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Matematický časopis 17 (1967), No. 2 

ON THE PROJECTIVE TENSOR PRODUCT 
OF VECTOR-VALUED MEASURES 

MILOSLAV DUCHOÍÍ, Bratislava 

1. The aim of this article is to consider the following problem. Let measur
able spaces (S, ST) and (T, ST), locally convex topological vector spaces X 
and Y, and (countably additive) vector-valued measures ju : £P -> X and 
T : « f - > 7 b e given. Let us denote by symbols Sf ® ^~, ST ®a &~ (ST ®<, ST) 
the ring, the cr-ring (the d-ring), respectively, generated by the sets of the form 
E x F, E e Sf, F etT. Let X ® Y denote the projective tensor product 
of the spaces X and Y. We ask under which conditions imposed on the space X 
there exists a vector-valued measure X : ST (x)a SF -> X ® Y such that the 
relation 

<1) X(E xF) = p(E) <g> v(F), EeSf, Fe3T, 

holds. 
We give the following definition. 
A locally convex topological vector space X is called an admissible factor if, 

for any locally convex topological vector space Y and for every vector-valued 
measure /u,: ST -> X and every vector-valued measure v : &~ -> Y, there exists 
a vector-valued measure X : ST ®a ^ -> X 0 Y such that the relation (1) holds. 
(We suppose that S? and 9" are c-algebras.) 

Thus if a vector-valued measure takes its values in an admissible factor, 
we can construct from it and from any other the projective tensor product. 

I t is true that every nuclear locally convex topological vector space is an 
admissible factor. This proposition is proved in [4] in this form: 

Let Sf and IF be a-rings (d-rings). Let X and Y be locally convex topological 
vector spaces and let X be nuclear. Then there exists a unique vector-valued 
measure X : ST (g)a ST (ST ®d &") -> X <g> Y such that (1) holds. 

An adaptation [10] of the example given in [13] provides us with the normed 
spaces X and Y, the bounded bilinear operation z = x o y, x, y e Y, z e X, 
such that the vector-valued measure JLL : Sf -> Y (Sf is the cr-algebra of all subsets 
•of the set of nonnegative integers) can be defined, for which the function X, 
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X(E xF) = ii(E)oii(F)eX,E,Fe^, extended on the algebra & ® ST 
by an additivity, is not bounded on Sf (x) £f. 

Since every vector-valued measure defined on a c/-algebra is bounded (see-
[5, IV. 10. 2] or [6, Theorem 2.6]), we can see from the mentioned example 
that the question if a locally convex topological vector space is an admissible 
factor or not, is reasonable. 

I t is known that it is possible to divide all in functional analysis occurring; 
concrete locally convex topological vector spaces (with exception of a few 
cases) into two classes. We have on the one hand the normed spaces that-
belong to the classical part of functional analysis and on the other we have 
the nuclear locally convex topological vector spaces (see e. g. [14]). Both. 
classes have the trivial intersection because only the finite-dimensional locally-
convex spaces are both normable and nuclear. I t follows that we must search 
for admissible factors in the class of the non-nuclear locally convex topological 
vector spaces. 

In this paper we give some admissible factors. All given admissible factors, 
have ,,sequence" character. 

2. Let X and Y be locally convex topological vector (abbreviated locally 
convex) spaces. Let the topology of the space X be determined by the system 
of the seminorms {| | a } a G ^ and the topology of the space Y by the system 
of the seminorms {| \p}fieB. X' and Y' are the dual spaces for X and Yy 

respectively. For x' e X' we denote \\x'\\a = sup {|<#, x')\ : \x\a ^ 1} for every 
a G A. Similarly for the space Y. 

The topology defined on the algebraic tensor product X (x) Y of the spaces X 
and Y by the system of the seminorms 

(2) \^i®yi\(x,^eAxB = ^'l\Moc\vi\0, {oc,p)eAxB, 
i=l i=l n 

where the infimum is taken over all expressions 2 ut ® vi > which belong tO-
ft i=l 

the same class as 2 xi ® Vi> -s called the projective tensor topology (denoted 
i=l 

by ®). The completion of the locally convex space X ® Y under this topology 
is the projective tensor product X <g> Y of the spaces X and Y. (These notions 
are introduced in [7], [12], [2], [14]). 

3. To start with some propositions. 
Let us remark that there exists only one vector-valued measure X : £? ®o^~ -> 

- > X c|) Y such that the relation (1) holds (if it exists). Thus the problem is 
only as regards its existence. 

