Matematický časopis

Blanka Kolibiarová

On a Construction of Some Semigroups

Matematický časopis, Vol. 24 (1974), No. 2, 139--144
Persistent URL: http://dml.cz/dmlcz/126607

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON A CONSTRUCTION OF SOME SEMIGROUPS

BLANKA KOLIBIAROVÁ

Dedicated to Professor Štefan SCHWARZ on the occasion of his sixtieth birthday
The purpose of this paper is to study some properties and a construction of semigroups, each left ideal of which contains a unique right identity. The main results are Theorem 6 and 8. This problem was also studied in [1] and [3]: the results are mentoined below.

In paper [2] a complete set of endomorphisms of the bicyclic semigroup is given. The present paper describes a construction of all subsemigroups of the bicyclic semigroup every left ideal of which contains a unique right identity.

Denote by S a semigroup each left ideal of which contains a unique right identity. The set of all elements which generate the left (right) principal ideal $(x)_{L}\left((x)_{R}\right)$ is called the left class $L(x)$ (the right class $\left.R(x)\right)$. An element $e \in S$ is called a left (right) identity iff $e x=x(x e=x)$ for every $x \in S$. The set of all idempotents of S will be denoted by $I(S)$. The elements of $I(S)$ will be denoted by e, with indices if necessary. Further we denote $e_{i} l e_{k}\left(e_{i} r e_{k}\right)$ iff $\left(e_{i}\right)_{L} \subseteq\left(e_{k}\right)_{L}$ $\left(\left(e_{i}\right)_{R} \subseteq\left(e_{k}\right)_{R}\right)$ in S.

Remark l. Evidently the unique right identity of $(e)_{L}$ is e.
Lemma 1. For each $e_{1}, e_{2} \in I(S), e_{1} \neq e_{2}$ there holds either $e_{1} l e_{2}$ or $e_{2} l e_{1}$ with $\left(e_{1}\right)_{L} \neq\left(e_{2}\right)_{L}$.

Proof. Consider the left ideal $\left(e_{1}\right)_{L} \cup\left(e_{2}\right)_{L}$, denote its right identity by e. Then either $e \in\left(e_{1}\right)_{L}$, or $e \in\left(e_{2}\right)_{L}$. Let $e \in\left(e_{1}\right)_{L}$, hence $e=e_{1}$. This implies $e_{2}=e_{2} e_{1}$, therefore $\left(e_{2}\right)_{L} \subseteq\left(e_{1}\right)_{L}$, hence $e_{2} l e_{1}$. But $\left(e_{2}\right)_{L}=\left(e_{1}\right)_{L}$ means $e_{1}=e_{2}$, a contradiction to $e_{1} \neq e_{2}$. Hence $\left(e_{2}\right)_{L} \subset\left(e_{1}\right)_{L}$. Similarly $e \in\left(e_{2}\right)_{L}$ implies $e_{1} l e_{2}$.

Theorem 1. ([1], [3]). $I(S)$ is a commutative subsemigroup of S.
Proof. Let $e_{1} l e_{2}$, then $e_{1}=e_{1} e_{2}$. Further $e_{2} e_{1}$ is idempotent. Clearly $\left(e_{2} e_{1}\right)_{L} \subseteq$ $\subseteq\left(e_{1}\right)_{L}$, but $\left(e_{1}\right)_{L} \subseteq\left(e_{2}\right)_{L}$ implies $\left(e_{1}\right)_{L} \subseteq\left(e_{2} e_{1}\right)_{L}$, together $\left(e_{2} e_{1}\right)_{L}=\left(e_{1}\right)_{L}$, where $e_{1}=e_{2} e_{1}$ is the unique right identity. This togehter with $e_{1}=e_{1} e_{2}$ implies $e_{2} e_{1}=e_{1} e_{2}=e_{1}$.

Lemma 2. $e_{1} l e_{2}$ iff $e_{1} r e_{2}$.

