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M o t e m a t l c k ý časopis 23 {1973), N o . 3 

INTERSECTION GRAPHS OP LATTICES 

BOMDAN Z.KLTNKA. Liboivc 

rHie intersection graph of an algebra A is by definition the graph whns. 
vertices are proper subaigebras of A and in which two vertices are joined by 
an edge if and only if the corresponding subaigebras have a rion-empty iril«>r-
section. 

Intersection, graphs of semigroups were studied mainly by J . Bo^ak [~ j 
He also suggested to study intersection graphs of cither algebras, including 
lattices. The tatter is the subject of this paper. 

Let a lattice L be given. A sublattice of* L can be deiinnd in two different 
ways; therefore we shall distinguish algebraic sublattices and set-theoretical 
ones. 

An algebraic sublattice of L is by definition a non-empty subset of L which 
is closed with respect to the operations of join and meet (L e. with any two 
elements it contains also their join, and meet). 

A set-theoretical sublattice of IJ is by definition a nonempty subset of /', 
which is a lattice with respect to the ordering induced by the ordering of L. 

It can be easily proved that mrery algebraic sublattice of a lattice L i-
simultaneously its set-theoretical sublattice. The inverse assertion is not true. 
as shown, in Fig. J, where the Hasse diagram of the lattice L is drawn, whose 
elements 0, a, h, I form a set-theoretical sublattice given by the Hasse diagram 
in Fig. 2. This is evidently a lattice, but this lattice is no algebraic sublattice 
of L, because it contains the elements a and b, but not the element r. which 
is the join of these elements in L, 

Thus we shall, distinguish algebraic intersection graphs of lattices and set 
-theoretical ones. We shall introduce even the third type of intersection graphs 
of lattices, namely the interval intersection graphs, if a r£ b in. a lattice* L, 
then the interval, (a, ft) is the set of all elements x & L for which, a. g x s b 
holds. The interval (a, h) is evidently an algebraic sublattice of I); the inverse 
assertion is not true, as shown in "Fig, 3. Here {0, a, b, 1} is an. algebraic subho 
tiee, but not an interval. The interval intersection graph, of the lattice L is by 
definition the graph, whose vertices are intervals (a, ft) for all pairs a} ft of 
the elements of IJ for which, a S, b holds and if 0 and /' exist, then either a /.. 0> 
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or h ••/. ] (here and in the following 0 denotes the least, 1 the greatest element 
of L) and in which two elements are joined by an edge if and only if the cor
responding intervals have a non-empty intersection. 

The algebraic intersection graph of the lattice L will be demoted by GA(L), 
the set-theoretical intersection graph by GS(L), the interval intersection, graph, 
'by G1(JJ). The symbols V and f\ denote the join and the meet inL, the symbols 
U and n denote the set-theoretical operations of union and intersection. 

From the above given definitions it follows that each one-element subset 
ot a. lattice L is its algebraic sublattice, set-theoretical sublattice and interval 

¥щ, 2, ғig. :Ï. 

Theorem 1* The system of one-element subsets of a finite lattice L with more 
than, one element is a maximal internally stable [I] set in any of the graphs GA(I), 
GS(L), (11(h), while any other internally stable set in any of these graphs liua 
a less number of vertices. 

.Proof. Two distinct one-element sets are disjoint, therefore the system of 
one-element subsets of the lattice L is an internally stable set in GA(L), GS(L) 
unci. G1(L). I ts number of elements is equal to the number of elements of I. 
Assume that there exists some other subset of the vertex set of some of these 
graphs which is internally stable and has the cardinality greater than or equal 
to the cardinality of L. But there does not exist in any set a system of pair wise-
disjoint non-empty subsets of the cardinality greater than the cardinality of 
this set; the system with these properties and of the cardinality equal to the 
cardinality of the original set is exactly one in a finite set; this is the system of 
all one-element subsets, which is a contradiction. 

Corollary. The internal stability numbers of the graphs GA(L), GS(L), GI(L) 
for a finite lattice L with more than one element are pairwise equal and are equal 
to ike cardinality of L. 

