Matematický časopis

Ján Šipoš

A Decomposition of a Functional as a Difference of Two Positive Functional

Matematický časopis, Vol. 23 (1973), No. 4, 364--373

Persistent URL: http://dml.cz/dmlcz/126577

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A DECOMPOSITION OF A FUNCTIONAL AS A DIFFERENCE OF TWO POSITIVE FUNCTIONALS

JÁN ŠIPOŠ, Bratislava

The present paper deals with a generalization of the theorem concerning the decomposition of a generalized measure as a difference of two measures and of the theorem concerning the decompasition of Daniell integrals. Functions on lattices of a certain type are examined. A special selection of lattices gives the theorem about the decomposition of the measure and of the integral. A similar method was used in papers [2] and [4].

Let us introduce some notation first. $x \vee y, x \wedge y$ - will denote lattice operations. $x_{n} \nearrow x\left(x_{n} \searrow x\right)$ will be written iff $x_{n} \leqq x_{n+1}\left(x_{n+1} \leqq x_{n}\right)$ for every n and $\bigvee_{n=1}^{\infty}=x\left(\bigwedge_{n=1}^{\infty}=x\right)$.

Let S be a distributive lattice with the operations + , - . We shall use the following conditions:
(a_{1}) There is an element $0 \in S$ such that $x-x=0$ for every $x \in S$.
$\left(\mathrm{a}_{2}\right)$ If $x, y, v \in S$ and $0 \leqq x \leqq y \leqq v$, then $0 \leqq y-x \leqq v-x \leqq v$. If $x, y, v \in S$ and $v \leqq x \leqq y \leqq 0$, then $v \leqq v-y \leqq x-y \leqq 0$.
(a3) If $a, x, x_{n} \in S$ and $x_{n} \nearrow x\left(x_{n} \searrow x\right)$, then $x_{n} \wedge a \nearrow x \wedge a$ and $a-x_{n}$ $\searrow a-x\left(x_{n} \vee a \searrow x \vee a\right.$ and $\left.a-x_{n} \nearrow a-x\right)$.
(a_{4}) $b=a+(b-a)$ if $0 \leqq a \leqq b$ or if $b \leqq a \leqq 0$.
(a5) If $u \leqq v$ and $a \leqq b$, then $a+u \leqq b+v$.
Let I be such a function on S that, for every $a \in S$, the set

$$
\{I(x) / a \wedge 0 \leqq x \leqq a \vee 0\}
$$

is either upper or lower bounded. We shall use the following conditions:

$$
\begin{equation*}
I(a)+I(b)=I(a \vee b)+I(a \wedge b) \tag{1}
\end{equation*}
$$

for every $a, b \in S$.
$\left(\mathrm{b}_{2}\right) I(0)=0$.
(b_{3}) If $0 \leqq x \leqq a \leqq b, 0 \leqq y \leqq b-a$ or if $b \leqq a \leqq x \leqq 0, b-a \leqq y \leqq 0$, then

$$
I(x+y)=I(x)+I(y) .
$$

$\left(\mathrm{b}_{4}\right)$ If $a_{n} \nearrow a$ or $a_{n} \searrow a$, and $\left|I\left(a_{n}\right)\right|<\infty$, for every n, then

$$
\lim I\left(a_{n}\right)=I(a)
$$

Definition. For $a \in S$ we define
$I_{1}(a)=\sup \{I(x) / 0 \leqq x \leqq a\}, I_{2}(a)=\inf \{I(x) / 0 \leqq x \leqq a\}$ if $a \geqq 0$, and
$I_{3}(a) \sup \{I(x) / a \leqq x \leqq 0\}, I_{4}(a)=\inf \{I(x) a \leqq x \leqq 0\}$ if $a \leqq 0$.
Proposition 1. Let S satisfy $\left(\mathrm{a}_{1}\right)$ and I satisfy $\left(\mathrm{b}_{2}\right)$. Then the following assertions hold:
(i) $I_{1}(0)=I_{2}(0)=I_{3}(0)=I_{4}(0)=0$,
(ii) I_{1} and I_{3} are non-negative, I_{2} and I_{4} are non-positive,
(iii) If $0 \leqq a \leqq b$, then $I_{1}(a) \leqq I_{1}(b)$ and $I_{2}(a) \geqq I_{2}(b)$, If $a \leqq b \leqq 0$, then $I_{3}(a) \geqq I_{3}(b)$ and $I_{4}(a) \leqq I_{4}(b)$.

