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TWO-SIDED BASES OF SEMIGROUPS 

IMRICH FABRICI 

The structure of semigroups, containing one-sided bases is investigated 
in [1]. The notion of a one-sided base was introduced by T a m u r a in [4]. 
The purpose of the present paper is to describe the structure of semigroups 
containing two-sided bases. 

A sLibset A of a semigroup S is a right (left) base of S if A u SA = 
= S(A U AS = S), but there exists no proper subset B C A for which 
Bu SB = S(BuBS = S). 

Definition 1. We say that a subset A C S is a two-sided base of S, if A U SA U 
U AS U SAS = S, but there exists no proper subset X C A, X ^ A such that 
Xu SXuXSu SXS = S. 

HA C S is a subset of S, then we denote the set A U SA U AS U SAS 
by (A)T. 

A principal two-sided ideal, generated by an element a will be denoted 
by (#)T, i- e. (a)T = a u Sa U aS U SaS. 

Lemma 1. Let A be a two-sided base of S. Let a,beA.Ifae (Sb U bS U SbS), 
then a = b. 

Proof . Let a e (Sb U bS U SbS) and a ^b. Let us consider the set B = 
= A - {a}. Then b e B. The relation a e (Sb U bS U SbS) implies (a)T C 
C (Sb ubSu SbS) C (B)T, and it follows that S = (A)T C (B)T. But this 

is a contradiction, because A is a two-sided base. 
Now we introduce a quasi-ordering into S, namely a <b means a U Sa U 

U aS U SaS CbuSbubSu SbS, thus (a)T C (b)T. 

Lemma 2. Let A be a two-sided base of a semigroup S. If a,b e A, a =J= b, 
then neither a <b, nor b < a. 

Proof . Let us assume that a <b, (a)T C (b)T. If there were a 4= b, then 
a G (Sb U bS U SbS). Lemma 1 implies that a = b. 

Theorem 1. A non-empty subset A of a semigroup S is a two-sided base 
of S if and only if A satisfies the following conditions: 

(1) for any x e S there exists a e A such that x < a. 
(2) for any two distinct elements a,b e A neither a <b, nor b < a. 
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Proof, (a) Let us suppose that (1) and (2) hold for A, let x e S. Then x e S 
implies x<aeA, i .e . x e (a)T C(A)T. I t follows that S C (A)T so that 
S = (A)T. I t remains to show that A is a minimal subset with the property: 
S = (A)T. Let £ CA,B + A such that S = (B)T. IfaeA-B, then there 
exists beB such that a e (Sb U bS U SbS). Thus we have: (a)T C(b)T, 
but this is a contradiction with (2). 

(b) Let A be a two-sided base of S, thus S = (-4) r. Then if x e S, then 
xe(A)T. Then there exists « e A such that # e ( a ) r . T h i s implies x < a, 
and so (1) is satisfied and the validity of (2) follows from Lemma 2. 

If we define x ~ y iff both x < y and y < x at the same time, we get the 
well-known partition of S into the so-called F-classes. If an element a belongs 
to an K-class, then this F-class will be denoted by Fa. 

The condition (2) of Theorem 1 implies that any two elements of a two-sided 
base A do not belong to the same i^-class. In other words: if a, b e A, a #= b, 
then FanFb = 0. 

Let us ask ourselves, whether a semigroup may contain more than one 
two-sided base and if yes what is their mutual relation. 

Theorem 2. Let A be a two-sided base of a semigroup S. If there exists at least 
one F-class generated by an element of A, which contains more than one element, 
then the semigroup S contains still another two-sided base. 

Proof . Let Fa be an K-class containing more than one element, and let 
b eFa,b #= a. Let A\ = [(A — {a}) U {&}]. Evidently, A #- A\. We are going 
to show that A\ is a two-sided base of S. To prove it, it does suffice to show 
that A\ satisfies the conditions (1), (2) of Theorem 1. Let x e S. By Theorem I, 
there exists an element c e A such that x <c.If c ^ a, then c e A\. If c = a, 
then (c)T = (b)T, c =j= b. Then evidently x < b, and b GA\. Hence A\ sa
tisfies the condition (1) of Theorem 1. Let C\, C<L SA\, CI =# C2. Both c\ and c-z 
cannot belong to Fa. Let c\ eFa. Then (c\)T = (a)T and C2 e A. If C\ < C2, 
then a < c%, however this is impossible as a, c<z e A. Similarly C2 < C\ cannot 
hold as then it will have to hold C2 < a, and it is again impossible by (2) of 
Theorem 1. If C2 eFa, we would proceed similarly. In the case tha t neither 
C\eFa, nor C2 eFa, we have ci, c<>e A and the condition (2) of Theorem 1 
is satisfied again. 