Proof. $e_{1} l e_{2}$ implies $e_{1} e_{2}=e_{1}$. By Theorem 1 we have further $e_{1}=e_{2} e_{1}$, hence $\left(e_{1}\right)_{R} \subseteq\left(e_{2}\right)_{R}$. This means $e_{1} r e_{2}$. In the same way we prove that $e_{1} r e_{2}$ implies $e_{1} l e_{2}$.

Lemma 1 and 2 imply.
Theorem $2([3]) . I(S)$ is a dually well ordered set with respect to the relation l (or r by Lemma 2). This ordering will be denoted by \leqq.

Corollary 1. $e_{1} \leqq e_{2}$ iff $e_{1} e_{2}=e_{2} e_{1}=e_{1}$.
Lemma 3. ([3]). Each element $x \in S$ belongs to the class $L\left(e_{1}\right)$, where e_{1} is the right identity of $(x)_{L}$ and to some class $R\left(e_{2}\right)$.

Proof. Let e_{1} be the right identity in $(x)_{L}$, hence $\left(e_{1}\right)_{L} \cong(x)_{L}$. At the same time $x=x e_{1}$ implies $(x)_{L} \cong\left(e_{1}\right)_{L}$, hence $(x)_{L}=\left(e_{1}\right)_{L}$, therefore $x \in L\left(e_{1}\right)$.

Further $e_{1}=s x, s \in S$ and $x=x e_{1}=x s x$, hence $(x)_{R} \subseteq(x s)_{R}$. Now $(x s)_{R} \subseteq$ $\cong(x)_{R}$, consequently $(x)_{R}=(x s)_{R}$. Since $x s=\left(x e_{1}\right) s=x s x s$, we have $x s=$ $=e_{2} \in I(S)$ and we get $(x)_{R}=\left(e_{2}\right)_{R}$; this means $x \in R\left(e_{2}\right)$.

By Lemmas 1, 2, 3, we obtain.
Lemma 4 ([3]). Each class $L(e)(R(e))$ contains a unique idempotent e.
Remark 2 ([3]). $L(e) \cap R(e)$ is a maximal group of S.
Remark 3. Each right ideal $(x)_{R}$ with $x \in R(e)$ contains a unique left identity e.

Lemma 5. Let $x \in L\left(e_{i}\right), e_{k}<e_{i}$. Then $x e_{k} \in L\left(e_{k}\right)$.
Proof. Clearly $(x)_{L}=\left(e_{i}\right)_{L}$ implies $\left(x e_{k}\right)_{L}=\left(e_{k}\right)_{L}$.
Lemma 6. Let $x \in L\left(e_{i}\right), e_{1}<e_{2}<e_{i}$. Then $\left(x e_{1}\right)_{R} \subset\left(x e_{2}\right)_{R}$ and $\left(x e_{1}\right)_{L} \subset$ $\subset\left(x e_{2}\right)_{L}$.
Proof. $(x)_{L}=\left(e_{i}\right)_{L}$ implies $e_{i}=s x$ for some $s \in S$. Hence $\left(e_{1}\right)_{R} \subset\left(e_{2}\right)_{R}$ implies $\left(x e_{1}\right)_{R} \cong\left(x e_{2}\right)_{R}$. But $\left(x e_{1}\right)_{R}=\left(x e_{2}\right)_{R}$ implies $\left(s x e_{1}\right)_{R}=\left(s x e_{2}\right)_{R}$ for some s with $s x=e_{i}$. We have $\left(e_{i} e_{1}\right)_{R}=\left(e_{i} e_{2}\right)_{R}$, hence $\left(e_{1}\right)_{R}=\left(e_{2}\right)_{R}$, i.e. $e_{1}=e_{2}$, a contradiction to $e_{1}<e_{2}$. Hence $\left(x e_{1}\right)_{R} \subset\left(x e_{2}\right)_{R}$. Similarly by Lemma 5 we get $\left(x e_{1}\right)_{L}=\left(e_{1}\right)_{L} \subset\left(e_{2}\right)_{L}=\left(x e_{2}\right)_{L}$.