Proposition 1. Let X be an admissible factor and Y any locally convex space* 
Let £f and 2T be o-rings (d-rings) and /u : £? -> X and v : ST -> Y be vector-
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valued measures. Then there exists a unique vector-valued measure 
X : ST ®a F(S? ®6 3~) -> X ® Y such that the relation (1) holds. 

Proof . Let Sf and &~ be cr-rings. For every oceA and f$ e B there exist 
the sets Sa e Sf and Tfi e ST such that \JU(E — /S«)|a = 0 for all E e Sf and 
\v(F — Tp)\p = 0 for all F e$~ ([9], Theorem 3.1). Evidently, we can now 
proceed as in the case of or-algebras. 

If Sf and y are d-rings, then to every set G ~ Sf ®<5 SF there exist the sets 
E e Sf and F e ST such that GCE x F. Further, the system of those sets. 
G~Sf ®oST, for which GCE x F,is the a-algebra of the subsets in E X F. 
Again we can proceed as in the case of a-algebras. The proof is terminated. 

I t is known that for any topology (§) on the algebraic tensor product X (x) Y 
we have for ze X ® Y (X (x) Y is the completion of X ® Y under (§)) 

K « , f l ^ VC*)> (*,P)eAxB 

(see [2], IV. §2 (2)). Hence we have immediately 
Proposition 2. Let X be an admissible factor and Y any locally convex space. 

Let Sf and S7~ be a-algebras (a-rings, d-rings) and /LL : Sf -> X, v : ^ -> Y 
vector-valued measures. Then on Sf ®a SF(Sf ®Q 3~) there exists a unique 
vector-valued measure X with values in X (x) Y such that the relation (1) holds. 

Proposition 3. A subspace Xi of an admissible factor is an admissible factor. 
The proof is evident. 

Proposition 4. Let locally convex spaces X and X± be topologically isomorphic. 
If X is an admissible factor, so is X i . 

Proof . Let T : X -> Xi be the topological isomorphism of the space X 
onto the space X i . Then there exists the topological isomorphism U of the 
space X (|) Y onto Xi ® Y such that U(z ®y) = (Tz) ® y for all z e Xy 

yeY. 
T - 1 o \x is the vector-valued measure [5, IV. 10.8] defined on Sf with values, 

in X. (T-i o fi(E) = T-^E)), E e ST). Form the vector-valued measure 
h : SP ®a F -> X <§) Y in order that 

XX(E xF) = T-iop(E) ® v(F). 

Then we take X = U o Xi (i. e. X(G) = U(X±(G)), G e Sf ®a ST) and X takes 
its values in X <§> Y and X(E X F) = fi(E) ® v(F). 

4. 

Theorem 1. A space lx(I) is an admissible factor. 
The space lx(I) is the Banach space of all unconditionally (in this case also 
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absolutely) summable numerical functions [f j , I] defined on an index set I, 
where the norm is 

ll[f«,jjll = 2lf.l-
iel 

Proof . Since [JL is the (countably additive) vector-valued measure defined 
on the c-algebra S? with values in lx(I), thus for every E e Sf the element 
li(E) e n(I) has the form 

p(E) = [£i(E),I], 

i. e. „ components" of the function /J, are the set scalar functions defined on 
the cr-algebra S?, additive, for IJL{E1 U E2) = [^i(E1 U E2), I] = ^(Ei) + p{E2) = 
= [^(Ki), I] + [£t(E2), 7] = [&(F/i) + ii(E2), I],E1nE2 = 0, EuE2e ST, con-
tinuous in an empty set (hence countably additive), for if we have En+i C En, 

oo 

fl En = 0, En e S?, so ||//(-6?w)|| -> 0, n -> oo, means that 

ZmEn)\->0,n^co, 
iel 

i. e. all „components" \t;i(En)\ -> 0, w-> oo, uniformly in i. 
For the sets of the form 

k 

(3) G=\JEtxFi9 
i=l 

where the union in (3) is disjoint and Ei e Sf, Fte 3~', with regard to the 
additivity and the condition (1) we put 

k 

(4) ^{G) = ^lx{Ei)®v{Fi). 
i=l 

I t is easy to see that the function X is in this way unambiguously defined on 
the algebra &> ® 3~ of the sets of the form (3) and is additive (ef. [8] § 36 (8)). 