Proposition 2. Let S satisfy $\left(\mathrm{a}_{1}\right)$, (a_{2}), (a_{4}) and I satisfy $\left(\mathrm{b}_{2}\right)$ and $\left(\mathrm{b}_{3}\right)$.
If $0 \leqq 0 \leqq x \leqq u, \varepsilon>0, \quad I_{1}(u)<\infty\left(I_{2}(v)>-\infty\right)$ and $I_{1}(u) \leqq I(x)+\varepsilon$ $\left(I_{2}(u) \geqq I(x)-\varepsilon\right)$, then $-\varepsilon \leqq I(v) \quad(I(v) \leqq \varepsilon)$. If $u \leqq x \leqq v \leqq 0, \varepsilon>0$, $I_{3}(u)<\infty\left(I_{4}(u)>-\infty\right)$ and $I_{3}(u) \leqq I(x)+\varepsilon\left(I_{4}(u) \geqq I(x)-\varepsilon\right)$, then $-\varepsilon \leqq$ $\leqq I(v)(I(v) \leqq \varepsilon)$.

Proof. We shall prove the assertion only for I_{1}. The proofs for I_{2}, I_{3} and I_{4} are analogous.

Let $0 \leqq v \leqq x \leqq u, \varepsilon>0, I_{1}(u)<\infty$ and $I_{1}(u) \leqq I(x)+\varepsilon$ and let $I(v)<$ $-\varepsilon$. Since $0 \leqq v \leqq x$, it follows from (b_{3}) and (a_{2}) that

$$
\begin{equation*}
I(x)=I(v)+I(x-v), \quad 0 \leqq x-v \leqq u \tag{1}
\end{equation*}
$$

and

$$
I(v)+I(x-v) \leqq I_{1}(u)+I(v)<I_{1}(u)-\varepsilon .
$$

From this and from (1) it follows

$$
I(x)<I_{1}(u)-\varepsilon,
$$

which contradicts the assumption. Hence $I(v) \geqq-\varepsilon$.
Proposition 3. Let S satisfy $\left(\mathrm{a}_{1}\right),\left(\mathrm{a}_{2}\right)$ and $\left(\mathrm{a}_{4}\right)$, and let I satisfy $\left(\mathrm{b}_{1}\right)$, $\left(\mathrm{b}_{2}\right)$ and (b_{3}). Then

$$
\begin{equation*}
I_{j}(a)+I_{j}(b)=I_{j}(a \vee b)+I_{j}(a \wedge b) \tag{2}
\end{equation*}
$$

for $j-1,2,3,4$ where $a, b \geqq 0$ in case $j=1,2$, and $a, b \leqq 0$ in case $j-3,4$.
Proof. The proposition will be proved only for $j=1$. The proof for $j=2,3,4$ is analogous.

Let $a, b \geqq 0$, and let $I_{1}(a \vee b)-\infty$. Let t be such that

$$
0 \leqq t \leqq a \vee b,
$$

then (since S is distributive)

$$
t=(a \wedge t) \vee(b \wedge t)
$$

From the definition of I_{1} and from $\left(\mathrm{b}_{1}\right),\left(\mathrm{b}_{3}\right),\left(\mathrm{a}_{4}\right)$ and $\left(\mathrm{a}_{2}\right)$ we obtain

$$
\begin{gathered}
I(t)=I(t \wedge a)+I(t \wedge b)-I(t \wedge a \wedge b)= \\
=I(t \wedge a)+I((t \wedge b)-(t \wedge a \wedge b))
\end{gathered}
$$

and

$$
0 \leqq(b \wedge t)-(a \wedge b \wedge t) \leqq b
$$

Since $0 \leqq t \wedge a \leqq a$, we have

$$
I(t) \leqq I_{1}(a)+I_{\mathbf{1}}(b) .
$$

Further,

$$
\infty=I_{1}(a \vee b)=\sup \{I(t) / 0 \leqq t \leqq a \vee b\} \leqq I_{1}(a)+I_{1}(b),
$$

hence (2) holds.
Now if $I_{1}(a \vee b)<\infty$, then also $I_{1}(a), I_{1}(b), I_{1}(a \wedge b)<\infty$. Let $a, b \in S$, $a, b \geqq 0$ and let ε be any positive number. Choose $x, y \in S$ with