We clearly have.
Lemma 7. Let $e_{1}<e_{2}$. Then $\left(e_{1} x\right)_{L} \subset\left(e_{2} x\right)_{L}$.
Denote $L\left(e_{i}\right) \cap R\left(e_{k}\right)=H_{i k}$.
Lemmas 6 and 7 imply.
Theorem 3. Let $x \in H_{i k}$. Then for the chains of ideals ordered according to the inclusion we have (\approx means the orderisomorphism):
$\left\{(x e)_{L} / e \leqq e_{i}\right\} \approx\left\{e / e \leqq e_{i}\right\} \approx\left\{(x e)_{R} / e \leqq e_{i}\right\}$,
$\left\{(e x)_{L} / e \leqq e_{k}\right\} \approx\left\{e / e \leqq e_{k}\right\}$.
Denote the set $\left\{e / e_{k} \leqq e \leqq e_{i}\right\}$ by $\left\langle e_{k}, e_{i}\right\rangle$.

Denote the orderisomorphic intervals by $\langle a, b\rangle \approx\langle c, d\rangle$ (if they are finite, this means that they have the same number of elements).

Denote $L^{*}\left(e_{i}\right)=\cup\left\{H_{i k} \mid e_{k} \leqq e_{i}\right\}$.
Theorem 4. $L^{*}\left(e_{i}\right)$ is a subsemigroup of S with the two- sided identity e_{i}.
Proof. $\quad(x)_{L}=\left(e_{i}\right)_{L}$ implies $\left(x^{2}\right)_{L}=\left(e_{i} x\right)_{L}=\left(e_{i} e_{k} x\right)_{L}=\left(e_{k} x\right)_{L}=(x)_{L}=$ $=\left(e_{i}\right)_{L}$ (since $x \in H_{i k}$. Similarly $\left(y^{2}\right)_{L}=\left(e_{i}\right)_{L}$. Further $(x)_{L}=(y)_{L}$ implies $(y x)_{L}=\left(x^{2}\right)_{L}=\left(e_{i}\right)_{L}, \quad(x y)_{L}=\left(y^{2}\right)_{L}=\left(e_{i}\right)_{L} . \quad$ Also $(y x)_{R} \subset\left(y e_{i}\right)_{R}=(y)_{R} \subset$ $\subset\left(e_{i}\right)_{R}$, similarly $(x y)_{R} \subset\left(e_{i}\right)_{R}$. Hence $L^{*}\left(e_{i}\right)$ is a semigroup. Evidently e_{i} is a right identity of the semigroup $L^{*}\left(e_{i}\right)$. We further have $e_{k} x=x$ and $e_{i} x=$ $=e_{i}\left(e_{k} x\right)=\left(e_{i} e_{k}\right) x=e_{k} x=x$, this shows that e_{i} is also a left identity of $L^{*}\left(e_{i}\right)$.

Lemma 8. Let $x \in L^{*}\left(e_{i}\right), x \in R\left(e_{k}\right), e_{t}<e_{i}$. Then $x e_{t} \in L^{*}\left(e_{t}\right), x e_{t} \in R\left(e_{s}\right)$, where $\left\langle e_{i}, e_{t}\right\rangle \approx\left\langle e_{k}, e_{s}\right\rangle$.

Proof. By Lemma $5 x e_{t} \in L\left(e_{t}\right)$. By Theorem 3 there holds $\left\langle\left(x e_{i}\right)_{R},\left(x e_{t}\right)_{R}\right\rangle \approx$ $\overline{2}\left\langle e_{i}, e_{t}\right\rangle \approx\left\langle e_{k}, e_{s}\right\rangle$, where $\left(x e_{t}\right)_{R}=\left(e_{s}\right)_{R}$.

