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M a t e m a t i c k ý časopis 19 (1969), N o . 3 

ON AN ABSTRACT FORMULATION 
OF ABSOLUTE CONTINUITY AND DOMINANCY 

TIBOR NEUBRUNN, Bratislava 

Some theorems, the proofs of which depend on the absolute continuity 
of measures, have been proved in [2], without the means of measure theory. 
There, the absolute continuity formulated in terms of the sets of zero-measure 
has been considered. Analogical results, without the means of measure theory 
may be obtained for the c — 6 absolute continuity ([1] p . 97). To develop such 
results is the aim of this paper. The abstract formulation given here is based 
on axiomatization of systems of sets having ,,small measure" . Some of the 
axioms for the mentioned systems are modifications of those given by B . 
R i e c a n in [3], I n what follows (X,Sf) denotes a measurable space in the 
sense of [1]. 

Given J c: £f and J* <= £f such that J and J* are a-ideals, the symbol 
J < J* means that J* <= J. In this case we shall say ,as in [1], tha t J 
is absolutely continuous with respect to J*. To simplify the notation, we 
use < (see also [5]) instead of the more usual <; In what follows systems JVn 

will be supposed to satisfy certain axioms. These axioms will be introduced 
subsequently as they will be used in the proofs. Their relation to the axioms 
in [3] will be discussed at the end of the paper. 

00 

Given {^Vn}, the s y m b o l s denotes [\iA^n> In case the systems depend 
n = l 

00 

on a parameter t belonging to a given set T,«yV* denotes f]^Vn. A mapping r 
n = l 

of X into X will be called a transformation. In what follows r will be supposed 
to be measurable. Moreover in some of the theorems it will be supposed to 
satisfy some of the following three properties: a) r is nonsingular with respect 

to <? cz &> (i. e . ifE e S then r-^E) e £). /3) if E $JT (Jf c &>)9 then f\ r~*(E) £ 
k = l 
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$X. y)For any sequence {Ejc}t-i °f pairwise disjoint sets Ejc eJ? (J? c £T), 

00 00 00 oo 

the following is supposed to hold: f | T~* ( U E*) = \J f l r~k(Es). 
Jc = l s = l s = lk = l 

The first axioms we shall need are the following three: 

a) JTn =f= 0; n = 1, 2, 3, ... 
b) For any n the following holds: E eJr

n, F e £?, F <-= E implies F eJrn • 
c) For anyJ^n, (n = 1,2,3 ...), there exists a sequence {h} of positive integers 

such that if N is an arbitrary positive integer then there is r(N) such that if Ei e 
eJr

1ci (i = 1, 2, 3, ...), then \J Et eJr
N. 

i>r(N) 

00 

Lemma 1. For any \Jr
n} satisfying a), b), c), the system ^V = f^J^fi is 

» = i 
a G-ideal in £T. 

P r o o f . ^ f is non-empty as it follows immediately from a) and b). If E e^V, 
F ^ E, F e£T, then F eJr by b). Now let Er e^V (r = 1, 2, 3, . . . ) . Choose 
{ki} according to c). Then there is r(N) such that U Fi ^^VN for any Ft eJrki • 

i>r(N) 

Putting Ft = 0 for i = 1, 2, 3, . . . r(N), Fr(N)+1 = Eu Fr(N)+2 = E2, . . . , 
we have 

(1) \jEi= U ^ r ^ * 
r = l i>r(N) 

00 

Since N is arbitrary, (1) gives U -®< G - ^ -
/ i = i 

Definition 1. C7&ye?& {JTn} and {Jr*n} satisfying a), b), c), the system {«/Vw} 
is said to be absolutely continuous with respect to {^V^} (notation {^Vn} < {Jr*n}) 
if and only ifJr <Jr*. 

Another notion of absolute continuity (this one which will be an analogy 
pi s — d absolute continuity in measure theory) may be formulated as follows. 

Definition 2. The system {Jr
n} is said to be strongly absolutely continuous 

with respect to {J^n} (notation {Jr
n}) ( < ) {Jr*n} if t° anV n® l^ere e%ists an n* 

such that E eJr*n implies E eJrn0. 