$$
\begin{array}{ll}
I_{1}(a) \leqq I(x)+\varepsilon / 2 & 0 \leqq x \leqq a, \\
I_{1}(b) \leqq I(y)+\varepsilon / 2 & 0 \leqq y \leqq b,
\end{array}
$$

then using (b_{1}) we obtain

$$
I_{1}(a)+I_{1}(b) \leqq I(x)+I(y)+\varepsilon=I(x \vee y)+I(x \wedge y)+\varepsilon
$$

where

$$
0 \leqq x \vee y \leqq a \vee b, \quad 0 \leqq x \wedge y \leqq a \wedge b
$$

Therefore

$$
I_{1}(a)+I_{1}(b) \leqq I_{1}(a \vee b)+I_{1}(a \wedge b)+\varepsilon
$$

The inequality holds for every $\varepsilon>0$, hence

$$
\begin{equation*}
I_{1}(a)+I_{1}(b) \leqq I_{1}(a \vee b)+I_{1}(a \wedge b) \tag{4}
\end{equation*}
$$

Now we prove the opposite inequality. Let $\varepsilon>0$. Choose $x \in S$ with

$$
\begin{equation*}
I_{1}(a \vee b) \leqq I(x)+\varepsilon, \quad 0 \leqq x \leqq a \vee b, \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
I_{1}(a \vee b)+I_{1}(a \wedge b) \leqq I(x)+I_{1}(a \wedge b)+\varepsilon . \tag{6}
\end{equation*}
$$

Clearly $x=(x \wedge a) \vee(x \wedge b)$ (since S is distributive). This gives

$$
\begin{equation*}
I(x)+I_{1}(a \wedge b)+\varepsilon=I((x \wedge a) \vee(x \wedge b))+I_{1}(a \wedge b)+\varepsilon \tag{7}
\end{equation*}
$$

From (6), (7) and from (b_{1}) we have

$$
\begin{aligned}
I_{1}(a \vee b)+I_{1}(a \wedge b) & \leqq I(x \wedge a)+I(x \wedge b)-I(x \wedge a \wedge b)+ \\
& +I_{1}(a \wedge b)+\varepsilon
\end{aligned}
$$

where $0 \leqq x \wedge a \leqq a, 0 \leqq x \wedge b \leqq b$, therefore

$$
\begin{equation*}
I_{1}(a \vee b)+I_{1}(a \wedge b) \leqq I_{1}(a)+I_{1}(a \wedge b)-I(x \wedge a \wedge b)+I_{1}(b)+\varepsilon \tag{8}
\end{equation*}
$$

Choose $y \in S$ with

$$
I_{1}(a \wedge b) \leqq I(y)+\varepsilon, \quad 0 \leqq y \leqq a \wedge b
$$

ther

$$
I_{1}(a \wedge b)-I(x \wedge a \wedge b) \leqq I(y)-I(x \wedge a \wedge b)+\varepsilon
$$

Owing to (b_{1}) we have
$I_{1}(a \wedge b)-I(x \wedge a \wedge b) \leqq I(x \vee y)+I(x \wedge y)-I(x)-I(x \wedge a \wedge b)+\varepsilon$, where $0 \leqq x \vee y \leqq a \vee b$, therefore
$I_{1}(a \wedge b)-I(x \wedge a \wedge b) \leqq I_{1}(a \vee b)-I(x)-(I(x \wedge a \wedge b)-I(x \wedge y))+\varepsilon$.
From (5) and from the condition (b_{3}) it follows that

$$
\begin{equation*}
I_{1}(a \wedge b)-I(x \wedge a \wedge b) \leqq 2 \varepsilon-I(x \wedge a \wedge b-x \wedge y) \tag{9}
\end{equation*}
$$

where $0 \leqq x \wedge y \leqq x \wedge a \wedge b$. Then from (a_{2}) it follows

$$
0 \leqq x \wedge a \wedge b-x \wedge y \leqq x \leqq a \vee b
$$

If in Proposition 2 we put

$$
u=a \vee b \quad \text { and } \quad v=x \wedge a \wedge b-x \wedge y
$$

we can see that

$$
\begin{equation*}
-I(x \wedge a \wedge b-x \wedge y) \leqq \varepsilon \tag{10}
\end{equation*}
$$