Remark 4. If $I(S) \approx \omega^{*}$, then $\left\langle e_{i}, e_{k}\right\rangle \approx\left\langle e_{t}, e_{s}\right\rangle$.
Theorem 5. Let $e_{k}<e_{i}$. Then the mapping φ_{k}^{i} of $L^{*}\left(e_{i}\right)$ into $L^{*}\left(e_{k}\right)$ defined by $\varphi_{k}^{i} x=x e_{k}$ is a homomorphism of the semigroup $L^{*}\left(e_{i}\right)$ into $L^{*}\left(e_{k}\right)$

Proof. By Lemma 8 we have $x e_{k}, y e_{k} \in L^{*}\left(e_{k}\right)$ for any $x, y \in L^{*}\left(e_{i}\right)$. Hence by Theorem 4 we have $\left(x e_{k}\right)\left(y e_{k}\right) \in L^{*}\left(e_{k}\right),\left(x e_{k}\right)\left(y e_{k}\right)=x\left[e_{k}\left(y e_{k}\right)\right]=x y e_{k}$.

Using Theorem 5 and Lemma 8 we get
Corollary 2. Let $I(S) \approx \omega^{*}$. Let $H_{i k}$ contains exactly one element for each $e_{k} \leqq e_{i}$. Then the samigroup $L^{*}\left(e_{k}\right)$ is isomorphic to the semigroup $L^{*}\left(e_{i}\right)$ and to $I(S)$. Here $L^{*}\left(e_{i}\right)$ is a dually well ordered set according to the inclusion of the right ideals (namely $x_{2} \leqq x_{1}$ iff $\left.\left(x_{2}\right)_{R} \cong\left(x_{1}\right)_{R}\right)$.

Remark 2 and Corollary 2 imply.
Theorem 6. If S is finite, then S is a chain of groups (namely of groups $H_{i i}$).
Lemma 9. Let $x \in H_{i 1}, y \in H_{k 2}, e_{k} \leqq e_{i}$. Then:

$$
x y \in H_{k s}, \text { where }\left\langle e_{i}, e_{2}\right\rangle \approx\left\langle e_{1}, e_{s}\right\rangle
$$

Further: a) if $e_{k}<e_{1}<e_{i}$, then $y x \in H_{j 2}$, where $\left\langle e_{1}, e_{k}\right\rangle \approx\left\langle e_{i}, e_{j}\right\rangle$;

$$
\text { b) if } e_{1} \leqq e_{k} \leqq e_{i} \text {, then } y x \in H_{i t} \text {, where }\left\langle e_{k}, e_{1}\right\rangle \approx\left\langle e_{2}, e_{t}\right\rangle
$$

Proof. By Lemma 8 we have $x y \in L^{*}\left(e_{k}\right)$. By Theorem $3(y)_{R}=\left(e_{2}\right)_{R}$ implies $(x y)_{R}=\left(x e_{2}\right)_{R}=\left(e_{s}\right)_{R}$, where $\left\langle e_{i}, e_{2}\right\rangle \approx\left\langle\left(x e_{i}\right)_{R},\left(x e_{2}\right)_{R}\right\rangle \approx\left\langle e_{1}, e_{s}\right\rangle$.
a) $e_{k}<e_{1}$ implies $y e_{1}=y$, hence $(x)_{R}=\left(e_{1}\right)_{R}$ implies $(y x)_{R}=\left(y e_{1}\right)_{R}=(y)_{R}=$ $=\left(e_{2}\right)_{R}$. Further $(y)_{L}=\left(e_{k}\right)_{L}$ implies $(y x)_{L}=\left(e_{k} x\right)_{L}=\left(e_{j}\right)_{L}$. By Theorem 3 we get $\left\langle e_{1}, e_{k}\right\rangle \approx\left\langle\left(e_{1} x\right)_{L},\left(e_{k} x\right)_{L}\right\rangle \approx\left\langle e_{i}, e_{j}\right\rangle$.
b) Since $e_{1} \leqq e_{k}$, we get $e_{k} x=x$, hence $(y)_{L}=\left(e_{k}\right)_{L}$ implies $(y x)_{L}=\left(e_{k} x\right)_{L} \approx$
$=(x)_{L}=\left(e_{i}\right)_{L}$. Further $(x)_{R}=\left(e_{1}\right)_{R}$ gives $(x y)_{R}=\left(y e_{1}\right)_{R}=\left(e_{t}\right)_{R}$, where by Theorem $3\left\langle e_{k}, e_{1}\right\rangle \simeq\left\langle\left(y e_{k}\right)_{R},\left(y e_{1}\right)_{R}\right\rangle \simeq\left\langle e_{2}, e_{t}\right\rangle$.