N o t e 1. If [A, ju* are two measures on £T, then putting Jr
n = \E : E e £f, 

0 • f M 
ju(E) < — and Jr

n = \E : E e &>, l**(E) < — J , we have: ju is absolutely 

continuous with respect to [i* in the sense s —• d if and only if {sVn} ( < ) {Jrn}* 
2 0 3 



N o t e 2. EvidBiifcly if {sVn} ( < ) {JTn} then {JTn} < {Jf*n}. The converse 
is in general not true as it is well known ([1], p. 128, 12). 

In what follows the notion of the strong absolute continuity of {JTn} (t e T) 
with respect to {Jr8

n} (s e S), where T, S are given sets of indexes, will be 
introduced. More generally, the notion of T-asymptotic strong absolute con
tinuity, where r is a measurable transformation, will be considered. In any 
case the last notion will include the strong absolute contunuity which will 
be obtained when r will be the identical transformation which trivially satisfies 
the conditions a) /3) y). Let us note tha t the notion of T-asymptotic absolute 
continuity (not that of the strong one) was given for a-ideals in [2] as follows: 
If {f*} (t G T) and {Js} (s e S) are two systems of ^-ideals in Sfi the {./«} < T 

oo 

< T {Js} iff E e H S* implies f | r~*(E) e f | -/*. 
seS k=l teT 

Definition 3. Let T, S be nonempty sets and {JV\}9 {JT8
n} (t e T), (s e S) two 

collections of systems satisfying a),b),c). Let r be any measurable transformation 
of X into X. The collection {Art

n} is said to be strongly r-asymtoticaly absolutely 
continuous (or r-asymptoticaly uniformly continuous) with respect to {Jr8

n} 
if corresponding to any natural number no there exists n' such that E e f] Jr

n, 
seS 

implies f | T-*(E) eJrt
nz for every teT. (Notation {JTn} (< T ) {JTn}) 

N o t e 3. If S is an one-point set then {Jrt
n} is said to be strongly (or uni

formly) T-dominated. If r is an identical transformation, then we say tha t 
{JTn} is strongly (or uniformly) absolutely continuous with respect to {Jr8

n} 
(Notation {JTn} «) {JTn}). 

N o t e 4. The notion of T-dominancy or T-sasymptotic absolute continuity 
is introduced by the corresponding notion for the related a-ideals. (I. e. {Jrt

n} 
is said to be T-asymptoticaly absolutely continuous with respect to {Jr

n}. 
Notation {JT%

n} < T {JT8
n} iSJT* <TJf*). 

N o t e 5. Evidently {A^n} « T ) {JTn} implies {JTn} <T{JTn}. 
N o t e 6. If {[jit} (t e T) is a system of measures and ju is a measure, then {{it} 

is uniformly absolutely continuous with respect to ju, just when the correspond
ing collection belonging to {/ut} (see note 1) is uniformly absolutely continuous 
(uniformly dominated) with respect to the system {Jr

n} belonging to /u. 
N o t e 7. To any type of the absolute continuity the corresponding type 

of an equivalency is defined in a natural way. E. g. if {Jrt
n} (<T) {^n}

 a n d 
simultaneously {JT8

n} (<T) {^n}^ ^ e n {^n} a n ( l {^n} a r e caUed T-asymptoti-
cally strongly equivalent. ({/T^} ' ^ r {^n})-

Definition 4. / / a collection {Wn} (t e T) is given such that c) is satisfied 
for every t e T with the same sequence {kf}, then the collection {Jrt

n} is said to be 
uniform. 

204 



N o t e 8. A collection {.Art

n} belonging to any system {/̂ } of measures 
is uniform. I t is sufficient to choose the sequence {2*} for {hi}. 

00 

Axiom d). f] Ei $JV*, for any sequence {Ei}k

c

=1 of sets such that E\ ^ / W o 

( i = l , 2 , 3 , . ! . ) . 

Theorem 1. Let {^V\^ (t eT) be an uniform collection satisfying a), b), c) for 
every teT. Let {Jfn} satisfy a),b),c),d). Then {JTn} <( {Jfn} => {jTn}«x) {^1} 
is true. 