From (8), (9) and (10) we have

$$
I_{1}(a \vee b)+I_{1}(a \wedge b) \leqq I_{1}(a)+I_{1}(b)+4 \varepsilon
$$

and so

$$
\begin{equation*}
I_{1}(a \vee b)+1_{1}(a \wedge b) \leqq 1_{1}(a)+I_{1}(b) \tag{11}
\end{equation*}
$$

From (4) and (11) it follows

$$
I_{1}(a \vee b)+I_{1}(a \wedge b)=I_{1}(a)+I_{1}(b)
$$

Proposition 4. Let S satisfy $\left(\mathrm{a}_{1}\right),\left(\mathrm{a}_{2}\right),\left(\mathrm{a}_{4}\right),\left(\mathrm{a}_{5}\right)$ and I satisfy $\left(\mathrm{b}_{1}\right),\left(\mathrm{b}_{2}\right),\left(\mathrm{b}_{3}\right)$. Then

$$
I_{j}(b)=I_{j}(a)+I_{j}(b-a)
$$

for $j=1,2$ if $0 \leqq a \leqq b$, and for $j=3,4$ if $b \leqq a \leqq 0$.

Proof. Let $0 \leqq a \leqq b, \varepsilon>0, I_{1}(b)<\infty$. Choose $x \in S$ with

$$
I_{1}(b) \leqq I(x)+\varepsilon \quad \text { and } \quad 0 \leqq x \leqq b
$$

It follows from the last inequality, $\left(b_{1}\right)$ and $\left(b_{3}\right)$ that
(12) $\quad l_{1}(b) \leqq J(x \wedge a)+I(x \vee a)-I(a)+\varepsilon=I(x \wedge a)^{`}+I(x \vee a-a)+$.

Since $0 \leqq a \leqq x \vee a \leqq b$, from (a_{2}) it follows that $0 \leqq x \vee a-a \leqq b-x$, and so from (12) we obtain

$$
I_{1}(b) \leqq I_{1}(a)+I_{1}(b-a)+\kappa
$$

Therefore

$$
\begin{equation*}
I_{1}(b) \leqq I_{1}(a)+I_{1}(b-a) \tag{13}
\end{equation*}
$$

If $J_{1}(b)=\infty$, then the proof of (13) is similar but we must use the fact that

$$
\{I(x) / a \wedge 0 \leqq x \leqq a \vee 0\}
$$

is lower bounded.
Now we prove the opposite inequality. Choose $x, y \in S$ with

$$
I_{1}(a) \leqq I(x)+\varepsilon / 2 \quad 0 \leqq x \leqq a
$$

and

$$
I_{1}(b-a) \leqq I(y)+\varepsilon / 2 \quad 0 \leqq y \leqq b-a .
$$

Then from $\left(a_{2}\right),\left(b_{3}\right),\left(a_{5}\right)$ and $\left(a_{4}\right)$ it follows that

$$
I_{1}(a)+I_{1}(b-a) \leqq I(x)+I(y)+\varepsilon=I(x+y)+\varepsilon
$$

and

$$
0 \leqq x+y \leqq a+(b-a)=b
$$

Hence

$$
\begin{equation*}
I_{1}(a)+I_{1}(b-a) \leqq I .(b)+\varepsilon \tag{14}
\end{equation*}
$$

From (13) and (14) we have

$$
I_{1}(a)+I_{1}(b-a)=I_{1}(b)
$$

The proofs for I_{2}, I_{3} and I_{4} are analogous.
Proposition 5. Let S satisfy $\left(\mathrm{a}_{1}\right)$, $\left(\mathrm{a}_{2}\right),\left(\mathrm{a}_{3}\right),\left(\mathrm{a}_{4}\right),\left(\mathrm{a}_{5}\right), I$ satisfy $\left(\mathrm{b}_{1}\right),\left(\mathrm{b}_{2}\right),\left(\mathrm{b}_{3}\right)$, $\left(\mathrm{b}_{4}\right)$. If $a, x_{n} \geqq 0$ and $x_{n} \nearrow a\left(x_{n} \downarrow a\right)$, then $I_{1}\left(x_{n}\right) \not \nearrow I_{1}(a)$ and $I_{2}\left(x_{n}\right), ~ I_{2}(a)$ $\left(I_{1}\left(x_{n}\right) \searrow I_{1}(a)\right.$ and $\left.I_{2}\left(x_{n}\right) \not \subset I_{2}(a)\right)$. If $a, x_{n} \leqq 0$ and $x_{n} \nearrow a\left(x_{n} \searrow a\right)$, then $I_{3}\left(x_{n}\right) \searrow I_{3}(a)$ and $I_{4}\left(x_{n}\right) \not \nearrow I_{4}(a)\left(I_{3}\left(x_{n}\right) \nearrow I_{3}(a)\right.$ and $\left.I_{4}\left(x_{n}\right) \searrow I_{4}(a)\right)$.