Theorem 2. Let the set-theoretical intersection graph GS(L) of a finite lattice I 
with more than one element be given. Then the set of elements of I and the relation-
of comparability on it can be reconstructed. 
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Proof. In the graph G8(L) we find the internally stable set of the greatest 
cardinality; according to Theorem 1 this is the set of one-element sublattices 
of the lattice L and therefore its elements correspond in a one-to-one manner 
to the elements of L. A. two-element subset (a, 6} of.// (where a .-/ b) is a set-
theoretieal sublattice of the lattice L if and only if the elements a. b are com-
parable, i. e. if either a < ft, or ft < a holds. To such a sublattice a vertex of 
GH(L) corresponds which is joined by edges with vertices corresponding to 
sublattices {a}, {b} and is not joined with any other vertex corresponding to 
a one-element su.blatt.ice. Thus we recognize for any two elements a, ft of tin* 
lattice L, whether such a vertex exists, and so we reconstruct the relation of 
comparability on. the set of elements of L. 

Theorem 3. Let the algebraic intersection graph GA(L) of a finite lattice L with 
more than one element be given. Then the set of elements of L and the. relation of 
comparability on it can be reconstructed. 

Proof. A two-element subset {a, b} is also an. algebraic sublattice of the 
lattice L if and only if the elements a, b are comparable. Therefore we can 
proceed in the same way as in the proof of Theorem 2. 

Theorem 4. Let the algebraic intersection graph GA(L) of a finite lattice L 
with more than one element be given. Then the set of elements of L can be recon-
strncted and for any two elements a, b of L the set {a A ft, a v h] can be reconstnu'lcd, 

R e m a r k . The reconstruction of the set {a / 6, a / b} means finding two 
elements, one of which is a A. b, the other is a v ft, but such that in general, it is 
not possible to determine, which of them, is a /•. ft and which is a • ft. 

Proof, The reconstruction of the set of elements of the lattice L will bo 
performed so as in the proof of Theorem. 2 and also the relation of comparabi
lity will be determined. If two elements «, ft are comparable, then {a • ft, 
a v ft| r= {a, 6}. If they are non-comparable, then there exists an algebraic 
sublattice consisting of the elements a, 6, a /> ft, a •/ ft (which are pairwise 
distinct) and no other four-element algebraic sublattice containing a and ft,. 
Thus in the graph GA(L) we find a vertex which is joined with vertices JttJ-
and {ft} and moreover with exactly two further vertices c<>rrespouding to one-
-element sublattices. These two further vertices correspond to the one-element 
sublattices [a A ft}, {a v ft}. 

Theorem 5. Let the interval intersection graph GI(L) of a finite lattice L with 
more than two elements be given. Then the (undirected) llasse, diagram of L can-
be r econstructed. 

R e m a r k . Here we speak only about the Basse diagram as an undirected 
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graph. If this diagram has to determine uniquely the lattice L, it must be 
drawn in a certain position, which cannot be performed with help of this 
theorem. 

Proof. In the Hasse diagram of the lattice L two elements of L are joined 
by an (undirected) edge if and only if either a covers b, or b covers a. (We say 
that a covers b, if a > b and there does not exist any element c such that 
a > c > b.) This is realized if and only if there exists an interval of the lattice 
L consisting only of the elements a, b. In the graph G1(L) there corresponds 
to such an interval a vertex joined by edges with one-element intervals {a} -= 
-•- (a, a}, {b} = (b, by and not joined with any other one-element interval. 
(The set of vortices corresponding to one-element intervals can be found 
similarly as the set of vertices corresponding to one-element sublattices in the 
proof of Theorem 2.) Thus in the Hasse diagram of the lattice L the elements 
a, b will be joined by an edge if and only if such a vertex exists in G1(L). 

Lemma. Let a be an element of a finite lattice L with more than two elements* 
The vertex corresponding to the element a in the Hasse diagram of L is a cut-vertex 
of this diagram if and only if a -^ 0, a ^ I and the element a is comparable with 
all elements of L. 

