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Matematický časopis 19 (1969), No. 4 

COMPACTIFICATION OF PRODUCTS 

RODNEY NILLSEN, Bedford Park, South Australia 

INTRODUCTION 

Given a set E, an algebra B of bounded real valued functions on E will 
be called a function algebra if: 

(a) B is closed in the uniform norm. 
(b) B separates the points of E. 
(c) B contains the constant functions. 

Let FT denote the set of all non-zero homomorphisms on B to the real numbers. 
We may regard E as a subset of K" by means of the evaluation homomorphism 
given by each point of E. Then a given/ e B may be extended to E~ by defining 
/ " (w) = V(f)> f ° r WG^ .Then B~ = {/" :feB}m a function algebra on FT . 
Give E~ the weak topology induced by the functions of B~ .FT is completely 
regular in this topology. Also 

(1) E is dense in FT , 
(2) FT is compact, 
(3) B~ consists of all continuous real valued functions on E~ . 

FT will be called the J5-compactification of E. I t is unique, except possibly 
for a homeomorphism which leaves E point wise fixed. We note that the relevant 
properties of E~ may be established without involving the Tychonoff theorem. 
If E is a completely regular space, and B = C(E) is the function algebra of 
all bounded continuous functions on E, then FT is the Stone—Cech compac-
tification ]8.0of.E. 

Consider now a family (Ea)(x^Iof completely regular spaces such that X E^ 
ocel 

is infinite for each ao e I. I n this situation, Glicksberg [3] has proved 

Theorem A. X Ea is pseudocompact if and only if /3(X F7a) = X (PEa). 
a e l <xel xel 

Motivated by this theorem, our discussion firstly centres on the following 
question: If (K a) a e I is a given family of sets and Ba is a function algebra onF/a, 
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let Ex be the i^-compactification of Ea. Let E = X i?*. Is there a function 

algebra B on E such that if E~ is the i?-compactification of E, then E~ = XK£ ? 
ocel 

This question is answered in the affirmative by taking for B the closure of 
the tensor product algebra (x) Ba on E. This enables us to obtain a criterion 

ocel 

for the pseudo-compactness of a topological product. A further corollary is 
the Tychonoff theorem. 

Secondly we consider a set E on which a binary operation S is defined. We 
characterise those function algebras B on E such tha t the binary operation S 
on F/ may be extended to one S~ on E~ , is that S~ : E~ x E~ -> F/~ is con
tinuous. Our discussion here shall depend heavily on 

Theorem B. For i = 1,2 let Bi be a function algebra on Et. Let t: Ei^>~ E2 
be a map. Then B% ° t c= B\ if and only if t has a continuous extension t~ , where 
C :E^ -> E% . When this is the case, (fi°t)~ = f% ° C for each / 2 eB±. 

Applications to the cases where (E, S) denotes a semigroup and group and 
to a result of Comfort and Ross, are then considered. 

COMPACTIFICATION OF PRODUCTS 

Let (Ex)xeI be a family of sets and let Ba be a function algebra on Ex . E^ 
shall denote the J5a-compactification of Ex . Bx is the extended algebra. 
Let E = Y.Ea. Given fae Ba, we may regard fa as a function of E by defining 

ocel 

fa(x) = fa(xa), for xeE. Then finite sums of functions of the form/ = fxJx%... 
fXa, clearly form an algebra A on E. We write A = ® Ba and it is the (tensor) 

ocel 

product algebra on E. We let B be the uniform closure of A. Write B = ® Ba 
ocel 

is the closed (tensor) product algebra on E. B is obviously a function algebra 
onE, and the £-compactification of E is denoted by E~ . 

Lemma 1. There is a bisection from E~ onto X E^ . 
ocel 

Proof . Let veXEx . tpx is a non-zero homomorphism on Ba. If feA 
ocel 

write f=*tihJ«i2...LikW. Then define (a(V)) (/) - 5JU Vma (/«,) . . . W o 
/«<*(«>)• aM i s t n e n w e ^ defined as a function on A. In fact, a(ip) is a non-
-zero homomorphism on A with the additional property that / > 0 implies 
{<*(V>)) ( / ) > °. U follows that 

l(*(v))(f)l < | | / | | f o r a l l / G ^ . 

