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Mat. čas. 24, 1974, No 2, 139—144 

ON A CONSTRUCTION OF SOME SEMIGROUPS 

BLANKA KOLIBIAROVA 

Dedicated to Professor Stefan SCHWAEZ on the occasion of his sixtieth birthday 

The purpose of this paper is to study some properties and a construction of 
semigroups, each left ideal of which contains a unique right identity. The main 
results are Theorem 6 and 8. This problem was also studied in [1] and [3]: the 
results are mentoined below. 

In paper [2] a complete set of endomorphisms of the bicyclic semigroup is 
given. The present paper describes a construction of all subsemigroups of the 
bicyclic semigroup every left ideal of which contains a unique right identity. 

Denote by S a semigroup each left ideal of which contains a unique right 
identity. The set of all elements which generate the left (right) principal ideal 
(x)L ((X)R) is called the left class L(x) (the right class B(x)). An element e eS 
is called a left (right) identity iff ex = x (xe = x) for every x e S. The set of all 
idempotents of S will be denoted by I(S). The elements of I(S) will be denoted 
by e, with indices if necessary. Further we denote ethic (ewe^) iff (e*)L C (ek)L 
(MR C (ek)R) in S. 

R e m a r k 1. Evidently the unique right identity of (C)L is e. 

Lemma 1. For each ei, e2 e I(S), e± ^ e2 there holds either eile2 or e2Zei with 

(ei)L ^ M L . 

Proof . Consider the left ideal (e±)L U (C 2)L, denote its right identity by e. 
Then either ee(e{)L, or ee(e2)L- Let ee(e i )L, hence e = e x . This implies 
e2 = e2ei, therefore (e2)L C (6I)L, hence e2£ei. But (e2)L = (^I)L means ei = e 2, 
a contradiction to ei 7^e2. Hence (e2)L <= (ei)L. Similarly e e (e2)L implies 
eile2 . 

Theorem 1. ([1], [3]). I(S) is a commutative subsemigroup of S. 
P r o o f . Let ei?e2, then ei = eie2. Further e2ei is idempotent. Clearly (e2ei)L C 

C (ei)L, but (ei)L C (e2)L implies (ex)L C (e2ei)L, together (e2ei)L = (^I)L, 
where ei = e2ei is the unique right identity. This togehter with ei = eie2 

implies e2ei = eie2 = ei. 

Lemma 2. eile2 iff eire2. 
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Proof . eile2 implies eie2 = ei. By Theorem 1 we have further ei = e2ei, 
hence (ei)R Q (e2)R. This means eire2. In the same way we prove that e\re2 

implies e^le2. 
Lemma 1 and 2 imply. 

Theorem 2 ([3]). I(S) is a dually well ordered set with respect to the relation I 
(or r by Lemma 2). This ordering will be denoted by S . 

Corollary 1. ei ^ e2 iff eie2 = e2ei = ei. 

Lemma 3. ([3]). Each element x e S belongs to the class L(ei), where ei is the 
right identity of (x)L and to some class R(e2). 

Proof . Let ei be the right identity in (X)L, hence (ei)z, Q (X)L. At the same 
time x = xei implies (X)L Q (ei)L, hence (X)L = (ei)L, therefore x e L(ei). 

Further ei = sx, s e S and x = xei = xsx, hence (X)R Q (XS)R. NOW (XS)R Q 
Q (X)R, consequently (X)R = (XS)R. Since xs = (xei)s = xsxs, we have xs = 
= e2 G I(S) and we get (X)R = (e2)H.; this means x e jR(e2). 

By Lemmas 1, 2, 3, we obtain. 

Lemma 4 ([3]). Each class L(e) (R(e)) contains a unique idempotent e. 
R e m a r k 2 ([3]). L(e) n R(e) is a maximal group of S. 
R e m a r k 3. Each right ideal (X)R with x e R(e) contains a unique left 

identity e. 

Lemma 5. Let x e Lfa), ejc < e^. Then xejc e L(ejc). 
Proof . Clearly (X)L = (£I)L implies (xejc)L = (ejc)L. 

Lemma 6. Let x eL(ei), ei<e2<e\. Then (xei)R c: (xe2)R and (xeiJL ^ 
c (xe2)L. 

