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LINEAR INDEPENDENCE IN COMMUTATIVE SEMIGROUPS 

A. IWANIK-J. PLONKA 

The following definition of linear independence in abelian groups is known: 
The elements a±, ...,an (ai •=£• 1 for i = I, ..., n) are linearly independent 
if for any integers Jc±, ..., Jcn the implication 

a\x ... ak
n
n = 1 => a\l = ... = afn = 1 

holds [2]. In this paper we define a notion of linear independence in commu
tative semigroups and we examine some properties of linearly independent 
sets. In general we use the notation of Clifford and Preston [1]. 

§ i 

Let S be a commutative semigroup with identity 1. We shall write a0 = 1 
for each a e S. We say that the set A ^ S is linearly independent if for any 
different elements a\, ..., an of A and arbitrary Jc%, mt ^ 0 the implication 

nk\ fJcn „mi ^mn ki nm\ 
a l • • • an — a l • • • an => ai — ai 

holds for every i = 1, . . . , n. If S has no identity, then we say that a subset 
of S is linearly independent in S if it is linearly independent in S1. 

The linear independence in a semigroup S with identity 1 coincides with 
the O-independence (see e.g. [3]) in the monoid (S, ', 1). 

The following properties of independent sets are simple consequences 
of the definition 

(i) every one-element set is linearly independent, 
(ii) every subset of a linearly independent set is linearly independent, 

(iii) if A is linearly independent, then also is A u {1}, 
(iv) if a two-element set {a, b} is linearly independent, then (a, 1> n (b, 1> = 

(v) if S is a subsemigroup of a commutative semigroup T with identity 1, 
then a subset A of S is linearly independent in T iff it is linearly inde
pendent in S u {I}-

Observe that if S is an abelian group, then a set A with 1 ^ A c S is linearly 
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independent in S iff it is linearly independent in S in a group S3iis3. Thus, 
by (v) we obtain 

(vi) if (p : S -> G is an isomorphism of a semigroup S into an abelian group G, 
then a set 4 c S , \ £ A, is linearly independent in S iff (p(A) is linearly 
independent in C i n a group sense. 

In particular, in the multiplicative semigroup of natural numbers, two 
numbers a, b > 1 are linearly independent iff log a/log b is not a rational 
number. 

We can see that a subset A of a commutative semigroup is linearly inde
pendent if each element of the semigroup (Ay has a unique factorization 
as a product of elements from the ssmigroups <a>, a e A. We shall formulate 
this assertion more precisely. 

Let {Si: i e 1} be a family of commutative semigroups with identity elements 
et e St. Let ^*Si be a subdirect product of the Si consisting of all the elements 
(st) of Y\$i with at most a finite number of components Si # e*. The mapping 
q^(s) = (s*), where Si = e$ for i =fi j and ŝ  = 5, is a natural embedding of #/ 
into 2*$* • The semigroup 2*$* is generated by its subsemigroups (pj(Sj), j el. 
I t is easy to see that the semigroup 2*$* is isomorphic to the direct sum of 
the Si, amalgamating the identity semigroup {1} (cf. [1] vol. 2, pp. 157, 161). 
If Si are abelian groups, then 2*$* is their direct sum. 

Obs3rve that for each subsst A of a commutative semigroup with identity 
there exists a natural homomorphism 99 of y*<a, 1> onto (A, 1> determined by 

aeA 

(p((sa)) = sttl • •. San, where Sj, = 1 for a $ {ai, . . . , an}. Now the following lemma 
is evident: 