"Proof. Let a he a cut-vertex of the Hasse diagram of the lattice L and let bs 

c be vertices of this diagram, separated by the vertex a (i. e. each path, from b 
to c contains the vertex a). If b, c are non-comparable, there is 6 A C -^ b v c. 
Let Oi (or 0% respectively) be the path from 6 (or from c respectively) to b v c 
corresponding to the saturated chain between these elements. Both these 
paths have only the vertex & v c in, common; otherwise there would, exist 
a vertex d so that b ^ d <b v c, c S d < b v c, which is impossible. By C 
denote the union, of these paths. Analogously let C[ (or Cz respectively) be 
the path from b A C to 6 (or to c respectively) corresponding to the saturated 
chain between these elements; these two paths have no eo.mi.non vertex either 
except for b A < Let C be their union. Assume that the paths G and C have 
a common vertex d different from b and c. If d is a common vertex of the 
paths (7,i and C[, this means that simultaneously d < 6 and d > b, which is 
impossible; analogously if d is a common vertex of the paths C2 and (f2. If d 
is a cominon vertex of the paths Ci and C'%, then d > b, d < c and therefore 
b < c, which is also impossible; analogously if d is a common vertex of C[ 
a.iicl 6V Therefore C and C have no common vertices except for b and c, thus 
according to JVle tiger's Theorem, the connectivity degree of the vertices 5, c 
is at least two and these vertices cannot be separated by a cut-vertex, which 
is a- contradiction. Hence any two vertices separated by a cut-vertex a are 
comparable. Without loss of generality let b < c. In the Hasse diagram, of L 
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there exist a path coiTesponding to the saturated chain from b to c\ tin's pat h 
contains a and therefore b < a < c and a is comparable with both b and '•. 
As 6 and c; were chosen arbitrarily, a is comparable with all elements of /, 
and evidently it is different from both 0 and / . 

Now let a be comparable with all elements of LJ and different from both fJ 
and /. Let b < a, c > a and let a path from b to c; exist not containing e. Let J 
be the last vertex of this path (if we go from h to e) which is less than a. The 
element r£ is different from c, therefore there exists a vertex c. of tins path fol
lowing after d. As a is comparable with all elements of L. there must be e \> a. 
But then d < a < e and e does not cover el and d does not cover e. the is J 
and. e are not joined by an edge, which is a contradiction. Therefore each pal h 
from b to c contains a and a is a cut-vertex of the Rassc diagram, of L. 

Theorem 6. Let the set-theoretical intersection graph OS(L) of a finite lajtln 
L with more than two elements he given and let the interval intersection graph GT{ L) 
of L be marked in it as its subgraph. Then the laHiee L is deierminfff u.f/igufjji 
up to the duality. 

'.Proof. First, according to Theorem. 2 from GS(L), we reconstruct the se.1 
of elements of the lattice L and the relation of comparability and according 
tn Theorem 5 from GI(L) we reconstruct the Basse diagram of L. if there exist 
exactly two elements comparable with all other elements of the lattice < 
then one of them is 0,} the other is I. I t there are more such, elements, then. O 
and 1 are exactly those of them, for which the correspondiug one-e!emen, 
intervals do not form cut-vertices of the Hasse diagram of the .lattice L (a<-
cording to Lem.ma). Therefore let us choose one of these elements to bo (J: then 
the other is I. Further, if two different elements a, b ore comparable, then 
a < b if and only if there exists an interval, containing 0 and a and not contai 
ning b. To such an interval in GI(L) a vertex corresponds joined by edges wit h 
intervals (0, 0} and <ja, a} and not joined with the interval \b, b/ Therefore 
if there exists such a vertex, then a < 6, otherwise b < a. The unique random 
step in. the whole procedure was the choice of the element 0 . In the case of the 
opposite choice we obtain evidently the lattice dual to that obtained in the 
preceding ease. One of these lattice is evidently L. 

Theorem 7. Lei the algebraic intersection graph GA(L) of a finite lattice L with 
mom than two elements be given and let the interval intersection graph 0.1 (L) of 
IJ he 'marked in it as Us subgraph, Then the lattice L is determined uniquely up (o 
the duality. 

P r o o f is analogous to the proof of Theorem (k 

Theorem 8. The graph GS(L) of the lattice L with more than two elements lacs 
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diameter 2, if L is not isomorphic to the lattice whose. Flasse diagram is in Fig. 2,. 
The graph G8(L) of the lattice whose Hasse diagram is in Fig. 2 has diameter IL 

Proof. Let a, b be two elements of the lattice L. The distance of the vertices 
j//.j, |b J in the graph G8(L) is equal to two, if and only if there exists a proper 
sifblattice of L (set-theoretical) containing the elements a, b. The least (ac
cording to the number of elements) snblatti.ee of the lattice L containing a 
and b has exactly two elements, if a and ft are corn parable, and is isomorphic 
to the lattice whose Hasse diagram is in Fig. 2, if they are non-corn parable. 
If such. a. sublattice is the whole lattice L, then the distance of {a} and. {ft} 
is greater than 2; if it is a proper sublattice. then, this distance is equal to 2. 
Therefore in each lattice which has more than two elements and is .not iso
morphic to the lattice whose Hasse diagram is in Fig. 2 the distance of arbitrary 
two one-element set-theoretical sublattices in G8(L) is equal to 2, Now let us 
have two arbitrary proper sublattices L\, L% of L, If L\ H Lt -/-• 0, then their 
distance, is equal, to one. If L\ C\ L% ----- 0, then we choose an element a FJ L\ 
and an element b eL^. There exists a proper sublattice containing a. and b 
and having therefore a non-empty intersection with both L\ and Lt« The distan-
f*c of the sublattices L\ and FJ% is therefore also equal to two and thus also the 
diameter of the graph G8(L) is equal to two . The second assertion is trivial. 