lifeB, choose (fn)eA such that \\f — fn\\ -+ ° • T h e n 
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Mw))(fn) - (o(f))(fm)\ < H/., -fm\\ -> 0 

a s m , w -> oo. We may now define 

(<r(v))(f) = Km («(?))(/,) • 
rc-*oo 

I t is immediately seen that a(\p)f e E • 
Conversely, if tp eE~ , we define r(y) E X Ex . For fa e Ba, let 

ctel 

(r(w)Uh) = V(/«) • 

or and r are bijections because we notice that ar and ra are the identities on E~ 
and X Ex , respectively. 

ctel 

Lemma 2. The weak topology on E = XEa generated by B = ~® Ba is the 
acel ael 

product topology. 

Proof . Let U be an open set in E under the product topology. Then there 
is an open set (in the product topology) F g P where V = X Va, where Va 

ctel 

is open in Ea and Va = Ea for all but a finite number of a. Choose a\, oc-2, ..., 
ane I so that Va cz Ea implies oc = OCJ for some j , 1 < j < n. We may then 

choose fXJ e BXJ such that 

{xXJ : xXj GEXJ and FXj(xXJ) * 0} c VXJ . 

Let / = / a i / a a . . . / a n . Then {x : x e E and f(x) + 0} c V c U. Since / e £ , 
the weak topology generated by B is finer than the product topology. 

On the other hand, each / e A is seen to be continuous in the product topo
logy. Hence this statement holds for each feB. I t follows tha t the weak 
topology is coarser than the product topology. Hence the result. 

Lemma 1 shows that we may identify the sets E~ and X Ex . This is what 
ctel 

we do in future. Then B~ and (x) Bx are function algebras on E~ = XEX . 
ctel <xel 

Lemma 3. B~ = (g) Bx . 
ctel 

Proof. Letf=-.^fxJ^..fxtKweA. 
Let rp e E . Then 

f (W) = V>(f) = Ч>Qifat1f*tш'--f«i*J 
1 

n л 

= 2/«n (fccj'"^^ 
1 
n 

/ a ť l 

a ť l ra . i / '"Jctцew ra . f c 0 ) / 
1 

= (2/«;-0(v)-
i 
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s o f = s f f2ix f2i2. • • f«ik(j) •
I n t h i s w a y w e h a v e A~ = ® B~« -

ocel 

Now if/ e B chose (gw) e A such that | |/ — gn\\ < 1/n. Then |l/ — g^ || ^ 1/w, 

so t h a t / " is in the closure of A~ = (x) F£ . Hence FT c p a
A , and the reverse 

ael ae l 

inclusion is clear 
Lemma 2 and Lemma 3 combine to give 
Lemma 4. As topological spaces, FT = X E~ . 

ael 

Theorem 1. Le£ (^x)aei oe a family of sets and let Ba be a function algebra 
on Ea with Ba-compactification E\\ . Let E = X Ea and let B = ® Ba be the 

ael ae l 

closed (tensor) product algebra on E. Let B± be a function algebra on E with 
Bi-compactification E± . Then E± = X E\\ if and only if B\ = B = (x) Ba. 

ocel a e l 

Proof . If B± = B, Lemma 4 gives the result. Conversely, E± =XE~ 
ae l 

implies B± = B" , by Lemma 4. Hence B\ = B. 
Now let (I£a)a6l be a family of completely regular spaces, and let our function 

algebra Ba be C(Ea). Then the I?a-compactification K£ is simply the Stone-Cech 
compactification $Ea of Ea. By Glicksberg's theorem (see introduction) we 
may deduce 

Theorem 2. If X Ea is infinite for each OLQGI we have: E = Y.Eais a pseudo-
a^a 0 ae l 
ael ___ 

-compact if and only if C(E) = (x) C(Ea). 
ael 

For the case where the index set I consists of two elements, we state Theo
rem 2 as follows: 

Let Ei and E% be infinite completely regular spaces. Let E = E± x E<L. 
Then E = E\ X E^ is pseudo-compact if and only if for each / e C(E) and 
e > 0, there exist / i , / 2 , . . . , fn e C(E\) and gi, g%, ..., gn e C(E2) such tha t 

Wf-pi9i\\<e-

Lemma 4 also enables us to prove the 
TychonorT Theorem. The product of compact spaces is compact. 
For in Lemma 4 let Ea be compact. Then f$Ea = Ea and we have E~ = 

— X jftF/a = X Ea and is compact. 
ael ael 

COMPACTIFICATION OF GROUPOIDS 

Here (E, S) shall denote a groupoid i. e., E is a set and S : E X E ^ E is 
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a map. B is a function algebra on E and FT is the resulting .B-compactification. 
We define the triple (E, S, B) to be extendible if and only if B ° S c B ® B. 
When this is the case, S is continuous in the l?-topoIogy on E. 