Corollary. Let A be a two-sided base of S, a eA. If (x)T = (a)T for some 
x e S, x =# a, then x belongs to some two-sided base, which is different from A. 

Theorem 3. Let A and B be any two two-sided bases of a semigroup S. Then 
A and B have the same cardinality. 

Proof . Define a mapping cp on A as follows. If a e A, then cp(a) = b, b e B 
if and only if & eFa. We show tha t this mapping is defined for every a e A. 
As B is a two-sided base, then there exists an element b e B such that a <b. 
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Because A is a two-sided base of S also, then for the element b e B there 
exists an element a' eA such t h a t b <a'. We get a <b <a'. I t implies 
a < a', and therefore a = a'. However, this implies (O)T = (&)T, SO b eFa~ 
We show that (p is one-to-one and onto. Let ai, a% e A. If cp(a\) = 99(̂ 2), then 
(O>I)T = (&2)T. The condition (2) of Theorem 1 implies ai = a^. I t remains 
to show that cp is onto. If b e B, then there exists ai e A such that b < ai. 
For the same reason, for the element ai e A there exists some bi e B such 
that ai < 61. Thus, b < ai <bi, bi,b eB, therefore by (2) of Theorem 1,. 
b = bi, so (b)T = (bi)T and (ai)ir = (b)r, i. e. cp(ai) = b, for ai eA. Therefore,. 
(p is onto. 

Simple examples of semigroups show that a two-sided base A of S need 
not be a subsemigroup (and therefore a two-sided ideal of S either). 

Further we show some conditions when a two-sided base of S is a sub-
semigroup of S. 

R e m a r k 1. We can show easily that a two-sided base A of a semigroup S 
is a two-sided ideal of S if and only if A = S. 

Theorem 4. A two-sided base A of a semigroup S is a subsemigroup of S if and 
only if A consists of one element, which is an idempotent. 

Proof, (a) Let a two-sided base A of a semigroup S be a subsemigroup 
of S. Then for arbitrary a, b e A, we have ab e A, hence ab = c for some c G A. 
Therefore, c e Sb. By Lemma 1 c = b, and so ab = b. However, from the 
relation ab = c we have c e aS, and again by Lemma 1 we get c = a, and 
so ab = a. Both relations ab = b, ab = a imply a = b. 

(b) Evidently, a one-element two-sided base of S, which consists of an 
idempotent is a subsemigroup of S. 

R e m a r k 2. Theorems 3 and 4 imply that if a two-sided base of a semi
group S is a subsemigroup of S and therefore a oneelement subsemigroup, then 
every two-sided base of S is one—element. The question arises whether every 
two-sided base of S is a subsemigroup. By the following example of a semigroup 
we can ascertain that this is not true. 

E x a m p l e 1. Let S = {a, b, c, d} be a semigroup writh the multiplication 
table: 

a b c d 
a a. b a a 
b b a b b 
c a b c d 
đ a Ь d c 

The semigroup S contains two two-sided bases: Ai = {c}, A2 = {d} c2 = cr 

thus Ai is a subsemigroup, however d2 4= d, so A% is not a subsemigroup. 
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By s/ we shall denote the union of all two-sided bases of a semigroup S. 

Theorem 5. S — s/ is either the empty set or a two-sided ideal of the semi
group S. 

Proof . Let S — s/ =f= 0, let a e S — s/, x e S. To prove the statement 
it suffices to show that both xa e S — s/ and ax eS—s/. The proof will be done 
for the first part only, because the other is analogous. Let us assume that 
xa e S — &/. Then xa e s/. I t means that xa belongs at least into one twro-sided 
base. Let xa G At. Hence xa = b e Ai. I t implies b G Sa, Sb C Sa, SbS C SaS, 
and therefore (b)T C (a)r. We show that the relation (b) r = (a)T cannot hold. 
If (b)y = (a)T, then the Corollary of Theorem 2 implies that a e s/, which is 
a contradiction with the choice of the element a, because a e S — &/. There
fore (b)T C(a)T, and (&)y =j= (a)y, thus b <a. However, Ai is a twro-sided 
base of S. Hence for the element a there exists bi G Ai such t h a t a <b\. 
We have: b < a < b\, so b < bi, but b, b\sA\, b =}= bi, so this is a contra
diction with (2) of Theorem 1. Therefore xa e S — s/. 