Lemma 10. Let $I(S) \approx \omega^{*}$. Let $x \in H_{i 1}, y \in H_{i 2}, e_{2}<e_{1}$. Then $x y \in H_{i k}, y x \in H_{i k}$, where $\left\langle e_{i}, e_{1}\right\rangle \approx\left\langle e_{2}, e_{k}\right\rangle$.

As a consequence of the foregoing results we get
Theorem 7. $\mathscr{L}\left(e_{i}\right)=\cup\left\{L^{*}\left(e_{k}\right) / e_{k} \leqq e_{i}\right\}$ is a subsemigroup of S containing the two-sieded identity e_{i}.

The statements concerning $R^{*}\left(e_{i}\right)=\cup\left\{H_{k i} / e_{k} \leqq e_{i}\right\}$ will be denoted by the sign ${ }^{*}$. They can be obtained similarly as the corresponding statements for $L^{*}\left(e_{i}\right)$.

Now we consider the multiplication between the elements of $L^{*}\left(e_{i}\right)$ and $R^{*}\left(e_{k}\right)$. Using Theorems 3 and 3^{*} it is easy to prove the following "multiplication rules":

Lemma 11. Let $x \in H_{i j}, y \in H_{t k}$.

1) Let $e_{k} \leqq e_{i}$. Then $x y \in H_{t s}$, where $\left\langle e_{i}, e_{k}\right\rangle \bar{\sim}\left\langle e_{j}, e_{s}\right\rangle$. Further:
a) let $e_{t} \leqq e_{j}$. Then $y x \in H_{s k}$, where $\left\langle e_{j}, e_{t}\right\rangle \approx\left\langle e_{i}, e_{s}\right\rangle$;
b) let $e_{j}\left\langle e_{t}\right.$. Then $y x \in H_{i s}$, where $\left\langle e_{t}, e_{j}\right\rangle \approx\left\langle e_{k}, e_{s}\right\rangle$.
2) Let $e_{i}<e_{k}, e_{t}<e_{j}$. Then $x y \in H_{s j}$, where $\left\langle e_{k}, e_{i}\right\rangle \approx\left\langle e_{t}, e_{s}\right\rangle$ and $y x \in H_{s k}$, where $\left\langle e_{j}, e_{t}\right\rangle \approx\left\langle e_{i}, e_{s}\right\rangle$.
The foregoing results imply the validity of the following Theorem (here we use the notations: \mathbf{B} is the bicyclic semigroup, L, R, H-classes of $J . \mathrm{A}$ Green [4]):

Theorem 8. Let S be a semigroup each left ideal of which contains a unique right identity. If $I(S) \approx \omega^{*}$, then there exists a homomorphism $f: S \rightarrow \mathbf{B}$ with the kernel lier $f=H=L \cap R$ and the image specified by the Construction C desorribed belon.