Proof . Let {let} be the sequence of positive integers belonging to the uniform 
collection {Jrt

n}. Suppose the theorem does not hold. Then there is no a n d 
oo oo 

{Ei}f_x such that Et e Nki for every t, and n r~k(Et) $Jr

no.Putting Fv = \J Eti 
k=l i=P 

00 

let F = f]Fp. Let N be any natural number. For any teT there exists (by c) 
P=I 

00 00 

r(N, t) such that ( J E{ ejVl

N. Since F <= \J Et eJf'x and since N is arbi-
i = r(N,t) i=r(N,t) 

trary, we have F eJrt for every t. Since {jVn} <r {^w}> we have 

(2) f l -~k(F) eJT 
k = l 

The inclusion 

gives 

Hence 

Fp => Ep for p = 1,2, 3, . . . 

r~ҢFp) => r-ҢEp), for p = 1, 2, 3, 

n r-*(Fp) => n -'HEp) for p = 1, 2, 3, ... 
k = l k = l 

00 00 00 

But { n T~k(FP)}v==1 is non-increasing, hence n Pi T~k(Fv) M'"• T n e l a s t § i v e s 

k=l p=lk=l 

fl r~*{F) = h rk(h Fp) = fl fl ^*(**) ^ 
£ = 1 £ = 1 P = l fc = l j 9 = l 

This is a contradiction to (2). 

Corollary 1. If v is a finite measure and {fit} (t e T) any system of measures 
such that v < {[it} (t eT), then v ( < ) {//*}. 

The proof of this corollary is given in [4]. If T is an one point set, we have 
the known theorem ([1] p. 125). 

205 



Corollary 2. If x is a non-singular transformation satisfying /3 with respect 
to *Ar then, under the assumptions of Theorem I, the following assertions are 
equivalent: 

(i) {^n} <r {K} (»'»'*) {^n} < {K} 
(U) {Jrn}«r){K} («>) {^n}(0{K} 

Axiom e).Jr
n ^ ^Vn+i for any n. 

In the preceding theorem, the assumption concerning the uniformity of {sVn}, 
was used. The following lemma is t rue: 

Lemma 2. Any countable collection {JV\} (j = I, 2, 3, ...) satisfying a), b), 
c), e) is uniform. 

Proof . First of all the condition e) implies that {k\}, for j = 1 , 2 , 3 , . . . , 
in the condition c) may be chosen such that k\ ^ k\+1. Defining 

ki = max k\ (i = 1 ,2 ,3 , . . . ) , 
j^i 

we have kt ^ k\ for i > j . Hence if Ei EJV^ki, then 

(3) Etejr{t for any i ^ j . 

Let j be any natural number. Let N be a natural number and r(N, j) such tha t 

(4) U Fi^N forany Fte^ri, 
i>r(N,j) 

Deno te 
E(N,j) = m a x ( r ( N , j ) , j ) . 

Let Ei ejVkl for i = 1, 2, 3, . . . . Put Ft = 0 for i = I, 2, 3, . . . E(N, j), 
Fi = Ei for i > i?(N,j). Evidently Fi ejV[t (it is sufficient to consider a), b) 
and (3)). Hence, according to (4), 

U Et= u Ft cr u ^ e ^ . 
i>R(N,j) i>R(N,j) i>r(N,j) 

The proof is finished. 
There exists a collection satisfying a), b), c), e) which is not uniform. 
E x a m p l e 1. Let T denote (in this example) the set of all sequences {tr}

c^i 
of real numbers such that 

(5) lim tr = 0, tr = tr+1 (r = 1, 2, 3, . . . ) , 0 < tr ^ 1 

Let X = {I, 2, 3, ...} and ^ the set of all subsets of X. If t e T, let 

J 6 E 

for w = 1, 2, 3, . . . 
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Evidently jVl
n satisfies a) b) and e). I t has also the property c). In fact. 

00 

i iteT let k\ be such that 2 4 ' < °°- Such a sequence {k\} exists in view of (5). 
r=l 

If N is any natural number, then there is r(N) such tha t 2 4« < -̂V- Choosing 
i>r(N) 

any sequence 2 .̂ e^V*^, we have 

reuEi i>r(N)reEt i>r(N) 
i>r(N) 

Hence ( J Ei ejVN. The property c) is verified. 
i>r(N) 

The collection {yVn} is not uniform. Suppose tha t a sequence (we may 
suppose an increasing one) {ki} fulfilling c) for any {yVn} (t e T) exists. Choose 
/° = {Q™=1 such tha t 

(6) 2 & = Q0' * £T. 
i 

Choose Ei as a one-point set {ki} for i = 1, 2, 3 , — Evidently E^N1^. 
But for any natural number N 

2 i = 2 hi = °° >&• 
reKjEi i>r(N) 

i>r(N) 

Hence {^Vn} does not satisfy c j . 
If {yVn} is a dominated collection then an analogical theorem to Theorem 1 

may be proved without the assumption of the uniformity. 

