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Materrшtický časopis 23 (1973), No. 4 

NOTE ON MODULAR AND DISTRIBUTIVE EQUALITIES 
IN LATTICES 

J I R l RACHtlNEK, Olomouc 

In the paper [4] F . Sik studies a sublattice (a, b, c> of a lattice S that is 
generated by the triple of the elements a,b, c e S. He investigates the pro
perties of this sublattice when instead of some modular or distributive identity 
in the lattice S there holds a corresponding equality only for the triple a, b, c. 
F . Sik considers the following equalities: 
Modular: 

(1) (a V b) A c = a V (b A c), where a ^ c, 
(1*) (a A b) V c = a A (b V c), where a ^ c, 
(2) a V [b A (c V a)] = (a V b) A (a V c) , 
(2*) a \ [b V (c A a)] = (a A b) V (2 A c) . 

Distributive : 
(3) a V (b A c) = (a V b) A (a V c) , 
(3*) a A (b V c) = (a A b) V (a A c) , 
(4) (a A b) y (6 A c) V (c A a) = (a V b) A (b V c) A (c V a) . 

In this paper Ave shall study some other equalities: 
(5) [a V (b A c)] A (6 V c) = [a A (b V c)] V (6 A c) , 
(6) (b V c) A [a V (b A c)] = (a A b) V (b A c) V (c A a) , 
(6*) (b A c) V [a A (b V c)] = (a V b) A (b V c) A (c V a) , 
(7) (6 A c) V [a A (b V c)] = (a A b) V (b A c) V (c A a) , 
(7*) (b V c) A [a V (b A c)] = (a V b) A (b V c) A (c V a) . 

I t is easy to prove that a lattice S is modular if and only if there holds the 
equality (5) for all triples of elements in S (otherwise if the identity (5) is 
satisfied in S). 

Similarly a lattice S is distributive if and only if the identity (6) or (6*) 
is satisfied in S. 

Now, let x, y, z be elements of a lattice S. The symbol xyz expresses that 
the following is satisfied: 

(^ A y) V (y A z) = y = (x v y) A (y V z) . 

Then for a,b,c e S we shall denote 
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B(a, b, c) = {x e S: axb, bxc, cxa} . 
There holds 

Theorem 1. For elements a, b, c of a lattice S the equality (5) is satisfied if 
and only if B(a, X, Y) == 0, where X is a left-hand side, Y is a right-hand side 
of the equality (5). 

Proof . 1. If the equality (5) is satisfied, then clearly X e B(a, X, Y). 
2. Assume that (5) is not satisfied. Therefore 

[a \ (b V c)] V (6 A c) < [a V (6 A c)] A (6 V c) . 

Let us denote 
p = b A c, q = a, r = b V c . 

Then 

p S r, p V (q A r) = (b A c) V [a A (b V c)] < [(6 A c) V a] A (b V c) = 
= (p V g) A r . 

Now, we denote 

Y = p V (q A r) = (b A c) V [a A (b V c)] , 
x = (P V q) A r = [(b A c) V a] A (b V c) , 
D = q A r = a A (bye), 
E=pyq = a\(bAc). 

From [1, I I , 9, proof of Theorem 9.3] it follows that E > X > Y > D. 
E > q > D, X \\q\\ Y form a "pentagonal" sublattice of S. 

Now, let us suppose that there exists z e B(a, X, Y). Thus 

(X A z) V (z A Y) = z = (X V z) A (z V Y) . 

From Y < X it follows X A z = z, z = z\i Y, then it is Y ^ 2 ^ X. Thus 
X=E AX = (ay z) A(z\i X) = z = (a A z) V (z A Y) = D V Y = Y, 

a contradiction. 
Next wre shall study the distributivity of the lattice <a, b, c) . 

Lemma. Let the equalities (6), (6*), or equalities arising from (6), (6*) by 
some permutation of the elements a,b, c, be satisfied. Then also the corresponding 
equality (5) and the equality (4) are satisfied for a, b, c. 

Proof . In an arbitrary lattice S there are satisfied Y ^ X, t ^ t*9 where t is 
a left-hand side, l* is a right-hand side of the equality (4). If now 

t = X, l* = Y , 
then 

t* = Y ^ X = t, 
thus 

X = Y, t = l* . 

353 



Let us state the following conditions: 
(I) There are satisfied all six distributive equalities that we can obtain 

from (3), (3*) by permutations of a, b, c. 
(II) There is satisfied one of the following conditions: 

(i) (a,b,c) satisfies the upper covering condition. 
(ii) (a, b, c> satisfies the lower covering condition, 

(iii) (a,b,c) is semimodular. 
( I I I ) There is satisfied one of six distributive equalities that we can obtain 

from (6), (6*) by permutations of a, b, c. 
Now, the following theorem holds: 

Theorem 2. Let S be a lattice, a,b,ce S. Then the following conditions are 
equivalent: 

(a) There are satisfied (4) and (II). 
(b) There are satisfied (I) and B(a, b, c) ^ 0. 
(c) (a, b, c> is distributive. 
(d) (a, b, c> is modular and one of seven equalities (3), (3*), (4) is satisfied 

for a, b, c. 
(e) There are satisfied (I) and (III). 
(f) (a, b, G) is modular and (III) is satisfied. 
(g) There are satisfied (II) and one of three couples of mutually dual equalities 

that can be obtained from (6), (6*) by permutations of a,b, c. 
(h) (a, b, c> is modular and one of six equalities (1), (7*) is satisfied for a, b, c. 
Proof . Equivalences (a) o (b) o (c) o (d) are proved in [4]. 

(e) => (c): 

By (6) 
(a A b) V (b A c) V (c A a) = (b V c) A [a V (b A c)] . 

By (I) 
(b V c) A [a V (b A c)] = (b V c) A (a V b) A (a V c) . 

Therefore (I) and (4) are satisfied and hence (c) holds by [2]. 
(c) => (e): Evident, 
(f) => (d): Let us denote 

t = (a A b) v (b A c) V (c A a) , 
v = (a v b) A [c V (a A b)] . 

Let t = v hold. Then 

c A t = c A {(a A b) V [(b A c) V (c A a)]} . 

Since (a,b,c) is modular, 

c A £ = [c A (a A 6)] V [(b A c) V (c A a)] = (c A a) V (c A b) . 
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Furthermore 

c A v = c A {(a V b) A [c V (a A &)]} = c A {a V b) . 

Since t = v, c A t = c A v\ and hence 

c A (a V 6) = (c A a) V (c A 6) . 

(c) => (f): Evident. 
(g) => (a): By Lemma t = t*. 
(c) => (g): Evident. 
(h) => (f): (7) is satisfied, thus 

t = (b A c) V [a A (b V c)] . 

Now, by modular identity (5) there holds 

t = (b v c) A [a V (6 A c)] . 
(c) => (h): Evident. 
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