Construction C.
Let $\mathscr{M}=\left\{M_{\alpha} / \alpha \in \Gamma\right\}$ be a family of sets $M_{\alpha} \bar{\sim} \omega^{*}$ and let $J \approx \omega^{*}$ with the ordering \leqq.
I. [The correspondence $e_{i} \leftrightarrow L\left(e_{i}\right), R\left(e_{i}\right)$ for the largest $e_{i} \in J$ for which $L\left(e_{i}\right) \neq \emptyset$.]
To each $e_{k} \in J$ we associate two elements $L\left(e_{k}\right), R\left(e_{k}\right)$ of \mathscr{M} in the following manner: Let e_{i} be the largest element in J to which we associate $L\left(e_{i}\right) \neq \emptyset$. Then for $e_{t}>e_{i}$ we put $R\left(e_{t}\right)=\emptyset$ and for $R\left(e_{i}\right)$ we take an arbitrary element of \mathscr{M}.
II. [The correspondence $(x, y) \in\left(L\left(e_{i}\right), R\left(e_{i}\right)\right) \leftrightarrow\left(e_{k}, e_{j}\right.$.]

To each element $x \in L\left(e_{i}\right)$ we associate $\alpha_{i} x=e_{k} \leqq e_{i}$ and if $R\left(e_{i}\right) \neq \emptyset$, then to each $y \in R\left(e_{i}\right)$ we associate $\beta_{i} y=e_{s} \leqq e_{i}$, where the following contitions (1-4) are satisfied:

1) $x_{1}, x_{2} \in L\left(e_{i}\right), x_{1}<x_{2}$ in $L\left(e_{i}\right)$ imply $\alpha_{i} x_{1}<\alpha_{i} x_{2}$ in J.
2) For every $x_{1}, x_{2} \in L\left(e_{i}\right)$ there exists an $x_{3} \in L\left(e_{i}\right)$, where $\left\langle\alpha_{i} x_{1}, \alpha_{i} x_{3}\right\rangle \bar{\approx}$ $\simeq\left\langle e_{i}, \alpha_{i} x_{2}\right\rangle$ and for every $y_{1}, y_{2} \in R\left(e_{i}\right)$ there exists some $y_{3} \in R\left(e_{i}\right)$, where $\left\langle\beta_{i} y_{1}, \beta_{i} y_{3}\right\rangle \approx\left\langle e_{i}, \beta_{i} y_{2}\right\rangle$.
3) For every $x \in L\left(e_{i}\right), \alpha_{i} x=e_{k}$ there exists some $y \in R\left(e_{i}\right)$.with $\beta_{i} y=e_{k}$ and for every $y \in R\left(e_{i}\right), \beta_{i} y=e_{s}$ there exists some $x \in L\left(e_{i}\right)$ with $\alpha_{i} x=e_{s}$.
4) For a fixed e_{i} denote the number of elements of $\left\langle e_{i}, e_{k}\right\rangle$ by $d_{k}+1$. Then for every $x \in L\left(e_{i}\right), \alpha_{i} x=e_{k}, y \in R\left(e_{i}\right), \beta_{i} y=e_{s}$ there exist $x^{\prime} \in L\left(e_{i}\right)$, $y^{\prime} \in R\left(e_{i}\right)$ with $\alpha_{i} x^{\prime}=\beta_{i} y^{\prime}=e_{m}$, where $d_{m}=n d$ and d is the greatest common divisor of d_{k} and $d_{s}, n=1,2,3, \ldots$.
The results of the foregoing considerations show that there is possible to choose a correspondence satisfying $1-4$.
III. [The correspondence $e_{k} \leftrightarrow\left(L\left(e_{k}\right), R\left(e_{k}\right)\right)$ for $e_{k}<e_{i}$.]

Let $e_{k}<e_{i}$. Then $L\left(e_{k}\right) \in \mathscr{M}, L\left(e_{k}\right) \neq \emptyset$. If $R\left(e_{i}\right) \neq \emptyset$, then $R\left(e_{k}\right) \in \mathscr{M}, R\left(e_{k}\right) \neq$ $\neq \emptyset$. If $R\left(e_{i}\right)=\emptyset$, then $R\left(e_{k}\right)$ is an arbitrary element of \mathscr{M}.
IV. [The correspondence $(x, y) \in\left(L\left(e_{k}\right), R\left(e_{k}\right)\right) \leftrightarrow\left(e_{s}, e_{t}\right)$ for $e_{k}<e_{i}$.]