Proof. Let $x_{n} \nearrow a, x_{n}, a \geqq 0$, then for every n

$$
\begin{equation*}
I_{1}\left(x_{r_{a}}\right) \leqq I_{1}(a) \tag{15}
\end{equation*}
$$

Let $I_{1}(a)<\alpha^{\prime}$, then for every $\varepsilon>0$ there is $t \in S$ such that

$$
\begin{equation*}
I_{1}(a) \leqq I(t)+\varepsilon \quad \text { and } \quad 0 \leqq t \leqq a \tag{16}
\end{equation*}
$$

From (a_{3}) we have $x_{n} \wedge t \nearrow a \wedge t=t$.
Since $0 \leqq x_{n} \wedge t \leqq x_{n}$, on grounds of $\left(\mathrm{b}_{4}\right)$ we have

$$
\begin{equation*}
I(t)=\lim I\left(x_{n} \wedge t\right) \leqq \lim I_{1}\left(x_{n}\right) \tag{17}
\end{equation*}
$$

From (16) and (17) we obtain

$$
\begin{equation*}
I_{1}(a) \leqq \lim I_{1}\left(x_{n}\right)+\varepsilon \tag{18}
\end{equation*}
$$

The proof follows from (15) and (18).
Let now $I_{1}(a)=\infty$, then for every N there is an element $t \in S$ such that $0 \leqq t \leqq a$ and $N \leqq I(t)$. Similarly we can easily see that

$$
N \leqq I(t) \leqq \lim I_{1}\left(x_{n}\right)
$$

for erery N, therefore

$$
\lim \Lambda_{1}\left(x_{n}\right)=\infty
$$

Let now $x_{n} \searrow a$. From (a_{3}) it follows that

$$
x_{1}-x_{n} \nearrow x_{1}-a \quad \text { and } \quad x:-x_{n}, x_{1}-a \geqq 0
$$

From the first part of the proposition it follows that

$$
I_{1}\left(x_{1}-x_{n}\right) \not \nearrow I_{1}\left(x_{1}-a\right) .
$$

According to Proposition 4 we obtain

$$
I_{1}\left(x_{1}\right)=I_{1}\left(x_{n}\right)+I_{1}\left(x_{1}-x_{n}\right)
$$

Hence

$$
I_{1}\left(x_{1}\right)=\lim I_{1}\left(x_{n}\right)+\lim I_{1}\left(x_{1}-x_{n}\right)=\lim I_{1}\left(x_{n}\right)+I_{1}\left(x_{1}-a\right)
$$

and so

$$
I_{1}\left(x_{1}\right)-I_{1}\left(x_{1}-a\right)=\lim I_{1}\left(x_{n}\right)
$$

therefore from Proposition 4 it follows that

$$
I_{1}(u)=\lim I_{1}\left(x_{n}\right)
$$

The proofs for I_{2}, I_{3} and I_{4} are analogous.
Proposition 6. Let S satisfy $\left(\mathrm{a}_{1}\right)$, $\left(\mathrm{a}_{2}\right)$, let I satisfy $\left(\mathrm{b}_{2}\right),\left(\mathrm{b}_{3}\right)$. If $a \geqq 0$, then

$$
\begin{equation*}
I(a)=I_{1}(a)+I_{2}(a) \tag{19}
\end{equation*}
$$

if $a \leqq 0$, then

$$
\begin{equation*}
I(a)=I_{3}(a)+I_{4}(a) \tag{20}
\end{equation*}
$$

Proof. Let $a \geqq 0$, then $I(a)=\infty(I(a)=-\infty)$ if and only if $I_{1}(a)=$ $=\infty\left(I_{2}(a)=-\infty\right)$.