Theorem 2. Let {jV*n} (teT) satisfy a), b), c), e) while, {yVn} < {yVn}, 
oo 

where {Vn} satisfies a), b), c), d) and moreover \^J^Vn = £?. Then if r is any 
n = l 

m°asurable transformation, {yVn} <T {yVn} implies {Ar
n} (<T) {yVn}-

For the proof, the following lemma will be useful. 

00 

Lemma 3. Let {A\} fulfil a),b),c), d) while Sf = ( J jVn. Then Sf — JV 
w = l 

does not contain an uncountable subset of pairwise disjoint sets. 
Proof. Denote by $ any system of pairwise disjoint sets belonging to 

& - . V. Then 

(7) <f = U M ^ » - \}<yVi)r\£. 
n=l %>n 

I t is sufficient to prove that {yVno — [J<yVi) n $ is finite for any no. Suppose 
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it is not. Then there exists a sequence {Ejc} of mutually different sets beloning 

to (^Wo - U Jr
n) n £. Put Fi = ( J Ek. Then Ft => Fi+1 for i = 1,2,3 

i>no k=i 
00 

Since Ft -=> Eu we have Ft $Jr
no+1. Hence Pj Fi$J'" (by d). The last is 

i=i 
oo 

a contradiction because Q Fi = 0 as it follows from the pairwise disjointness 
i=l 

of the sets Ejc. 
The following well-known result is a corollary of lemma 3. 

Corollary. If /u is a finite measure then any system of pairwise disjoint sets 

of positive measure is countable. 

Proof . If ju is a probability, it is sufficient to put^Vw = \E : E e £T, /u(E) g 

I) 
^ — 1 . In other cases (with the exception of /J, = 0, which is trivial) it is »J 
sufficient to put 

r(E) 
ц*(E) 

sup {џ(F) :FєSЃ) 

Evidently ju and //* have the same sets of positive measure. 
P r o o f of T h e o r e m 2. Since {JTn} is dominated by {Jr

n}, there exists 
a countable subsystem {Jrt

n} (r = 1, 2, 3, ...) which is equivalent to {Jrt

n}. 
Hence {JTtr

n} ~ {Jrn} ([2], Theorem 3.3). The last gives {JTn} <T {J'1;}. 
Hence by Theorem 1, {JTn} « T ) {Jf% so {JTn} « T ) {JTn}. 

The last axiom we shall use is the following one: f) For any n the following; 
holds: lfEeJr

n,FeJr, then E \J F eJr

n. 
I n what follows the systems {JTn} will be supposed to satisfy a)—f). 

Lemma 4. Let {JTn} be given and let Z e ST. Then {jT*n} defined as {JT*n} = 
= {E : E e ST\ E n Z' e ^Vn} (Z! is a complement of Z) satisfies the axioms 

oo oo 

a)-f). Moreover if\JJTn = ST, then ( J JTn = &. 
n=l n=l 

Proof . The property a) and b) iorJr

n follows from a) and b) for {^n}. Now let 
{ki} be the sequence (according to c)) belonging to {J^n}. Let N be any natural 
number. There is r(N) such that ( J Ei eJr

n w h e n e v e r ^ EJr

ki (i = 1, 2, 3, ...). 
i>r(N) 

Let E'e^'l i .e . E*nZfEJr

ki. Then ( J E* n Z' = Z' n U Em

iG^VN. 
i>r(N) i>r(N) 

Hence ( J ^ E^N- The property cj for «/V* is verified. 
i>r(N) 

Let .#* =5 ^ + i tEie^ and let .#* <£ JTn^ (i = 1, 2, 3, ...) then Et n Z' e ~VU 
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and d) gives f\Ei n Z' $<sV. Hence there exists n\ such tha t f)Ei n Z' <fc Jr
ni i 

i=l i= l 

The last gives f] Ei $Jr
ni thus C\Ei <£Jr* and d) is proved. The validity 

t = l t - 1 

of e) follows immediately. Now let n be any natural number, Ee^Vn,F e^V*y 

then E nZ' e JVn ,F nZ' eJ'.We have: 

(EuF)nZ' = (E nZ')\j (F nZ')eJ\. 

