

$$
y=\left(a-a_{1}\right)+2\left(b+b_{1}-\left(a-a_{1}\right)\right) .
$$

The point y belongs to $(a-A) \mathbf{v}(b+B)$ because it belongs to the line which is defined by points $a-a_{1} \in a+A$ and $b+b_{1} \in b+B$. Since the point x belongs to the line which is defined by points lying in the set $(a+A) \mathbf{v}(b+B)$, it belongs to the $(a+A) \vee(b+B)$. If $\alpha=0$, then $x=a+a_{1}+b_{1}$. We can prove that $x \in(a+A) \vee(b+B)$, analogously as in the foregoing case. If $x=a+\alpha(b-a)+a_{1}+b_{1}$ and $\alpha \neq 1, \alpha \neq 0$, then $x=a+\alpha(b-a)+$ $+(1-\alpha) \cdot a_{1} /(1-\alpha)+\alpha b_{1} / \alpha$, where $\alpha_{2}=a_{1} /(1-\alpha) \in A$ and $b_{2}=b_{1} / \alpha \in B$. Hence $x=a+\alpha(b-a)+(1-\alpha) a_{2}+\alpha b_{2}=a+a_{2}+\alpha\left(b+b_{2}-\left(a+a_{2}\right)\right)$. Therefore x belongs to the line which is defined by $a+a_{2} \in a+A$ and $b+$ $+b_{2} \in b+B$, consequently, $x \in(a+A) \mathbf{v}(b+B)$.
2. If $a+A \subset b+B$, then $A \subset B$ and if $a+A=b+B$, then $A=B$.

Proof. From $a+A \subset b+B$ it follows that $a=b+b_{1}, b_{\perp} \in B$, hence $a-b \in B$. If $x \in A$, then $a+x=b+b_{1}, b_{1} \in B$. Therefore $x=-(a-b)+$ $+b_{1}$, hence $x \in B$.

The second assertion follows from the first.
3. If the elements $\bar{a}_{1}, \bar{b}_{1}, \bar{a}, \bar{b} \in A G_{n}(D)$ satisfy

$$
\left(\bar{a}_{1} \cup \bar{b}\right) \cap \bar{a}=\bar{a}_{1}, \quad\left(\bar{a} \cup \bar{b}_{1}\right) \cap \bar{b}=\bar{b}_{1}
$$

then $\left(\bar{a}_{1} \cup \bar{b}_{1}\right)=\left(\bar{a}_{1} \cup \bar{b}\right) \cap\left(\bar{b}_{1} \cup \bar{a}\right)$.
Proof. Let $\bar{a}_{1}=a_{1}+A_{1}, \bar{b}_{1}=b_{1}+B_{1}, \bar{a}=a+A, \bar{b}=b+B$. Since
$a_{1}+A_{1} \subset a+A, b_{1}+B_{1} \subset b+B$, we get $a_{1} \in a+A, b_{1} \in b+B$ and we have

$$
\begin{equation*}
a+A=a_{1}+A, \quad b+B=b_{1}+B \tag{1}
\end{equation*}
$$

From the assumption and (1) it follows that

$$
\begin{gathered}
a_{1}+A_{1}=\left(\left(a_{1}+A_{1}\right) \vee\left(b_{1}+B\right)\right) \cap(a+A)= \\
\left(a_{1}+\left(\overline{b_{1}-a_{1}} \oplus A_{1} \oplus B\right)\right) \cap(a+A)=z+\left(\left(\overline{b_{1}-a_{1}} \oplus A_{1} \oplus B\right) \cap A\right)
\end{gathered}
$$ where

$$
\approx \in\left(a_{1}+\left(\overline{b_{1}-a_{1}} \oplus A_{1} \oplus B\right)\right) \cap(a+A)
$$

Herce by 2. we get

$$
\begin{equation*}
A_{j}=\left(\overline{b_{1}-a_{1}} \oplus A_{1} \oplus B\right) \cap A \tag{Z}
\end{equation*}
$$

and analogously

$$
\begin{equation*}
B_{1}=\left(\overline{b_{1}-a_{1}} \oplus A \oplus B_{1}\right) \cap B . \tag{3}
\end{equation*}
$$

Since the lattice of all vector subspaces of D^{n} is modular, it follows that

$$
\begin{gathered}
A_{1} \oplus B_{1}=\left(\left(\overline{b_{1}-a_{1}} \oplus A_{1} \oplus B\right) \cap A\right) \oplus\left(\left(\overline{b_{1}-a_{1}} \oplus A \oplus B_{1}\right) \cap B\right)= \\
=\left(\overline{b_{1}-a_{1}} \oplus A_{1} \oplus B\right) \cap\left(A \oplus\left(\left(\overline{b_{1}-a_{1}} \oplus A \oplus B_{1}\right) \cap B\right)\right)= \\
=\left(\overline{b_{1}-a_{1}} \oplus A_{1} \oplus B\right) \cap\left(\overline{b_{1}-a_{1}} \oplus A \oplus B_{1}\right) \cup(A \oplus B)
\end{gathered}
$$

and

$$
\begin{gathered}
\overline{b_{1}-a_{1}} \oplus A_{1} \oplus B_{1}= \\
-\left(\overline{b_{1}-a_{1}} \oplus A_{1} \oplus B\right) \cap\left(\overline{b_{1}-a_{1}} \oplus A \oplus B_{1}\right) \cap\left(\overline{b_{1}-a_{1}} \oplus A \oplus B\right) .
\end{gathered}
$$

Since $a_{1}+A_{1} \subset a+A, b_{1}+B_{1} \subset b+B$, by 2. $a_{1} \subset A, B_{1} \subset B$.
Hence $\overline{b_{1}-a_{1}} \oplus A_{1} \oplus B_{1}=\left(\overline{b_{1}-a_{1}} \oplus A_{1} \oplus B\right) \cap\left(\overline{b_{1}-a_{1}} \oplus A \oplus B_{1}\right)$.

From this, (1) and 1. it follows that

$$
\begin{gathered}
\left(\bar{a}_{1} \cup \bar{b}\right) \cap\left(\bar{b}_{1} \cup \bar{a}\right)= \\
=\left(a_{1}+\left(\overline{b_{1}-a_{1}} \oplus A_{1} \oplus B\right)\right) \cap\left(a_{1}+\left(\overline{b_{1}-a_{1}} \oplus A \oplus B_{1}\right)\right)= \\
=a_{1}+\left(\left(b_{1}-a_{1} \oplus A_{1} \oplus B\right) \cap\left(\overline{b_{1}-a_{1}} \oplus A \oplus B_{1}\right)=\right. \\
=a_{1}+\left(\overline{b_{1}-a_{1}} \oplus A_{1} \oplus B_{1}\right)=\left(a_{1}+A_{1}\right) \mathbf{v}\left(b_{1}+B_{1}\right)=\bar{a}_{1} \cup \bar{b}_{1}
\end{gathered}
$$

REFERENCES

[1] FELSCHER, W.: Jordan-Hölder Sätze und modular geordnete Mengen. Math. Z. 75, 1961, 83-114.
[2] KOLIBIAR, M.: Linien in Verbänden. Univ. Iași, Sec. 1 1965, 90-98.
[3] SZÁSZ, G.: Einführung in die Verbandstheorie. Budapest 1962.
[4] BUMCROT, R. J.: Betweenes geometry in lattices. Rend. Circolo mat. Palermo, Serie II, Tomo XII, 1964, 11-28.

Received May 4, 1970
Katedra algebry a teórie čísel Príodovedeckej fakulty Univerzity Komenského Bratislava