That means, if $I(a), I_{1}(a)$ or $I_{2}(a)$ is ∞ or $-\infty$, then (19) holds.
Let now $I(a), I_{1}(a), I_{2}(a)$ be finite. Let $\varepsilon>0$. Choose $x \in S$ with

$$
I_{1}(a) \leqq I(x)+\varepsilon \quad \text { and } \quad 0 \leqq x \leqq a
$$

then $0 \leqq a-x \leqq a$ and hence

$$
I(a-x) \geqq J_{2}(a)
$$

Therefore it follows from $\left(\mathrm{b}_{3}\right)$, that for every $\varepsilon>0$,

$$
\begin{aligned}
& I_{1}(a)+I_{2}(a) \leqq I(a)-I(a-x)+\varepsilon+I_{2}(a) \leqq \\
& \leqq I(a)+I(a-x)-I(a-x)+\varepsilon=I(a)+\varepsilon .
\end{aligned}
$$

Hence

$$
\begin{equation*}
I_{1}(a)+I_{2}(a) \leqq I(a) \tag{21}
\end{equation*}
$$

Let now $\varepsilon>0$ and x be such that

$$
I(x) \leqq I_{2}(a)+\varepsilon \quad \text { and } \quad 0 \leqq x \leqq a
$$

Then $0 \leqq a-x \leqq a$ and from $\left(\mathrm{b}_{3}\right)$ we obtain

$$
I(a)=I(x)+I(a-x) \leqq I(x)+I_{1}(a) \leqq I_{2}(a)+I_{1}(a)+\varepsilon .
$$

It follows from the last inequality that

$$
\begin{equation*}
I(a) \leqq I_{1}(a)+I_{2}(a) \tag{22}
\end{equation*}
$$

The obtained inequalites (21) and (22) complete the proof. The proof for $a \leqq 0$ is analogous.

Definition. We denote

$$
I^{+}(a)=I_{1}(a \vee 0)+I_{4}(a \wedge 0), \quad I^{-}(a)=-I_{2}(a \vee 0)-I_{3}(a \wedge 0)
$$

Then the following theorem holds:
Theorem. Let S satisfy $\left(\mathrm{a}_{1}\right),\left(\mathrm{a}_{2}\right),\left(\mathrm{a}_{3}\right),\left(\mathrm{a}_{4}\right),\left(\mathrm{a}_{5}\right)$ and I satisfy $\left(\mathrm{b}_{1}\right),\left(\mathrm{b}_{2}\right)$, $\left(\mathrm{b}_{3}\right),\left(\mathrm{b}_{4}\right)$. Then
(i) $I^{+}(0)=I^{-}(0)=0$,
(ii) If $a \leqq b$, then $I^{+}(a) \leqq I^{+}(b)$ and $I^{-}(a) \leqq I^{-}(b)$,
(iii) If $x_{n} \nearrow a\left(x_{n} \searrow a\right)$, then $I^{+}\left(x_{n}\right) \nearrow I^{+}(a)\left(I^{+}\left(x_{n}\right) \searrow I^{+}(a)\right)$ and $I^{-}\left(x_{n}\right) \nearrow$ $\nearrow I^{-}(a)\left(I^{-}\left(x_{n}\right) \searrow I^{-}(a)\right)$,
(iv) For every $a, b \in S$ we have

$$
I^{+}(a)+I^{+}(b)==I^{+}(a \vee b)+I^{+}(a \wedge b)
$$

and

$$
I^{-}(a)+I^{-}(b)=I^{-}(a \vee b)+I^{-}(a \wedge b)
$$

(v) $I^{+}(b)=I^{+}(a)+I^{+}(b-a) \quad$ and $\quad I^{-}(b)=I^{-}(a)+I^{-}(b-a)$
if $0 \leqq a \leqq b$ or if $b \leqq a \leqq 0$.
(vi) For every $a \in S$ we have

$$
I(a)=I^{+}(a)-I^{-}(a) .
$$

Proof. The statements (i), (ii), (iii), (iv), (v) follow from Propositions 1, 3, 4, 5. We prove (vi). Let $a \in S$. From (b_{1}) and (b_{2}) it follows that

$$
I(a)=I(a \vee 0)+I(a \wedge 0)
$$

However $a \vee 0 \geqq 0$ and $a \wedge 0 \leqq 0$, hence from proposition 6 we have

$$
I(a)=I_{1}(a \vee 0)+I_{2}(a \vee 0)+I_{3}(a \wedge 0)+I_{4}(a \wedge 0)=I^{+}(a)-I^{-}(a)
$$