Thus f) is verified. 
In view of the last property, it is fufficient to consider instead of the condi-

00 

tion ( J Jr
n = ST the condition <sVi = ST and to prove Jr*1 = ST. But this is 

w - l 

clear since Jr
n ^ Jr*n ^ ST for every n. 

N o t e 9. If {Jr
n} is a system belonging to a measure /u, then there exists 

a measure ju* such tha t {^V^} belongs to [i*. 
Proof . I t is sufficient to define JLL*(E) = ix(E n Z') for EEST. 

Theorem 3. Let {JTn} be a uniform collection such that {^Vn} (<r) {JTn}y 
where ^V\ = ST and x a non-singular transformation with respect to JV% and Jrt 

for every t ET. Then there exists a system {Jr*n} satisfying a) —f) such that 
„ r ; = Sf and {JTn} (~T) {JVn}. 

Proof . If {JTn} <T {^n}
 t n e n > according to Theorem 1, {jrn} (< T ) {^1}> 

hence {Jr
n} (~r) {^n} (This part of the proof is from the formal point of view 

not different from the proof of an analogical theorem proved for measure 
in [4]). Thus, do not let {^Vn} < r {^n}

 D e true. I*1 Y^ew °f the corollary 
of Theorem 1, {Jr

n} < {Jrt
n} *s n ° t true. (We are using a part of the mentioned 

corollary in which the condition /3) is not substantial). The last fact implies 
the existence of E E ST such that E EJrt for every t and E $JV. Let ErE Sf 
for r = 1, 2, 3, . . . ; Et n Ej = 0 for i #= j , ErEjr^ for every t and let Er^Jr. 

00 00 

Then ( J Er EJT1 for every t and ( J Er$Jr. Thus the property of the set 
n=l n=l 

E E ST such that E EJrt for every t and E <£Jr is invariant under forming 
countable disjoint unions. Under these assumptions there exists a set Z e Sf 
such tha t Z has the mentioned property and any E c: Z' is such that it has 
not the above property ([2] Theorem 1.3). 

Define {Jr
n} such that for n = 1, 2, 3, . . . . p f ^ } = {E :EES, E nZ'E Jr

n}> 
As a consequence of Lemma 4, {Jr*n}

 n a s the properties a) —f) and .yVJ = ST 
holds. We have {./V^} < {Jrt

n}. In fact, if E E,V* for every £ E T then EnZ' E 
Ejrt and EnZ' EJT by the propoerty of .Z. Hence EEJT*. The relation 
{ ^ } < { ^ } gives 

(8) {'K}«r){^n} 
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by the Corollary 2 of Theorem 1. The conditon p) again is not important using 

this part of the corollary. To use the corollary only the non -singularity of r 

with respect to Jr* must be verified. I t will be done in what follows. 

Let EeJr*. Then E nZ' sJr and T~^(E n Z') eJr. The last implies 

(9) Z' n [T-\E nZ')]eJr. 

Since E n Z <=• Z, we have E n Z eJrt for every t. The non-singularity 

of r with respect t o Jrt gives T~1(E n Z) eJrt for every t, hence [T~X(E n Z)] n 

n Z' eJrt. The last and the property of Z imply 

(10) [T-!(E nZ)] nZ' sJr. 

From (9) and (10) we have 

T~1(E) nZ' = T-*[(E nZ)uE nZ']nZf = 

= [T-I(E n Z)] nZ' u [T-*(E nZ']nZ' e J \ 

hence T~1(E) tJr*. This proves the non-singularity, hence (8) holds. Now 
it is sufficient to prove that {Jrt

n} ( < r ) {^n}- Let no be airy positive integer. 
There is n' such that if E e Sf, E eJr

n> then E eJrt

no for every t. Now let 
Ee^, E e^Vn>. Since E = (E n Z)U (E n Z') and E nZf e J'\., we have 
E n Z' eJ^^ for every t e T. The fact E nZ c Z implies E nZeJ"* for 
every t e T. Hence 

E = (E nZ)u (E n Z') eJrt

no 

by the p r o p e r t y / / The proof is finished. 