To each $x \in L\left(e_{k}\right)$ we associate $\alpha_{k} x=e_{s} \leqq e_{k}$ and if $R\left(e_{i}\right) \neq \emptyset$, to each $y \in R\left(e_{i}\right)$ we associate $\beta_{k} y=e_{t} \leqq e_{k}$ in such a way that the above Condition 1-4 and moreover the following Conditions 5-6 are satisfied:
5) For every $x \in L\left(e_{k}\right), y \in L\left(e_{i}\right)$ there exists $y^{\prime} \in L\left(e_{i}\right)$, where $\left\langle\alpha_{i} y, \alpha_{i} y^{\prime}\right\rangle \simeq$ $\simeq\left\langle e_{k}, \alpha_{k} x\right\rangle$. Analogously for elements of $R\left(e_{k}\right)$ and $R\left(e_{i}\right)$.
6) If there exists $y \in L\left(e_{i}\right)$ with $\alpha_{i} y=e_{t}$, then there exists $x \in L\left(e_{k}\right)$, where $\left\langle e_{i}, e_{t}\right\rangle \approx\left\langle e_{k}, \alpha_{k} x\right\rangle$.
Now, adjoin to every $L\left(e_{i}\right), R\left(e_{i}\right)$ the element e_{i} as its greatest element.
V. [Multiplication in $L\left(e_{i}\right)$.]

We define the multiplication in $L\left(e_{i}\right)$ by the rule: $x_{1} x_{2}=x_{2} x_{1}=x_{3} \in L\left(e_{i}\right)$, where $\left\langle\alpha_{i} x_{1}, \alpha_{i} x_{3}\right\rangle \approx\left\langle e_{i}, \alpha_{i} x_{2}\right\rangle$.
VI. [Multiplication of couples $\in L\left(e_{i}\right), L\left(e_{k}\right) ; e_{k}<e_{i}$.]

We define the multiplication between the elements of $L\left(e_{i}\right), L\left(e_{k}\right), e_{k}<e_{i}$ as follows: Let $x \in L\left(e_{i}\right), \alpha_{i} x=e_{h} ; y \in L\left(e_{k}\right), \alpha_{k} y=e_{j}$, then:
a) $x y \in L\left(e_{k}\right), \alpha_{k}(x y)=e_{t}$, where $\left\langle e_{i}, e_{j}\right\rangle \approx\left\langle e_{h}, e_{t}\right\rangle$;
b1) If $e_{k} \leqq e_{h} \leqq e_{i}$, then $y x \in L\left(e_{t}\right)$, where $\left\langle e_{h}, e_{k}\right\rangle \approx\left\langle e_{i}, e_{t}\right\rangle$ and $\alpha_{t}(x y)=e_{j}$;
b2) If $e_{h}\left\langle e_{k}\right.$, then $y x \in L\left(e_{i}\right), \alpha_{i}(y x)=e_{t}$, where $\left\langle e_{k}, e_{h}\right\rangle \approx\left\langle e_{j}, e_{t}\right\rangle$.
VII. [The "dual multiplication".]