Theorem 9. The graph GA (L) of a lattice L with more than two elements has 
diameter 2. if L is not isomorphic to the lattice whose Hasse diagram, is in Fig. 2 
The. graph GA(L) of (he lattice whose Flasse diagram is in Fig, 2 has diameter M. 

Proof is analogous to that of Theorem 8. 

Theorem 10. Let L be a lattice with more than two elements, let GI(L) be. its 
iaicrval infer section graph, Then the diameter of GI(L) is equal to 3 if and onl/j 
if L hn.s I he least and the greatest element, In the reverse case the diameter of (.11 (L) 
is ecfual la 2 . 

R e m a r k . In our considerations on diameters we admit also infinite lattices. 

Proof. If GI(L) has the least element 0 and the greatest element I, then tin? 
unique interval containing these elements is (0, / ) , which is the whole lattice 
/.-. Therefore the distance of the intervals (0, 0) and (I, I) in (JI(L)\H greater 
tlum. two. As L contains more than two elements, it contains at least one ele
ment a different from both O and. 1. The intervals (O, a), (a, I) are intervals 
of L different from <O, T), therefore there exist vertices ofGI(L) corresponding 
to them. The interval ((), a) has a non-empty intersection with. ((), ()";> and 
with -:'a, I) and (a, I) has a non-empty intersection with (0, a) and with. <7, ./;•.. 
The. vertices ((), 0), (0, a>, (a, I), (1, I) .form a path of length 3 from ((), Oy 
to "I, /';. 'Now let a, ft be two different elements of the lattice Ly from which 



at least one is different from both 0 and / . If a ~- ./, then there exists a path 
of length 2 from (a. a) to (b, b): it contains vertices (a, a; ;.»-- 7 . 7 \ /b , /). 
(b, 6). Similarly for ft ~ O. If a -/• 0, b -/•• 0, a -^ 1, b / 7, there exists a path 
of .length 3 from (a, a) to <7>, b) in G1(L) containing vertices 'J/, a). ''(), n_ , 
<0, &), (6, 6). The distance of arbitrary two one-element intervals in (77(/VJ 

m therefore at most three. Now if-/ j , J-? are arbitrary two intervals of L diffe 
rent from 7A we choose an. element' aeJ\ and an. element 6 (-J-** One! the 
corresponding patli from. <//, </•)• to <7>, h). if we substitute the vertex 'H., // 
by the vertex ,/i an.d the vertex (b, b) by the vertex 7s in it, we obtain a path 
of the same or less length from J\ to J%, because any interval having a non.-
-empty intersection with (a, a) has a non-empty intersection, also with ./; 
and any interval having a non-empty intersection with (b, b/ lias a non-empty 
intersection also with J*. Therefore L has diameter *?. If L has no least element, 
there* exists to arbitrary two different elements a, h of L a path of lenglh « 
joining the vertices ("a, a>, <6, b) m G1(L) and containing the vertices -'a. a , 
(a .\ b, a v b), (b, b): the interval (a /. b, a / 6) is not equal to L because /„• 
must contain an element less than a >\ h. For arbitrary two intervals JL and 
Jt we proceed then, as in the preceding case, We proceed analogously, if L 
has no greatest element. 

l ie m a r k . If the lattice X has only two elements, then evidently the diame
ters of GS(JJ), GA(L) and (77 (L) are all equal to oo (these graphs art* discon
nected). 

R.EFEJ1ENCE.S 

j f. | B.IOKGE, C : Th.eor.io des graphes ot sos appl ica t ions , Paris I95S. 
j2] BOH/iK. »],; The graphs of semigroups. Tn: Theory of Graph* and Its ApphVnt-i«>.,.-

Pi-oe. Sympos ium Smoleniee, J u n e 1963, P r a h a 1904, 
R e v i v e d July 3, 1970, 

Kattnlra iuo>tetna.ttky 
\'i/Mtke xkoly xtroja* a tarf-'ih't 

Liberie 

222 


		webmaster@dml.cz
	2012-07-31T19:04:41+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