Proof . (X)L = (ei)L implies ei = sx for some seS. Hence (ei)R <= (e2)R 

implies (xei)R Q (xe2)R. But (xeijR = (XC2)R implies (sxei)R = (SXC2)R for some 
s with sx = ei. We have (e^ei)^ = (eie2)R, hence (ei)R = (e2)^, i.e. ei = e2, 
a contradiction to ei < e2. Hence (XCI)R CZ (xe2)R. Similarly by Lemma 5 we 
get (.rei)z/= (ei)L <= (e2)L = (xe2)L. 

We clearly have. 

Lemma 7. Let ei< e2. Then (eix)L c
 (^2X)L. 

Denote £(e*) n R(ejc) = Ha. 
Lemmas 6 and 7 imply. 

Theorem 3. Let x e Hue. Then for the chains of ideals ordered according to the 
inclusion we have (~ means the orderisomorphism): 

{(ze)L/e ^ ei) ~ {e/e g e*} ~ {(xe)Rje ^ ei}, 
{(ex)L\e ^ eje} ~ {e/e ^ ejc}. 
Denote the set {e/e* ^ e ^ e<} by <e*, e<>. 
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Denote the orderisomorphic intervals by (a, by TZ <c, d> (if they are finite, 
this means that they have the same number of elements). 

Denote L*(e{) = U {Hik \ ek ^ e{\. 
Theorem 4. L*(ei) is a subsemigroup of S with the two- sided identity Ci. 
Proof . (x)L = (et)L implies (x2)L = (etx)L = (eiekx)L = (ekx)L = (x)L =-

= (a)L (since x e Hik). Similarly (y2)L = (a)L. Further (x)L =. (y)L implies 
{yx)L = (x*)L = (et)L, (xy)L = (y2)L = (et)L. Also (yx)R c (yei)R = (y)* e 
e (ei)i2, similarly (#?/)# c= (e^j?. Hence i*(e() is a semigroup. Evidently e< is 
a right identity of the semigroup L*(e{). We further have ekx = a; and e<a; == 
= ei(ekx) = (eje^)^ = ekx — x, this shows tha t e* is also a left identity of 
£*(«<). 

Lemma 8. Lei x e L*(e{), xeR(ek), et<et. Then xeteL*(et), xeteR(e8)t 

where <e*, ety TZ (ek, e$y. 
Proof . By Lemma 5 xet e L(et). By Theorem 3 there holds ((xet)R, (xet)Ry TZ 

~ <€i, ety TZ <eA;, es>, where (xet)R = (es)R. 
R e m a r k 4. If I(S) TZ CO*, then <e<, eky TZ <e*, es>. 

Theorem 5. Lei ek < a. Then the mapping cp\ of L*(et) into L*(ek) defined 
by (p\x = xek is a homomorphism of the semigroup L*(ei) into L*(ek) 

Proof . By Lemma 8 we have xek, yek e L*(ek) for any x, y eL*(et). Hence 
by Theorem 4 we have (xek)(yek) e L* (ek)y (xek)(yek) = x[ek(yek)] = xyek. 

Using Theorem 5 and Lemma 8 we get 

Corollary 2. Let I(S) TZ CO*. Let Hik contains exactly one element for each 
ek ^ ei. Then the samigroup L*(ek) is isomorphic to the semigroup L*(et) and to 
I(S). Here L*(e{) is a dually well ordered set according to the inclusion of the right 
ideals (namely x2 ^ x\ iff (x2)R Q (xi)R). 

Remark 2 and Corollary 2 imply. 

Theorem 6. If S is finite, then S is a chain of groups (namely of groups Ha). 

Lemma 9. Let x e Ha, y e Hk2, ek ^ e*. Then: 

xy eHks, where <e*, e2> ~ <^i, esy. 

Further: a) if ek < e± < e^, then yx e Hj2, where <ei, eky TZ <e*, e;>; 
b) if e± ^ ek <^ ei, then yx GHU, where (ek, ei> TZ (e2, ety. 