The notion of a maximal proper ideal is used in the same sense as in [2]. 
The following example of a semigroup shows that M = S — s/ need not 

be a maximal two-sided ideal of S. 

E x a m p l e 2. Let S = {a, b, c, d} be a semigroup with the multiplication 
table: 

I a b c d 

a a a a a 
b a a a a 
c a a Ъ Ъ 
d a a b Ъ 

The only two-sided base of S is a subset A = {c, d}. S — s/ = {a, b} is an 
ideal of S, but it is not a maximal one, because {a, b, c} is an ideal of S also. 

We say that a semigroup S contains a two-sided ideal M*, if M* is such 
a maximal proper two-sided ideal, in which every proper two-sided ideal 
M of S is contained (see [3]). 

Theorem 6. Let 0 #= s# =j= S. Then the following statements for a semigroup S 
are equivalent. 

(1) S — s/ is maximal proper two-sided ideal of S. 
(2) For every element a G S/, S/ C (a)y. 
(3) S — s/ = M*. 
(4) Every two-sided base of S is a one-element base. 

Proof . (1) o (2). Let 0 4= S — s/ be a maximal proper two-sided ideal 
of S, let a G s/. If s/ C (a)T does not hold, then S — stf U (a)T is a proper 
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two-sided ideal of S, and S — s/ £ S — s/ KJ (a)T, and it is contradictary 
to the assumption that AS — s/ is a maximal proper two-sided ideal. 

Let for any a e s/ be s/ C (a)T. Theorem 5 implies that AS — s/ is an ideal 
of S. Let AS — s/ £ M $ AS, where 3f is an ideal of AS. Then M n st -^ 0. 
Let c G i ¥ n ^ , thus c e M, c e .*/. ceM implies ASC CAS3f CM , CAS C 
C MS C M, ScS C SMS CSM CM. Therefore, M => 8 - s/ u (c) r = S, 

and so 3 / = AS because s/ C (c)T and it is a contradiction with M ^ S. 
(3) o (4). Let S — s/ — M*. We know that if AS — s/ is a maximal proper 

two-sided ideal, then for every ass/, s/ C (a)T holds. We show that if 
AS — s/ = M*, then every two-sided base of AS is a one-element one. At first 
we show that for any a e s/, S — s/ C (a)T. If the last relation does not hold, 
then (a)T is a proper two-kided ideal of S, distinct frum AS — s/, which is 
a contradiction to the assumption. Thus, S — s/ C (a)T and at the same 
time s/ C(a)T. Both relations imply AS C(a)T, so, AS = (a)T. Therefore {a} 
is a two-sided base of AS and because a is an arbitrary element of s/, then each 
two-sided base is a one-element base. 

Let every two-sided base of AS be a one-element base, and so, for any a e s/, 
(a)T = S holds. We show that S — s/ — M*. The statement that S — s/ 
is a maximal proper two-sided ideal follows from the proof (1) o (2). I t re
mains to show that every two-sided ideal of AS is contained in AS — s/. Let T 
be a two-sided ideal of S, which is not contained in AS — s/. Then s/ C\T ^ 0. 
If x G s/ n T, then x e s/, x eT. I t follows that Sx CST CT, xS CTS CT, 
SxS CST CT. Thus T D (x)T — S, therefore T = AS and the proof is complete. 

(1) o (3). Let AS — s/ be a maximal proper two-sided ideal of AS. We have 
to show that AS — s/ = M*, thus every two-sided proper ideal of AS is con
tained in AS — s/. Let us suppose that an ideal M is not contained in AS — s/, 
thus M 4: AS — s/. Then M must have the following form: M = s/ u X, 
where X C S — s/. The ideal M can be expressed as a union of principal 
two-sided ideals, generated both by elements of s/ and by elements of X = 
= AS — s/ n M. According to the condition (1) of Theorem 1 we know that 
every principal two-sided ideal generated by an element of AS — s/ is con
tained in a principal two-sided ideal, generated by some element of s/. We have 
that the union of all principal ideals, generated by the elements of s/ con
tains both s/ and S ~ s/, thus M = S. We get that if AS — s/ is a maximal 
proper two-sided ideal of AS, then each two-sided ideal which is not contained 
in AS — s/ is equal to AS. Hence S — s/ = M*. 

If AS — s/ = M*, then evidently AS — s/ is a maximal two-sided ideal of AS. 
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