We define the multiplication in $R\left(e_{i}\right)$ dually to that in $L\left(e_{i}\right)$.
Next we define the multiplication between the elements of $R\left(e_{i}\right)$ and $R\left(e_{k}\right)$, $e_{k}<e_{i}$ as follows: Let $x \in R\left(e_{i}\right), \beta_{i} x=e_{h} ; y \in R\left(e_{k}\right), \beta_{k} y=e_{j}$; then:
a) $y x \in R\left(e_{k}\right), \beta_{k}(y x)=e_{t}$, where $\left\langle e_{i}, e_{j}\right\rangle \approx\left\langle e_{h}, e_{t}\right\rangle$;
b1) If $e_{k} \leqq e_{h} \leqq e_{i}$, then $x y \in R\left(e_{t}\right)$, where $\left\langle e_{i}, e_{t}\right\rangle \approx\left\langle e_{h}, e_{k},\right\rangle \beta_{t}(x y)=e_{j}$;
b2) If $e_{h}<e_{k}$, then $x y \in R\left(e_{i}\right)$ and $\beta_{i}(x y)=e_{t}$, where $\left\langle e_{k}, e_{h}\right\rangle \approx\left\langle e_{j}, e_{t}\right\rangle$.
VIII. [Multiplication of couples $\in L\left(e_{i}\right), R\left(e_{k}\right)$.]

We define the multiplication between the elements of $L\left(e_{i}\right)$ and $R\left(e_{k}\right)$ as follows:
Let $x \in L\left(e_{i}\right), \alpha_{i} x=e_{j} ; y \in R\left(e_{k}\right), \beta_{k} y=e_{h}$.
A. If $e_{k} \leqq e_{i}$, we define:
a) $x y \in L\left(e_{h}\right), \alpha_{h}(x y)=e_{s}$, where $\left\langle e_{i}, e_{k}\right\rangle \approx\left\langle e_{j}, e_{s}\right\rangle$;
b1) If $e_{h} \leqq e_{j}$, then $y x \in R\left(e_{k}\right), \beta_{k}(x y)=e_{t}$, where $\left\langle e_{j}, e_{h}\right\rangle \approx\left\langle e_{i}, e_{t}\right\rangle$;
b2) If $e_{j}<e_{h}$, then $y x \in L\left(e_{i}\right), \alpha_{i}(y x)=e_{t}$, where $\left\langle e_{h}, e_{j}\right\rangle \approx\left\langle e_{k}, e_{t}\right\rangle$.
B. If $e_{i}<e_{k}$, we define:
a) $x y \in R\left(e_{j}\right), \beta_{j}(x y)=e_{s}$, where $\left\langle e_{k}, e_{i}\right\rangle \approx\left\langle e_{h}, e_{s}\right\rangle$;
b1) If $e_{h}\left\langle e_{j}\right.$, then $y x \in R\left(e_{k}\right), \beta_{k}(x y)=e_{t}$, where $\left\langle e_{j}, e_{h}\right\rangle \approx\left\langle e_{i}, e_{t}\right\rangle$;
b2) If $e_{j} \leqq e_{h}$, then $y x \in L\left(e_{i}\right), \alpha_{i}(x y)=e_{s}$, where $\left\langle e_{h}, e_{j}\right\rangle \approx\left\langle e_{k}, e_{s}\right\rangle$.
Remark 5. Warne [2] has described all bicyclic subsemigroups of B. The present construction describes (among others) a larger class of subsemigroups of B, namely all those subemigroups, the left ideal of which contains a unique right identity.

Of course, the class of semigroups described above is much larger as the bicyclic semigroup.

Finaly we remark that it clearly follows from the above construction that in this way we obtain all semigroups in which any left ideal contains a unique right identity.

REFERENCES

[1] PETRICH, M.: Semigroups certain of whose subsemigroups have identities. Czechosl. Math. J. 16 (91), 1966, 186-198.
[2] WARNE, R. J.: Homomorphisms of d-simple inverse semigroups with identity. Pacif. J. Math. 14, 1964, 1111-1122
[3] KOLIBIAROVÁ, B.: A note on the structure of some types of semigroups. Mat. Cas. 17, 1967, 131-141.
[4] CLTFFORD, A. H.-PRESTON, G. B.: The algebraic theory of semigroups. Providence 1964 .

Received March 28, 1972

Katedra matematiky a deskriptivnej geometrie
Stavebnej fakulty SVST
Gottwaldovo nám. 2
88420 Bratislava