Proof . By Lemma 8 we have xyeL*(ek). By Theorem 3 (y)R = (ez)R 

implies (xy)R = (xe2)R = (es)R, where <e*, e2> TZ ((xei)R, (xe2)Ry TZ <ei, e*>. 

a) ek < ex impliesye± = y, hence (x)R = (ei)Rimplies (yx)R = (ye\)R = (y)n^ 
= (e2)R. Further (y)L = (ek)L implies (yx)L = (ekx)L = (ej)L. By Theorem 3 
we get <ei, eky TZ ((eix)L, (ekx)Ly TZ <et, e>>. 

b) Since ei ^ ek, we get ekx = x, hence (y)L = (ek)L implies (yx)L = (tkx)L ^ 
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= {X)L = (e^L- Further (x)R = (e±)R gives (xy)R = (yei)R = (e*)*, where by 
Theorem 3 (ek, ex> ~ ((yek)R, (ye±)Ry ~ <e2, e*>. 

Lemma 10. Ze^ / ($) ~ a>*. Let xeHn, yeHi2l, e2 < ei. jT^e?i 
zi/ GFr7^, yo: eHik, where <e«, ei> ~ <e2, e*>. 

As a consequence of the foregoing results we get 

Theorem 7. -Sf(ei) = U {L*(ek)jek ^ e/} is a subsemigroup of Scontaining the 
two-sieded identity e%. 

The statements concerning R*(et) = U {Hkijek ^ et} will be denoted by 
the sign *. They can be obtained similarly as the corresponding statements 
for L*(et). 

Now we consider the multiplication between the elements of L*(ez) and 
R*(ek). Using Theorems 3 and 3* it is easy to prove the following "multipli
cation rules": 

Lemma 11. Let x e Hij, y e Htk. 

1) Let ek ^ ei. Then xy e Hts, where (ei, eky ~ <ey, es>. Further: 

a) let et <= ej. Then yx e HSk, where (ej, ety ~ (d, e5>; 

b) let ej < et. Then yx e His, where (et, e,-> ~ (ek, es>. 

2) Let ei< ek, et< e;-. Then xy e Hsj, where (ek, e*> ~ (et, es> and yx e Hsky 

where <ey, e*> ~ (a, es>. 
The foregoing results imply the validity of the following Theorem (here 

\*e use the notations: B is the bicyclic semigroup, L, R, H-classes of J . A 
G r e e n [4]): 

Theorem 8. Let S be a semigroup each left ideal of which contains a unique 
right identity. If I(S) TZ CO*, then there exists a homomorphism f: S -> B with 
the kernel ker f = H = L n R and the image specified by the Construction C 
desonribed below. 

C o n s t r u c t i o n C. 

L e t ^ = {Moc/oc eT} be a family of sets Ma ~ co* and let J ~ co* with the 
ordering < . 

I. [The correspondence e*<—>L(ej), R(ei) for the largest ei e J for which 
L(a) ^ 0.] 

To each ek e J we associate two elements L(ek), R(ek) of Jt in the following 
manner: Let et be the largest element in J to which we associate L(ei) ^0. 
Then for et > et- we put R(et) = 0 and for R(e{) we take an arbitrary element 
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I I . [The correspondence (x, y) e (L(ex), R(ei)) <-» (ejc, ej.] 
To each element x e L(et) we associate ociX = ejc g e% and if R(ei) -=fz 0, then to 
each y e R(ei) we associate fay = es ^ e*, where the following contitions (1 — 4) 
are satisfied: 

1) x\,x2eL(et), x\ < x2 in L(ei) imply a^ i < ociX2 in J. 
2) For every x\, x2 e L(et) there exists an xs eL(ei), where (oax±, ociX3y ~ 

~ (ei, ociX2y and for every y±, y2 e R(ei) there exists some 2/3 e R(ei)r 

where (fayu fay*y ^ <e,, fay2y. 
3) For every x e L(ei), ociX = ek there exists some y e R(ei) .with fay = e* 

and for every ?/ G i^(ei), $ y = es there exists some x e L(ei) with a$o: = es. 
4) For a fixed e$ denote the number of elements of <e$, efc>by ^ + 1 . Then 

for every a: eL(ei), ociX — ejc, y eR(et), fay = es there exist x' eL(e{), 
y' e R(ei) with oax' = fay' = em, where dm = TICZ and d is the greatest 
common divisor of djc ctnd ds, n = 1, 2, 3, 

The results of the foregoing considerations show that there is possible to 
choose a correspondence satisfying 1 — 4. 