N o t e 10. The axiom f) was used only in the end of the proof for proving 

that (E n Z') U (E nZ) belongs to J/"t

nQ. The last fact may be proved also 

without f). The idea of such a proof is as follows^): To an}' number no there 

exists mo (this may be proved without/)) such that if E e*/V(

mof F eJ"1 then 
EuF eJrt

no. Now to this m0 there exists n' such that if E eJr

n> then E e f]J rt 
шo' 

tЄT 
E eJr*n, implies EnZ' eJ 'n>. This implies E n Zf e f | ^"'mo • Since E nZe.r*. 

teT 

we have 

rt E = (E nZ')u(E nZ)eJ 

for every t. 
Theorem 3 has the following corollaryr concerning the probability measures. 

(x) This is B. RieSan's idea. 
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Corollary. Let {j^t} (t GT) be a system of probability measures dominated by 
a probability /u. Then there exists a probability measure p such that {^(^p. 

Proof . Form the corresponding collection {sVn} to the system {/it} and 
the corresponding system {J^n} to ju. By Theorem 3 there exists {Jr

n} such 
tha t {sVn}(~){sVn}. I t is seen from the construction of {J^n} and from the 
proof of note 9 that {Jr

n} belongs to a finite measure ^*. Hence {fit}(~)iu>*. 
Since {^t}(t e T) are probability measures the measure //* may not be identically 

zero. Thus the measure p defined as p(E) = is a probabilitv measure 
[A,*(X) 

and evidently p(~)fA*. The transitivity of the relation (^ ) , which is evident, 
was used here. Later also the transitivity of ( < x) will be proved. 

Theorem 4. Let {/Vn} and {/Vn}, satisfying a) — f) be given. Let ^V\ = Sf 
and {yVl

n}(<){Jr
n}^ Then there exists {sVn} satisfying a) — / ) and the condition 

JT\ = Se such that {yVn}(~){JT*n}. 
Proof. The proof is quite similar to the proof of Theorem 3. The only 

difference is that Theorem 2 is used in the place where in the proof of Theorem 3 
Theorem 1 has been used. Theorem 1 may not be applied because {Jrt

n} 
is not supposed to be uniform. Theorem 2 may be applied because {J^n} 
is dominated. This completes the proof. 

If T-dominated systems of o'-ideals are considered under a suitable trans
formation T, then, as we have proved in [2], there exists a countable subsystem 
T-equivalent to the given system. I t is not possible to prove an analogical 
theorem for the uniform T-dominancy. Even for the uniform T-dominancy 
of measures such a theorem is not true (see [4]). But it is possible to get from 
the preceding results abstract formulated analogies of certain necessary 
and certain sufficient condition for uniform T-dominancy. The original 
conditions for the uniform dominancy of measures were proved in [4]. 

Theorem 5. A sufficient condition for a collection {J^n} to be uniformly 
x-dominated (x is any measurable transformation) by some system is the existence 
of a countable subsystem {sV^} (i = 1, 2, 3, ...) dominated by a system {J"n}, 
such that { ^ } ( - r ) { ^ } . 

Proof. The only fact we shall need in the proof will be the transitivity 
of the relation « T ) . We shall prove it. Let {Jrt

n} « T ) {Jrv
n}, {yVv

n} « T ) {J '£} . 
(t G T, v G V, w e W). To any n0 there exists n'0 such that E e Sf \ E GJr

ni 
OO 

for every VG V implies Q x~k(E) GJ'nQ for every tGT. To the number n'0 
jt=i 

OO 

there exists n"0 such that if E e= Sf and E G J 'n~ for every w G W, then P | x~I:(E) G 
fc=i 

GJr
n>o for every v G V. Let E G S, E GJr

n« for every w e W. We have 
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П r-ҢE) c П r-ҢE) = rҢf) r-ҢE)) 
Ä . - - 1 k-r+1 k,l 

for every r. 

Therefore 

П r-ҢE) <= П ^ r ( П r-ҢE)) єJГ^ 
k = l r = l k=l 

for every t e T, because n ~~k(E) e«/T^ for every v e V. The transitivity i s 
k = i 

proved. The proof of the transitivity of < T is quite analogical. From this 
the proof of Theorem 5 immediately follows. 