Theorem 3. E~ can be given the stricture of a topological groupoid such that 
(E, S) is a topological subgroupoid if and only if (E, S, B) is extendible. 

Proof . If (E,S,B) is extendible, Theorems B and 2 show tha t S has a 
continuous extension S~ , where S~ : E~ x E~ -> E~ . Theorems B and 2 also 
imply the converse. 

When (E, S, B) is extendible, S~ :E~ x E~ -> FT will denote the unique 
continuous extension of S : E X E-+ E given by Theorem 3. 

Theorem 4. Let (E, S, B) be extendible. Then ihe fol^cing hold 
(1) If (E, S) is associative, so too is (E~ , S~ ) . 
(2) If (E, S) is comm^dative, so too is (E~ , S~ ) . 
(3) / / (E, S) has a left identity element e, e is also a left identity for (E~ ,S"). 

Similarly for a right identity. 
Proof . We prove (1), the others being analogous. Consider the maps \p\ 

and y)2 from FT X FT x FT given by ipi(x, y, z) = S~ (S~ (x, y), z) and 
ipz(x, y, z) = S~ (x, S~ (y, z)). Then ^i and \p<i are clearly continuous, so that 
{(x, y, z) : ipi(x, y, z) = ip%(x, y, z)} is a closed set containing E X E x E and 
hence is the whole of FT x FT X E~ . 

Theorem 5. Let (E, S) be a semigroup and suppose that (E, S, B) is extend
ible. Then the groupoid (E~ , S~ ) is also a semigroup. 

Proof . Theorems 3 and 4 (1). 

Lemma 5. Suppose that (E, S, B) is extendible and that (E, S) has an iden
tity e. Define I = {x : x eE~ and there exists x-1 e FT such that S~ (x, x*1) = e}. 
Then I is closed. 

Proof . If J is not closed, choose zeE" — I such tha t a net (za) of elements 
of / converges to z. E~ is compact, so the net (z'1) has a subnet converging 
to a point yeE~ . (Kelley [5], p. 136). Hence we may assume that (z^) converges 
to z and (z'1) converges to y. Continuity of S~ now gives : S~ (za, z'1) con
verges to S~ (z, y) as S~ (za, z"1) = e for each a, we have t h a t # ~ (z, y) = e, 
a contradiction since z e I. 

Theorem 6. Suppose that (E, S) is a group. Then E~ can be given the structure 
of a topological group of which (E, S) is a dense subgro^cp if and only if (E, S, B) 
is extendible. 

Proof . If FT is such a group, Theorem 3 gives that (E, S, B) is extendible. 
Conversely, apply theorem 3 to deduce that the groupoid structure of (E, S) 
can be extended to (FT , S~ ). (FT , S~ ) is a semigroup by Theorem 5. Theorem 4 

320 



(3) now implies that the identity for (E, S) is an identity for (E" , S" ). Lemma 5 
now shows that each element of E~ has a right inverse. We deduce that (E~ , S~ ) 
is a group. 

To complete the proof we need only show that inversion is continuous. 
To do this, let (xa) be a net in E~ which converges to the point xeE~ . Then 
some subnet of (x'1) converges to a point y e FT . As S~ is continuous, we 
deduce t h a t S " (x, y) = e. i. e., y = x~x. Since inverses are unique, (x'1) has 
exactly one cluster point in E~ . Together with the fact that any net in E~ has 
a convergent subnet, this implies that (x'1) converges to x~x. 

Theorem 7. Let (E, S) be a group. For i = 1,2 let Bt be a function algebra 
on E such that (E, S, B%) is extendible. Then the Bi-topology coincides with 
the Bz-topology if and only if B± = B2. 