We must prove that the function X is countably additive and that it can 
be extended to a countably additive function defined on the c-algebra S? ®a ^ 
with values in I1 ex) Y. 

We will show that for every /? e B there exists the finite positive measure mP 
defined on ST ®a F with the property that if mfi(Q) -> 0, then \k(G%->0, 
GeSf®F. 

In proving this Theorem we use the fact that ([2], IV. 3.5 or [14], 7.2.3) 
for every complete locally convex space Y the projective tensor product 
71(7)1 <g> Y can be identified with the complete locally convex space P-(I, Y) 
of all absolutely summable functions [yt, I] with values in Y, where the 
locally convex topology is given by the system of the seminorms 

\\m,r\\0 = Z\yi\i>, P^B. 
iel 
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By the isomorphism H: P(I) <g> Y -> ll(I, Y) we have for G e Sf ® F 

H(X(G)) = H( 2/.(fl,) ® v (Fr) ) = H(f [Sm, I] <g> v(J*,)) = [ | I.^M-PY), / ] • 
r=l r=l r= l 

Since for every i e I the function f, is the scalar measure defined on Sf and v 
is the vector-valued measure, thus by [3] for every i e I there exists one and 
only one vector-valued measure f, X v : -5̂  (x)<y ^" -> F such that f, X 
X v(F7 X F7) = ii(E)v(F), Ee^, F eST. Whence it follows for G e ST ® ^ 

# W ? ) ) = [ i f i ^ r M ^ r ) , -Tl = [Si X r(G), / ] , 
r= l 

where (see e. g. [14], 7.2.3) [f, X *>(£?), / ] is the absolutely summable function 
with values in Y, defined on I, i. e. for every /? e B we have for G e Sf ® &~ 

|[f, X r(G), / ] . / , = 2 1 ^ X v(G)\p < + oo-

It is known that ([5], IV. 10.5, [9], 4.2, [6], 3.2) to every vector-valued measure 
defined on the o*-algebra, hence also for £i X v,i e I, there exists the finite 
positive measure mf, defined on £f (g)a T, for every /? e B such that m?(G) ^ 
^ If* X r(0)|/,, ffey®,^ i e 7 , and further, | | , x r(G)|/i->0, iel, for 
mf(£)->0. 

Let or C 7 be an arbitrary finite subset. Take for every /3 e B the finite sum 
for GeSr®aF 

2 *»?(<?) ̂  2 ™?(s x rj =g 2 Ift x v(s x rju = , 
ieo tea ieo 

= 2 U8)\\v(T)\0 = m i , 2 |ft(S)l ^ kmU . if < + oo (K const.) 
i e a ieo 

Define for every fl e B the set function m# on S? ®a SF by the relation: 

mfi(G) = 2 ™!(Q) = sup ( 2 < ( « ) : <r C / } . 

The function m^ is the finite positive measure [1, I . 10] with this property: 
If mP(G) -> 0, then sup { 2 ™>i(Q) : <x C /} -> 0, i.e. mf (67) -> 0 uniformly 

ieo 

with respect to i, i. e. | | , X v(G)\$ -> 0 also uniformly with respect to i, hence 
also 2 If* X v(G)\p -> 0 for an arbitrary a C I, and thus also 

2\£tXv(G)\fi->0, 
iel 

i.e. for every fieB there holds |[ | , x v{G),I]\0-+O for m/*(O) -> 0. Since, 
as we have remarked, we can identify ^(I) ® F with Z1(7, F), it follows that 
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for every /? e B there exists the finite positive measure m& such that for 
m&(G) -> 0, G e ST ® ^ , we have |A(G)|^-> 0. 

We have proved that X is the set function, continuous in an empty set, 
*on SP (x) ^~, hence countably additive on S? ® ^ , and further it can be 
-extended [9](4.2) to the function X on the cr-algebra SP ®<y $~ such that the 
relation (1) holds, and 1 takes its v values in lx(I) <g> Y, 1(6?) = X(G), t r e ^ g J . 
The proof is completed. 

From Theorem 1 we obtain 

Theorem 2. A Banach space with an absolute basis is an admissible factor. 
A Banach space X has an absolute basis [e\, i E I], where I is an index 

set if every element XEX can be written in the form 

iel 

]|gi|| = 1, and the scalar function [£*, I] is absolutely summable, i.e. 