Theorem 6. Let {jVn} (t eT) be a uniform collection such that jVl

n (^T) {rVn} 
and ^\r\ = £f. Let x be a measurable transformation having the properties: 
a) for every JV1 (t eT), /?) with respect to <rV and y) for every ^Vl (t eT). Then 
there exists a countable subcollection {sV*n} of the collection {yVn} such that 

{^n} (~») K""} «»d {^«} « » ) K ' 4 -
Proof . By the assumption 

(ii) M M W . 
From this evidently 

(12) {Jri} < T {jrn} 

and by Theorem 3.3 from [2], there is a countable subcollection {JT^} 
(i = 1, 2, 3, ...) of the collection {yf J,} such tha t 

(is) {-n*}~»{-n}. 
Since {>"£} <= {.4rt

n}, we have 

(14) { ^ } « - ) {^n} 

(11) and (13) imply {JV„} < {A"§ and Theorem 1 gives {Jr
n} « T ) {jVtr}. 

The last and (14) give {Artc} « T ) {sVn}- From this and from (11) we get 

{^}«»){-n}-
Theorem 7. A necessary and sufficient condition for a collection {jVl

n} (not 
necessarily uniform) to be uniformly dominated by a system {/V*n} satisfying 
^ 1 = £7 is the existence of a countable subcollection {rVn} of {rVn} such that 
{^n} (~) {^n} and such that {j^} is uniformly dominated by {A^n} satisfying 

Proof . The sufficiency follows from Theorem 5. The proof of the neccessity 
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will be acomplished in what follows. Let {Art
n} ( < ) {Jr

n}> J'\ = &*• In view 
of Theorem 4, there exists {Jr

n} such tha t 

(is) {^}~{^;} ,^ i = ̂ . 
Using the result 3.3 from [2] in the same way as in the proof of Theorem 6, 
we have a subcollection {^V^} <= {^n} such tha t 

(is) {sn}(~)vn}-
Evidently 

(17) { ^ } « ) K ; } 

(15) and (16) give {s¥n} < {JT1^ a ^ d using Theorem 2, we get 

(18) { ^ ; } « ) { ^ } . 

By (17) and (18) {JT^ (~) {JTn}. Hence, in view of (15), {JT^} (~) {Js~n.} 
The Theorem is proved. 

Corollary. ([4] Theorem 2). A necessary and sufficient condition for a system 
{/ut} (t eT) of measures to be uniformly dominated by a probability measure p 
is the existence of a countable subsystem {/Ui} (i = 1, 2, 3, ...) uniformly dominated 
by a finite measure \i and uniformly equivalent to {fit}. 

N o t e . For the proof it is sufficient to take a probability measure which 
dominates {/bit}. Such a measure may be constructed by ^ which dominates 
{fit}, and then the Theorem may be applied. 

In this part, the connections between the system of axioms used here and 
tha t used in [3], will be studied. 

In [3] the following system of axioms was used. 
(i) 0eJ^n(n= 1 ,2 ,3 , . . . ) . 
(ii) For every natural n tere exists a sequence {ki} of natural numbers such 

00 

t h a t [J EiG Jr
n whenever Ei e A~ki. 

i - l 
oo 

(iii) If {Ei} is a sequence of sets in S?, Ei+i <= Eiy(i = 1, 2, 3, . . . ) , f] Et = 0, 
i = l 

then for every n there exists m such that Em e Jr
n. 

(iv) If EeJr
n, F cz E, F eSf, then FeJ^n-
00 00 

(v) If E e P | JTn, F c E, then F e f | JTn. 
n = l n = l 

The axiom (v) was used only in the case of questions concerning a complete 
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measure. Therefore it is of a special type and can not be deduced from a) — / ) . 
But if the system (i) — (iv) is considered and on the other hand the system 
a) — / ) , then any system {sVn} belonging to any finite measure ju evidently 
satisfies these systems of axioms. 

Now the connections between the mentioned systems will be discussed. 
The questions whether the axioms are independent will not be studied for 
any of the systems. 

Lemma 5. Let {Jr
n} satisfy a) — / ) . Then (i) — (iv) are satisfied. There 

exists a system satisfying (i) — (iv), and failing to satisfy a) — / ) . 
Proof . The property (i) follows from a) and b), (hi) follows from d); (iv) 

coincides with b). There remains (ii) to be proved. Let n be any natural number. 
Let {k[} be a sequence of natural numbers the existence of which follows 
from c). Put N = n in c) and take the corresponding r(n). Let ki = k'r{n)+1, 

CO 

k2 = k'r(n)+2, . . . If Et eJr
ki, then \J Et = \J Et eJr

n. Hence {kt} has the 
i=\ i>r(n) 

property required by (ii). 