It is a natural question whether the decomposition of I is unique. If, e. g. $I^{+}(a)$ is finite, then

$$
I(a)=2 I^{+}\left(a^{\prime}\right)-\left(I^{+}(a)+I^{-}(a)\right)
$$

and this decomposition is a different one. Yet the following proposition is true:
Proposition 7. Let S satisfy $\left(\mathrm{a}_{1}\right),\left(\mathrm{a}_{2}\right),\left(\mathrm{a}_{3}\right),\left(\mathrm{a}_{4}\right)$ and $\left(\mathrm{a}_{5}\right)$, I satisfy $\left(\mathrm{b}_{1}\right),\left(\mathrm{b}_{2}\right),\left(\mathrm{b}_{3}\right)$ and (b_{4}). Let $|I(a)|<\infty$ and $I=J^{+}-J^{-}$, where J^{+}, J^{-}satisfy (i), (ii), (v) and (vi). Then $I^{+}(a) \leqq J^{+}(a), I^{-}(a) \leqq J^{-}(a)$.

Proof. Let first $a \geqq 0$. Then

$$
I^{+}(a)=I_{1}(a) \quad \text { and } \quad I^{-}(a)=-I_{2}(a)
$$

Since $|I(a)|<\infty$, for every $\varepsilon>0$ there is $u \in S$ such that

$$
I_{1}(a) \leqq I(u)+\varepsilon \quad \text { and } \quad 0 \leqq u \leqq a .
$$

It follows from the last inequality and from Proposition 2 that $0 \leqq x \leqq u$ implies $I(x) \geqq-\varepsilon$, therefore $I_{2}(u) \geqq-\varepsilon$ and hence

$$
\begin{equation*}
I_{1}(u) \leqq I_{1}(a) \leqq I(u)+\varepsilon, \quad I_{2}(u) \geqq-\varepsilon . \tag{23}
\end{equation*}
$$

Further, according to $\left(\mathrm{b}_{3}\right)$ and (23),

$$
\begin{aligned}
& I(a-u)=I(a)-I(u)=I_{1}(a)+I_{2}(a)-I(u) \leqq I_{2}(a)+\varepsilon \\
& I_{1}(a-u)=I(a-u)-I_{2}(a-u) \leqq I(a-u)-I_{2}(a) \leqq \varepsilon
\end{aligned}
$$

Hence

$$
\begin{equation*}
I_{2}(a-u) \leqq I(a-u) \leqq I_{2}(a)+\varepsilon, \quad I_{1}(a-u) \leqq \varepsilon . \tag{24}
\end{equation*}
$$

Since $I^{+}(b)-I^{-}(b)=J^{+}(b)-J^{-}(b)$, for every $b \in S$ we have

$$
I^{+}(u)-I^{-}(u)=J^{+}(u)-J^{-}(u) .
$$

Thus,

$$
I^{+}(u)=J^{+}(u)-J^{-}(u)+I^{-}(u) .
$$

However, $I^{-}(u)=-I_{2}(u),-J^{-}(u) \leqq 0$, hence according to (23)

$$
\begin{equation*}
I^{+}(u) \leqq J^{+}(u)+\varepsilon \tag{25}
\end{equation*}
$$

Similarly from the relations

$$
\begin{gathered}
I^{-}(a-u)=J^{-}(a-u)-J^{+}(a-u)+I^{+}(a-u) \\
I^{+}(a-u)=I_{1}(a-u),-J^{+}(a-u) \leqq 0
\end{gathered}
$$

and from (24) we obtain

$$
\begin{equation*}
I^{-}(a-u) \leqq J^{-}(a-u)+\varepsilon \tag{26}
\end{equation*}
$$

Using (26) and

$$
I^{+}(a-u)=J^{\dagger}(a-u)+I^{-}(a-u)-J^{-}(a-u)
$$

we have

$$
\begin{equation*}
I^{+}(a-u) \leqq J^{+}(a-u)+\varepsilon . \tag{27}
\end{equation*}
$$