III. [The correspondence ejc <-> (L(ejc), R(ejc)) for ejc < et.] 
Let ejc < et. Then L{ek) eJi, L(ejc) -£ 0. If-K(et) -^ 0, then J?(e7c) e^T, -R(e*) ^ 
9-- 0. If jr?(ei) = 0, then -K(e )̂ is an arbitrary element o f ^ . 

IV. [The correspondence (x, y) e (L(ek), R(ek)) <-> (es, et) for e*. < e*.] 
To each a: eL(ek) we associate a^a; = es ^ e* and if jrt(e») ^ 0, to each y eR(ei) 
we associate /5A;2/ = et ^ ek in such a way that the above Condition 1 — 4 and 
moreover the following Conditions 5—6 are satisfied: 

5) For every x e L(ek), y e L(ei) there exists y' e L(ei), where <a^, octy'y ~ 
— <e,t, ocjcxy. Analogously for elements of R(ek) and R(ei). 

6) If there exists y e L(ei) with any = et, then there exists x eL(ejc), where 
<e*, ety ~ (ek, cckxy. 

Now, adjoin to every L(ei), R(e{) the element e* as its greatest element. 

V. [Multiplication in L(ei).] 
We define the multiplication in L(e{) by the rule: 2:10:2 = ^2^1 = #3 e L(ei), 
where <atXi, anx$y ~ <ei, ai.r2>. 

VI. [Multiplication of couples e L(ei), L(ek); ek < ex.] 
We define the multiplication between the elements of L(ei), L(ek), ek < et- as 
follows: Let x e L(et), ociX = en\ y e L(ek), ocky = e;-, then: 

a) xy eL(ek), cck(xy) = et, where <e*, e;> TZ (eh, e*>; 
b l ) If ek ^ eh ^ et, then yx e L(et), where <eA, e*> ~ <e«, e*> and oct(%y) = ej; 
b2) If eh < ek, then yx e L(ei), oci(yx) = et, where (ek, e/»> ~ <e;-, e*>. 
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V I I . [The "dual multiplication".] 
We define the multiplication in i2(e<) dually to that in L(ei). 

Next we define the multiplication between the elements of i?(e<) and R(ek), 
ek < e\ as follows: Let x e R(ei), fax = eh; y eR(ek), fiky = e;-; then: 

a) yx eR(ek), pk(yx) = et, where (eiy ê > ~ <eA, ety; 
h i ) If ek g eh ^ et, then xy e R(et), where <e<, ety ~ <e/>, ekiy fit(xy) = e}; 
b2) If en<ek, then xy e R(ei) and fa(xy) — et, where (eki ehy ~ <e;-, ety. 

V I I I . [Multiplication of couples e L(et), R(ek).] 
We define the multiplication between the elements of L(ei) and R(ek) as follows: 
Let x e L(e{), atx = e}; y e R(ek), fiky = eh. 

A. If ek ^ ei, we define: 
a) a;?/ eL(eh), och(xy) = es, where <e<, e*) ~ <«j, ^>; 

b l ) If eh ^ ejy then i/o; eR(ek), (ik(xy) = e*, where <e,-, e*> ~ <e<, e*>; 
b2) If Bj < en, then yx eL(et), on(yx) = eti where (en, fy> ~ <e*, e*>. 

B . If ei < eki we define: 
a) xy eR(ej), fc(xy) = e8i where <ek, e<> ~ (ehi ef>; 

b l ) If eh<ejt then ?/£ e!2(e*), /?*(#.?/) = e«, where <e>, e^> ~ <eif e*>; 
b2) If ej ^ eh, then i/z e L(et), af(a;?/) -= e,, where <eft, e;> ~ (ek, es>. 

R e m a r k 5. W a r n e [2] has described all bicyclic subsemigroups of B. The 
present construction describes (among others) a larger class of subsemigroups 
of B, namely all those subemigroups, the left ideal of which contains a unique 
right identity. 

Of course, the class of semigroups described above is much larger as the 
bicyclic semigroup. 

Finaly we remark that it clearly follows from the above construction tha t 
in this way we obtain all semigroups in which any left ideal contains a unique 
right identity. 
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