Let X = {a, b} be a two-point set. Pu t 

if = {{a}, {b}, {a, b}, 0}; J'\ = ^ ; J'\ = {{a}, {b}, 0}; 

{0,{a}}=Jr
3=Jr4= ... 

{Jr
n} satisfies (i) — (iv) but fails to satisfy/) . 

Adjoining the axioms e),f) to (i) — (iv) the systems become equivalent. 
Theorem 8. The systems (i), (ii), (hi), (iv), e), / ) and a), b), c), d), e), f) are 

equivalent. The axioms e),f) adjoined to (i) — (iv) are independent on (i) — (iv). 

Proof . By Lemma 5, if {sVn} satisfies a) — / ) , then it satisfies (i) — (iv), 
e),f). Now let {Jr

n} satisfy (i) — (iv), e),f). We shall show that {JVn} satisfies 
c) and d). The fact that it satisfies a), b), e), f) is trivial. 

Let us prove d) first. Let {Et} be a non-increasing sequence of sets such 
00 

that Et e&, Et $ ^VUQ (i = 1, 2, 3, ...). Let F = f]Et. Suppose F e ^V. 
i=l 

Then F n Ft eJr for every i. Hence (by / ) ) Et — F £.f*»0. Using (hi), we 
00 

get f] (Ei — F) =(= 0. This is a contradiction. 
i = l 

Now we shall prove c). First of all, the property e) implies that {ki} in (ii) 
may be chosen as an increasing sequence. Let Ni < N2 < N3 . . . be an 
increasing sequence of natural numbers. For r = 1, 2, 3, . . . let {&£} be the 
corresponding increasing sequences. Put ki = m a x k | . Now, let EiG^Vki 

j-^i 

(i = 1, 2, 3, ...) and let r be a natural number. For i > r, jVki c= ̂ Vr
ki. Hence 

Ei e Jrr
ki if i > r. If we put empty sets instead of the first r — 1 terms in 
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the sequence {Ki},then for a new sequence {F̂ } which will be obtained, 
(Ft = 0, i g r — 1; Ft = Et if i ^ r) Ft eJv\t holds. 
Hence 

\JEt = \JFte~VSr. 
i^r i=l 

Thus, if N is any natural number, it is sufficient to choose r such that Nr > N 

and we have ( J Ei G J^N • 

Now it remains to be proved that one cannot deduce e), f) from (i) — (iv). 
As to / ) , it follows from the example in the proof of Lemma 5. For e) it is 
sufficient to transpose ,\\ and .Vi in the mentioned example. 

Let us remark at the end that a system satisfying (i) — (iv), e),f) and not 

belonging to any additive (and what is more to any superadditive function), 

exists. More precisely There exists a system {^i'\} satisfying the mentioned 

axioms such that there is no superadditive function X for which J/\ = 

— lE'.EeSf, X(E) < - I t is sufficient to put 

X = {a, b}\Sf = {{a}, {&}, {a, b}, 0 } ; ^ i = ^ ' 2 = -SP; {0} = JTZ = JTA= . . . 

The axioms are evidently satisfied. A function X with the above mentioned 

property does not exist because if there is such a X, then X({a}) ^ J 

X({b}) ^ ^, hence X({a, b} ^ X({a}) -\- X({b}) ^ f which contradicts the fact, 

{a, b}eJT2. 

REFERENCES 

[1] H a l m o s P . R., Measure Theory, New York 1950. 
[2] N e u b г u n n T., Зaмeчaнue oб oбcoлюmнoй нenpepъвнocмu мep, Mat.-fyz. öasop. 16 

(1966),21-30. 
[3] R i e č a n B., Abstract formulation of some theorems of measure theory, Mat.-fyz. časop. 16 

(1966), 268-273. 
[4] T s u j i m o t o H., T a n a k a K., On dominated sets of measures, Math. japon. 3 (1955), 

173-183. 
[5] Pfei f fer P. E., Equivalence of totally finite measures on infinite product spaces, Ann. 

Math. 56 (1952), 520-536. 

Received August 9, 1967. 
Katedra matematickej analýzy 

Prírodovedeckej fakulty 
Univerzity Komenského, 

Bratislava 

2 1 5 


		webmaster@dml.cz
	2012-07-31T17:10:26+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