Proof . If Bi = B2 we have the result. Convesely we apply theorem 6, 
(E± , Si ) and (E% , S% ) respectively denote the group compactifications of 
(E, S) with respect to B± and B2. Since the B± and B2 topologies coincide 
on E, we see that in this topology E is a dense topological subgroup of each 
of the compact groups E± and E% . Being compact, we see that G± and G% 
are completions of G in the two sided (or left, or right) uniformity. By the 
uniqueness theorem for the completion of uniform spaces, there is a uniform 
isomorphism tp from E^ onto E% which leaves E pointwise fixed. (Kelley [5], 
p. 197). Hence B% ° y) ~\ B± . i. e., if/2 e B2 there i s / i G B± such t h a t / ^ ° ip = 
— fi • Considering restrictions to E, we h a v e / i = / 2 . S o / 2 e B±. i. e., B2 c B\ 
and likewise B± c B2. 

Theorem 8. Suppose that (E, S) is a group and that (E, S, B) is extendible. 
Then in the B-topology on E, either E is compact or E is not locally compact. 

Proof . By Theorem 6, E is a dense subgroup of the compact group FT . 
By theorem 5.11 (p. 35) of Hewitt and Ross [4], if E were locally compact 
in the .B-topology, then E would be closed in E~ .E would then be the compact 
group E~ . 

Now suppose that (E, S) denotes a locally compact abelian group. Let r be 
its character group. We define a complex valued function / on E to be almost 
periodic if, to each e > 0, there correspond Ai, . . . , Xn ~ -T and complex num-

n 

bers C±, ..., Cn such tha t \\f — ~? CifaW < e. AP(E) shall denote the set 
£-1 

(algebra) of all almost periodic functions on E. We define B to consist of those 
functions in AP(E) whose values are real. B is easily seen to be a function 
algebra on E. (r separates points of E). We also see tha t AP(E) = {/ + ig : / , 
9 6 B}. 
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Lemma 6. AP(E) ° S c AP(E) (x) AP(E). 

Proof . Let h e AP(E), e > 0. Choose fa, . . . , ln e T and d , . . . , Cn such 
n 

tha t ||7& —• 2 C* *̂ll < e- Then for x,y EE and all i we have fa(S(x, y)) = 

n 

= Af(x) ^(i/). Hence for all z, y eEweh&ve \h(S(x, y)) — ^ Ct fa(x) fa(y)\ < £. 

This gives h°Se AP(E) ® AP(E), as T c ^P(F7). Hence the result. 

Theorem 9. (E, S, B) is extendible. 

Proof . Let feB. Let s > 0 and use Lemma 6 to choose / i , ...,fn and 
n 

ffi, . . . , flr» e AP(.E) such tha t | | / ° £ — 2 / * (7*11 < e- L e t fk=Pk+ iqk and 
&=i 

gk = pk + i% where pk, pk, qk, qk e B. We then deduce that \\f°S — 
n 

— 2 (VkVk — AM*).. < e- i- e., f° S e B (§ B, true for each / G 5 . Hence 
&=i 

B ° S c; B (g) B, as required. 
In view of Theorem 6, we could express Theorem 9 by saying that a locally 

compact abelian group E has a Bohr compactification, which is obtained by 
compactifying E using the real valued almost periodic functions. Theorem 8 
then indicates that if E is not compact, it is not locally compact in the weak 
topology inherited from the almost periodic functions, although it is a topologi
cal group in this topology. 

Our discussion now enables us to give an alternative proof of a result of 
Comfort and Ross. We consider a completely regular topological group G 
and use 

Lemma 7. (Comfort and Boss [1], p. 494). / / G is pseudocompact, so too is 
the product group G X G. 

Theorem 10. (Comfort and Boss [1], p. 494). If G is pseudocompact, then 
the Stone-Cech compactification ($G of G admits a compact topological group 
structure relative to which G is a dense subgroup. 

Proof . By Theorem 6, we need only show that (G, S, C(G)) is extendible, 
S being the group operation. If G is finite there is nothing to prove. If G is 
infinite, Theorem 2 and Lemma 7 give C(G) ° S c: C(G) ® C(G) and we have 
the result. 

Using the fact that a continuous real valued function on a compact space 
is uniformly continuous, Theorem 10 readily implies that a continuous real 
valued function / on a pseudocompact group G is such that {fa : a e G} is 
precompact in the uniform metric. 
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