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Matematický časopis 19 (1969), No. 4 

INDICATRIX OF BANACH AND A SPACE 
OF CONTINUOUS FUNCTIONS 

PAVEL KOSTYRKO, Bratislava 

I n paper [1] certain spaces of real functions with the Baire type metric 
are considered. I n the present paper we shall establish connection with pa­
per [1]. We shall investigate one class of continuous functions in the space 
Q(T, St;t eT), determined in paper [1], in connection with the indicatrix 
of Banach. 

Let us introduce the definition of the space Q (T, St;teT): Let 0 =# T <= 
<= <1, oo) and let -f- oo be an accumulation point of the set T. For each t eT 
let St

 c Ei = (— oo, -f oo), where each of sets St has two elements at least. 
Then Q (T, St;t <=T) = X St. Hence Q(T, St;teT) is the set of real functions 

teT 

defined on T, where the point f(t) e St is the value of a function / at t. Let us 
define a metric for this set: 

Q(f, g) = 1/inf {t eT :f(t) * g(t)}, if/ 4= g , 

e(f,g) = 0, iff=g. 

By investigating functions with a bounded variation S. Banach established 
a function n(s,f), the so called indicatrix of Banach, which determines the 
number of intervals (the degenerated ones too), from which the set {t : s = f(t)} 
consists. I n the case, where the number of these intervals is not finite we 
put n(s,f) = + oo. 

Let us define a real function n(s,f) on E± X Q (T, St; t eT) as follows: 
If the number of components of the set {t : s = f(t)} (c: <(1, oo)) is equal to 
a finite number a, then we put n(s,f) = a. I n the reverse case we put n(s,f) = 
= + oo. 

I n the following we shall consider the space Q (T, St; t e T) with a special 
choice of sets T and St. We shall assume T = <1, oo) and St = S for each 
t eT, where S is an interval. This space we shall denote by Q. I n the following 
we shall investigate a subspace G of all continuous functions of the space Q. 

Theorem 1. Let C be a subspace of all continuous functions of the space Q. 
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Then the set 

B = {/e o : V V 3 3 f(u) = s ^/(*>)} 
seSi=l M>i v>u 

is a residual set in C. 

Proof . Let s e S. Let us put 

B(s) = {feC: V 3 3 f(u) = s^f(v)}. 
i= l M>i^>M 

Then evidently B(s) = O U G,(tt)> where G,(tf) = {/: 3 /(ti) = 5 -^/(v)} 
i=l w>i ^>w 

(M > 1). 

Lemma 1. TAe set B(s) is dense in C. 
P r o o f of L e m m a 1. We shall show tha t for e ach / 0 e C and e (0 < s < 1) 

there exists gr e i?(s) such tha t g e K(fo, e) = {/: D(/,/o) < «}• We shall define 
the function g as follows: g(t) = /0(£) for t ^ 2/e. Since /0(2/e) e $ there exist 
numbers p, q such that 5, /0(2/e) e (p, q} <= /S. Then we put gr(£) = \(p + q) + 
+ \(q —• p) sin (t + t0) for £ > 2/e, where £0 (0 ^ to < 2n) is determined by 
the condition \(p + q) + \(q — p) sin (2/e + t0) = fo(2\e). This will guarantee 
tha t g is a continuous function in 2/e. From the construction of the function g 
it follows directly tha t g e B(s) and o(g,fo) < e/2 < e. 

Lemma 2. The set B(s) is a (?<? in C. 
P r o o f of L e m m a 2. First we show that the set Gs(u) = {/: 3 f(u) = 

v>u 

= s ^f(v)} (u > 1) is open in C. If g e K(f9 l\v), then K(f, l\v) c Gs(u), 
because for g e K(f, l\v), g(t) = f(t) (t e <1, v}) holds, hence g e C75(^). 

00 

The set B(s) = n U Gs(^) as an intersection of a countable family of open 
i=lu>i 

sets U C7S(̂ ) is a (?<$ in C. 
u">i 

Lemma 3. The set B(s) is residual in C. 
P r o o f of L e m m a 3. According to Theorem 8.4 (see p . 88) of the mono­

graph [3] each Fa set, the complement of which is dense, is a set of the first 
category. From Lemma 1 and Lemma 2 it follows (taking complements) t ha t 
for each s e S the set B(s) is residual. 

Since (according to the assumption) the set S is an interval, then evidently 
the following lemma holds. 

Lemma 4. Let R be a countable dense subset of S, which includes min S and 
max S (if they exist). Then to each s e S — R there are r\, r2 e R such that 
n < s <r2. 
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Let us prove the statement of Theorem 1. Let us form a set B* = n B(r). 