2 m < + co 
iel 

in the sense as in Theorem 1. In other words, the function [^et, I] with values 
in X is absolutely summable (cf. [2], IV. §1. 6 or [14], 1.4.1). 

Proof . Since [ei, I] is an absolute basis of the space X with ||e«|| = 1, then 
the mapping T: ^ ( / J - ^ X , defined by the formula T[x\, I] = 2 X ^ *s ^ n e 

iel 

topological isomorphism of the space U(I) with the space X (cf. [2], IV. §4 (1)). 
The result now follows from Proposition 4 and Theorem 1. 

'Theorem 3. A perfect space of sequences A is an admissible factor. 
A denotes the space of sequences | w = [£n, n e N] (N is the set of positive 

integers) of complex numbers, where the locally convex topology is defined 
by the system of seminomas A = {a} 

oo 

adw) = 2 i a ^i > *» e y l* 
n=l 

where / l* is the dual space of sequences which consists of all sequences an 
oo 

for which 2 larc£«l < + oo holds for an arbitrary | w EA. We suppose that A 
n=l 

is perfect, i.e. A = ./l**, where/l** is the dual space for/1* (see [11] and [15]). 
Let us remark that for example the space lp, p ^ 1, is the perfect space, other 
•examples can be found in [11]. 

On the space Y we use the system of seminorms B = {/?} (see e.g. [12], 
I I . 4. 13) 

\y\fi = sup {|< y, y' > | , y' E T, \\y% fg 1} 
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Proof . Similarly as in Theorem 1 we have for every E e S? JJ,(E) = gn(E) e 
GA, in, n e N being the scalar measures defined on Sf. 

As in Theorem 1 we define the function X on the algebra SP (x) ST with 
values in A ® Y. 

We must show that X is countably additive on Sf (x) 3~ and it can be extended 
to the function X defined on & ®a 2T, X(G) = X(G), G= ST %3~. 

In proving the Theorem we use the fact that by [16] for every complete 
locally convex space Y the projective tensor product A ® Y can be identified 
with the complete locally convex space A(Y) of all sequences yn, yne Y, 
with the property that all series ^ocnyn, an e A* are absolutely convergent. 
The locally convex topology on A(Y) is defined by the system of the seminorms 

oo 

li/».£.,0 = 2 M \yn\t>> xneA*, fieB. 
w = l 

oo 

T o the element X(G), O e ST ® 3~, G = U Et x Ft, 
t=i 

ЦG) = Zf*{Иi) ® v(Ft) = ^n(Et) ® v(Ft) eЛ®Y, 
г = l ѓ = l 

k 

there corresponds the element ^in(Ei) v(Ft) 6/1(7). By [3] we can write 

k 

Sn Xv(G) = ^n(Ei)v(Fi). 
i=l 

We have 

\Sn X ^ J l i ^ l W lf» Xr(C7) |^< + oo, ZneA*,peB. 
n=l 

For every w e N and every p e B there exists by [9] the finite positive 

measure mPn such that 

mn(G)^\£n x v{G)\fi,GeSr®r, 
•and 

If* Xv(G)\^0, ifmn(G)->0. 

Consider for every ft e B the sequence of measures m?. For an arbitrary 
~an eA* we have 

oo oo oo 

2 te.| m>(G) < 2 K| mi(S X T) = 2 Kl lf» X r(s X T)\$ = 
W = l W = l W = l 

oo oo 

= 2 l<~»l I6.(<S)I |v(r)U = N- " ) l *2 K l ! f -WI = M-1)!.** < + co. 
ra=l n=l 
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Define for an arbitrary ocZ eA* the function m& for every /? e B on Sf ®<- 3~ 

by the formula 
oo 

m̂ (o) = 2KK(G). 
W = l 

The function m& is the finite positive measure defined on SP ($)a fT with the 

property: If m$(G) -> 0, then 

sup \ocn\m^(G) -> 0, i.e. sup \ocn\ |fw x r(O)|/j -> 0, 

hence also 
oo 

2 l«»l I f» X r(G)|„ = |f» X r(G)|-n)/?-> 0 for niP(G) -> 0, G e ST <g> ^ . 
«- i 

I t follows that the function f̂  X ? is countably additive, hence the function X 

is also coutably additive on Sf ® &" and it can be by [9] extended to the 

function X on SP ®a &" with values in A ® Y such that the relation (1) holds. 

The proof is completed. 
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