Lemma 1. Let S be a commutative semigroup with identity. A subset A of S 
is linearly independent iff the natural homomorphism of 2*<a> 1> onto (A, 1> 

aeA 

is an isomorphism. 
E.g. in the multiplicative semigroup of natural numbers N the set of primes P 

is linearly independent and N = (P, 1> ^ 2*^-P> 1>. 
aeA 

§2 
A linearly independent sst of generators of a commutative semigroup S 

(if it exists) will be called a basis of S. A basis 5 of S is an essentially minimal 
set of generators in the ssnss that if b e B and 6 -7-- 1, then <F>\{6}> ^ $. 
Indeed, if <5\{b}> = S, then & = b*1 ...&*" for some 6 ^ 5 , bt ^ b, kt > 1, 
whence bj . . . &°& = 6*1 . . . b\nb° and 6 = 1 . Analogously, B is an essentially 
maximal linearly independent set in the sense that if a £ B and a ^ l , then 
the set B u {a} is no more linearly independent. 

E x a m p l e . Let $ be a Gaussian semigroup (see e.g. [4], p . 115) and let 
us write a~b if a and b are associates, i.e. a\b and b\a . ^ is a congruence 
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and SI ~ is a Gaussian semigroup in which every non-indentity 
element has a unique factorization into irreducible elements. Hence, 
the irreducible elements together with the identity element form a basis of S/~. 

I t is worth to underline that (in the group case) the notion of basis used 
in the group theory (see e.g. [2]) substantially differs from the notion of basis 
in our semigroup S3nss, although the notions of linear independence are in both 
senses ess3ntially the same. The difference is caused by the different generating 
in the two sensss. E.g. the infinite cyclic group has not any basis in our semi
group senss. Moreover, it cannot be embedded in any semigroup with a basis. 
Indeed, suppose that an infinite cyclic group generated by a is a subgroup 
of a semigroup with a basis B. Then a = b\' ... bkn and a - 1 = cf* ... c™r 

for some bi, a EB and ki, m, ^ 1. The equality aa~x = (aa - 1)2 implies that 
all bi, ..., bn have finite periods, which is a contradiction. From this fact 
and from Lemma 1 we obtain: 

(vii) an abelian group has a basis (in our semigroup sense) iff it is a direct 
sum of finite cyclic groups. 

In particular, by the Frobenius and Stickelberger theorem every finite 
abelian group has a basis in our s3migroup sense. 

The following two theorems describe some semigroup theoretical properties 
of a semigroup with a basis. 

I t is known that every commutative semigroup S can be decomposed into 
a semilattice of its Archimedean components. This decomposition is unique 
and the semilattice forms a maximal semilattice homomorphic image of S [1]. 
We shall describe this decomposition in the case when S has a basis. 

Let B be a, basis of a commutative semigroup S. Denote by Bo the set of 
all b G B with bn = 1 for some n ^ 1. From Lemma 1 it follows that <£0> 
is a direct sum of finite cyclic groups. Let si denote the family of all finite 
subsets of B\Bo. Let us define for arbitrary A = {bi, . . . , bn) e stf a semi
group SA consisting of all elements of the form bob*1 . . . bk

n
n, where bo G (Bo) 

and ki ^ 1 for i = 1, . . . , n (take SA = <I?o> if A = 0 and do not write b0 

if Bo = 0). Observe that the semigroups SA, A e si are mutually disjoint. 
Indeed, if bob^1 ...bl

n
n = CoC™1 . . . c™r and, say, bi £ {ci, . . . , cr}, then bob*1 . . . 

. . . hkn = cobjc^1 . . . c™r => b\x = 1 which is a contradiction. I t is easy to see 
that SASC £= SAUC and that S = KJSA> Observe now that SA are Archimedean 
semigroups. In fact, let b = bob*1 ... b*n and c = Cob™1 ... b™n with b0, c0 G <2?0> 
and ki,mi ^ 1. If b0

x and CQ1 are inverses of b0 and c0 in Bo, then bboX|cr 

for r sufficiently large. Hence b|cr and analogously c|b? for q sufficiently large. 
Thus, we have the following theorem which is a generalization of a known fact 
for the multiplicative semigroup of natural numbers: 

Theorem 1. Let S be a commutative semigroup with a basis B, let Bo == 
-= {b e B: bn = 1 for some n ^ 1} and let s/ be the family of all finite subsets 

335 



of B \Bo. Then the family {SA : A e s/} forms the decomposition of S into the 
semilattice (s4', \j) of its Archimedean components. 