As each of sets B(r) (r e B) is according to Lemma 3 residual and B is countable, 
then B* is residual also. Evidently it is sufficient to prove the inclusion B* <-= B. 

L e t / e B* and s e S — B. From Lemma 4 it follows tha t there exist numbers 
n,r2eB such that n < s < r2. Since feB(ri), for an arbitrary natural 
number i there are the numbers ui, v± (i ^ ui < Vi) such tha t f(ui) = n =>--
=£f(vi). From the condition/ e 2?(r2) there follows the existence of the numbers 
u2, v2 (vi ^ u2 < v2) such that f(u2) = r2 ^f(v2). Then f(ui) < s <f(u2) and 
from the properties of the continuous functions there follows the existence u 
(ui < u < u2) such that f(u) = s. We have shown tha t for each s e 8 — B 
and for each natural i there are the numbers u and v (v = u2) such that i ^ u < 
< v and f(u) = s -^ f(v). If s e B, then the existence of the numbers u, v 
with the required qualities follows from the inclusion B* c: B(s). 

The Theorem is therefore completely proved. 

Theorem 2. L/et the space G and the function n(s, f) be given. Then the set 

A = {feC: V n(s,f) = + 0 0 } 
seS 

is residual in G. 

Proof . The statement of Theorem 2 follows from Theorem 1 and from the 
evident inclusion B c: A. 

R e m a r k . In paper [2] a theorem is proved analogical to Theorem 2, regard­
ing the space (7(0, 1) of all real continuous functions defined on the interval 
<0, 1>. 

Lemma 5. The space G is complete. 
Proof . As the space _Q is complete (see [1], Theorem 4), it is sufficient to 

show tha t the set G is closed in Q. Let fn-> f (fn e C,n = 1, 2, ...) and let 
to E < 1, 00) be arbitrary. If for w > w 0 w e have q(fn, / ) < l/£0, then inf {t : fn(t) -^ 
7^ / (0 ) > ô and there exists d > 0 such tha t for t e <1, to + d) we have f(t) = 
= /«o(0> i- e- ^ n e func t ion / i s continuous at every point Zo- Hence f e C. 

Corollary 1. Let the space C and the function n(s,f) be given. Then the set 

A = {feC: V w(*,/) = + 00} 
seS 

is a set of the second category in C. 

Proof . In a complete space C (Lemma 5) we have every residual set according 
to the well-known Baire Theorem (see [3], p. 80) a set of the second category. 
The set A, which is considered in the statement of the corollary, is according 
to Theorem 2 residual, consequently it is a set of the second category. 

In the following we shall investigate the space Q (T, St) t e T) under the 
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assumption that the set T is countable and for each t eT we have St = S, 
where S( <-= E\) is an arbitrary set. Let us denote this space by Qs. The function 
n(s,f) defined on E\ x Qs denotes evidently the number of points of the set 

Theorem 3. Let the space Qs and the function n(s, f) be given.Then the following 
statements are equivalent: 

(a) the set S is countable, 
(b) the set A = {/G QS : V n(s,f) = -f- 00} is residual in Qs. 

seS 

Proof . (a)-> (b): Let us put 

D = {feQs: V V 3 * = / ( * ) } . 

Let seS and teT. Let us put D(s, t) = {feQs:s= f(t)}. The set D(s, t) 
is open because itfeD(s, t), then K(f, \jt) <= D(s, t). 

00 

Let us put D(s) = n u D(s,t). The set D(s) is evidently a (?<? in .£?£. We 

shall show that D(s) is dense in Qs • For feQs and e > 0 let us define </ e Qs 
as follows: 

g(t)----f(t) tor t < 2/e, 

gr(j) = 5 for t > 2/e . 

Evidently gr G Z)(S) and g e K(f, e). 
According to the above mentioned Theorem of the monograph [3] the set 

D(s) (s e S) is residual and of such a quality is the set D = n D(s) <= A too. 
seS 

(b) -» (a): This implication wall be proved by contradiction. Let the set S be 
uncountable. As for an arbitrary / G QS the setf(T) is countable, A = 0 holds 
and the void set in the complete space Qs (see [1], Theorem 4) is not residual. 

Corollary 2. Let P be the space of all sequences with the Baire metric values 
in the set S (<= Ei). I^et A be the set of all these a = {an}™ G P, for which the set 
{n : an = s} is infinite for each s G S. Then the set A is residual in P if and only 
if the set S is countable. 
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