From (25), (27) and from the property (v) (Theorem) for I^{\dagger} and J^{\dagger} we have
$I^{+}(a)=I^{+}(u)+I^{+}(a-u) \leqq J^{+}(u)+J^{+}(a-u)+2 \varepsilon=J^{+}(a)+2 \varepsilon$,
for every $:>0$, hence

$$
I^{+}(a) \leqq J^{+}(a) .
$$

Further

$$
I^{-}(a)=I^{\vdash}(a)-J^{\prime}(a)+J^{-}(a) \leqq J^{-}(a) .
$$

Hence we obtained

$$
I^{+}(a) \leqq J^{+}(a) \quad \text { and } \quad I^{-}(a) \leqq J^{-}(a) .
$$

For $a \leqq 0$, the proof is similar.
Let a be an arbitrary element from S. From the validity of (i) and (iv) for I^{+}and I^{-}we obtain

$$
I^{+}(a)=I^{+}(a \vee 0)+I^{+}(a \wedge 0) \leqq J^{+}(a \vee 0)+J(a \wedge 0)-J(a) .
$$

Similarly we obtain that $I^{-}(a) \leqq J^{-}(a)$.

The following example shows that if $|I(a)|=\infty$, then the statement of Proposition 7 need not be valid.

Example. Denote J^{+}, J^{-}by

$$
J^{+}(0)=0, \quad J^{+}(a)=-1, \quad J^{-}(0)=0, \quad J^{-}(a)=-\infty .
$$

Then $I=J^{+}-J^{-}$implies that $I(0)=0, I(a)=\infty$, where $S=\{0, a\}$ and $0>a, \quad 0+a=a+0=a+a==a-0=a, \quad 0+0=0-0=0-a=$ $a-a=0$. We see that $I=I^{+}-I^{-}=J^{+}-J^{-}$is valid although

$$
-1=J^{+}(a)<J^{+}(a)=0 .
$$

Corollary 1. Let S be a σ-algebra of subsets of X. Let μ be the generalized measure on S. Then there are measures μ^{+}and μ^{-}such that

$$
\mu==\mu^{+}-\mu^{-} .
$$

Proof. If A and B are any two sets from S, then let $A \vee B$ denote their union, $A \wedge B$ denote their intersection, $A-B$ denote the relative complement of B in A, and $A+B=A \vee B$. Then (a_{1}), $\left(\mathrm{a}_{2}\right),\left(\mathrm{a}_{3}\right),\left(\mathrm{a}_{4}\right),\left(\mathrm{a}_{5}\right),\left(\mathrm{b}_{1}\right),\left(\mathrm{b}_{2}\right),\left(\mathrm{b}_{3}\right)$, (b_{4}) hold and the Corollary is a consequence of the Theorem.

Corollary 2. Let S be a σ-algebra of real functions. Let μ be the Daniell integral on S. Then there are integrals μ^{+}and μ^{-}such that $\mu^{+}(f) \geqq 0$ and $\mu^{-}(f) \geqq 0$ if $f \geqq 0$, and

$$
\mu==\mu^{+}-\mu^{-} .
$$

Proof. If f, g are any two functions, let $(f \vee g)(x)=\max \{f(x), g(x)\}$ $(f \wedge g)=\min \{f(x), g(x)\}, \quad(f+g)(x)=f(x)+g(x), \quad(f-g)(x)=f(x)-g(x)$. Then $\left(a_{1}\right),\left(a_{2}\right),\left(a_{3}\right),\left(a_{4}\right),\left(a_{5}\right),\left(b_{1}\right),\left(b_{2}\right),\left(b_{3}\right),\left(b_{4}\right)$ are valid and an application of the Theorem completes the proof.

REFERENCES

[1] FEDERER H.: Geometric Measure Theory. Berlin 1969.
[2] FU'ÁŠ E.: Extension of continucus functionals, Mat. časop., 21, 1971, 191-198.
[3] HALMOS P. R.: Measure Theory. New York 1950.
[4] RIEČAN B.:О непрерывном продолжении монотонных функционалов некоторого типа. Mat.-fyz. časop. 15, 1965, 116-125.
Received July 26, 1972
Katedra matematiky a deskriptivnej geometrie Stavebnej fakulty Slovenskej vysokej školy technickej Bratislava