From the theorem and from the uniqueness of the decomposition it follows 
that an Archimedean semigroup has a basis iff it is a cyclic semigroup or 
a direct sum of finite cyclic groups (Bo = 0 and \B \Bo\ = 1 or Bo = B). 

The next theorem characterizes these commutative semigroups with a basis 
which have a kernel, i.e. a minimal ideal. 

Theorem 2. Let S be a commutative semigroup with a basis B. S has a kernel 
iff S is periodic and has finitely many idempotents. 

Proof. Necessity. Let K be a kernel and suppose that b e B has an infinite 
period. For some c e l w e have cb e K. Ket cb = bnbmi . . . bmn with bt -^ b, 
bi e B for i = 1, ..., n. Now taking only these elements deK for which 
db = bma\1 ...a\T with m>n,ai ^b and ai e B, we would obtain a proper subideal 
of K. Hence, S is periodic. Suppose that S has infinitely many idempotents. 
Then the set B \B0 is infinite. Let k be the least natural number for which 
there is an element c e K with k elements from B \Bo in its representation. 
Taking only these elements of K for which at least k -\- 1 elements from B \B0 

are needed, we would obtain a proper subideal of K. 
Sufficiency. We can assume that 1 eS. The set B \B0 is finite, say, B \B0 = 

= {bi, . . . , bn}. Denote by G\ the maximal subgroup of <bi>. Let K be the set 
of these elements from 2*( a > 1> which have their brth components in Gi, 

a~-B_ 

i = \9 . . . 9 n. Observe that K is a kernel. In fact it is an ideal and a subgroup 
of _]*(a, 1>. By Lemma 1 the last semigroup is isomorphic to S, which ends 

aeB 

the proof. 
§ 3 

Let Si be an equational class of commutative semigroups. For each cardinal 
number n ^ 1 we denote by F(n, Si) the free semigroup of Si generated 
by n free generators. 

Theorem 3. Let Si be a non-trivial equational class of commutative semigroups. 
The set of free generators of F(n, Si) is a basis of F(n, Si) for each n ^ I iff Si 
is determined by an equality xk = xm for some k, m ^ 1. 

Proof. Necessity. If an equality xl± ... x*n = xmi ... xmr with kt, m, ^ 0 
holds in Si, then we can assume n = r and we have afl = ami, where at are 
free generators of F(n, Si), % < n , i = l , . . . , w . Hence the equalities xki = xmi 

i = 1, ...,n hold in Si. I t is easy to see that any collection of equalities of the 
last form is equivalent tc a single equality xk = xm for some k, m ^ 1. 

Sufficiency. If 51 is determined by an equality xk = xm for some k, m ^ 1, 
then it is easy to see that F^n, Si) = 2*< a * ' *>> where {at: i e 1} is the set 

iel 

of free generators. Now by Lemma 1 the proof is complete. 
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In particular, the class of semilattices satisfies the assumptions of Theorem 3 
(k = 2, m = 1). I t is easy to verify that a semilattice has a basis iff it is a free 
semilattice or a free semilattice with identity. 

Let S be a commutative semigroup with a basis B. Each a E S can be 
represented in a form a = b™1 ...b™r with bi EB, mi ^ 1, i = I, ..., r. 
If ai, ..., an e S, then we can write ai = b™n ... b™ir with bi e B and mu > 0, 
where r and mu are minimal such integers. Each ai is now determined by 
a finite sequence (mu, ..., ra$r) of non-negative integers and the set {ai, ..., an} 
is determined by a matrix (mu) with i = 1, ..., n and j = 1, ..., r. We may 
identify the element at with the i-th row of the matrix. 

Theorem 4. Let S be a semigroup with a basis B and let A = {a±, ..., an} 
be a finite subset of S determined by a matrix (mu) with i = I, ..., n and j = 
= l,...,r. 

(a) If S is periodic and 1 ^ (Ay, then the set A is linearly independent iff 
a submatrix (m{j), i,j = I, ...,n, with m^ = 0 iff i ^j can be obtained by a per
mutation of rows and columns of the matrix. 

(b) / / each element of S has an infinite period, then the set A is linearly in
dependent iff the matrix has rank n. 

Proof, (a) We shall prove first that if a\, ...,an are linearly independent, 
then 

(*) there are no disjoint non-empty sets A, C of rows of the matrix such 
that the sets A* = {j: mu ^ 0 for some a% E A}, C* = {j: mu 7-= 0 for some 
at E C} were comparable by inclusion. 

In fact, suppos3 that A* ^ C* and A = {a±, ..., ak}, C = {ajc+i, ..., an}. 
If a denotes the idempotent of (bj) then (a± ... aic)v = j~J ej, (a^+i . . . an)Q = 

jeA* 

= Y\ej for some p, q > 0. Therefore, (ai ... a]c)^(ak+i ... any = (ak+i ... an)v 
jcC* 

and a\ = ... = a\ = I, which is a contradiction. I t can be easily proved 
by induction that (*) implies the existence of a required submatrix (m^). This, 
in turn, implies linear independence of the set A. 

(b) Observe that by Lemma 1 there exists an isomorphism 99 of the semi
group (b\, ..., bry into the additive group R of real numbers (e.g. cp may 
be determined by the mapping bi -^logpt, where pi are different primes, 
i = I, ...,r). The elements a±, ..., an are linearly independent iff the elements 
(p(a±), ..., cp(an) are linearly independent as the vectors of the linear space R 
over the field of rational nLimbers. Using the well-known results about linear 
spaces we get the proof. 

In particular, Theorem 4 characterizes linearly independent sets in semi
groups F(n, 51), where n ^ 2 and £fc is determined by an equality xk = xm. 
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§4 

Now we shall outline some connections between linear and algebraic inde
pendence (see [5]). 

(viii) In a commutative semigroup S with identity^ the algebraic indepen
dence is stronger than the linear one. 

Indeed, if a±, ..., an e S are algebraically independent and a\l ... a\J 

= a™1 . . . afn with, say k\ = ... = kr-± = 0, ki > 0 for i ^ r, and nij > 0 
for j = 1, ..., n, then xKr ... x^n = x™1 . . . xfn for any x±, ..., xn e S. In parti
cular, if Xi = ai and xi = 1 for j -^ i, then we obtain alf = afl for i = I, ..., n. 

Theorem 3 shows that, in general, (viii) is false for semigroups without 
identity. In the converse direction ŵ e have: 

(ix) Let S be a commutative semigroup and let A be its linearly independent 
subset with 1 ^ (Ay. If all elements of A have the same period m such 
that m = GO or the period of each element of S divides m then A 
is algebraic ally independent. 

Indeed, if a\, ..., an e A, a% ^ cij for i ^ j and a\l ... a]n = a™1 ... af.r 

with ki, ?nj ^ I then n = r and a]1 = afl for i = 1, ..., n, whence x1'1 = xm' 
and x\l ... x\n = x™1 ... xfr for any x, x\, ..., xn e S, which proves (ix). 

Let S be a semilattice and let i be a subset of S with 1 $ A. The set A 
is algebraically independent in S iff it is algebraically independent in Sl 

(see e.g. [6]) therefore iff it is linearly independent in S (by (viii) and O'x)). 
A complete characterization of algebraic independence in semilattices is given 
in [6]. If 1 G A then we can consider the set A \{1} which is linearly independent 
iff A. is. Hence we get a characterization of linear independence in semilattices. 
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