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A SIMPLE PROOF OF THE PERFECT MATCHING THEOREM 

JAN PLESNIK 

Since the Tutte theorem on 1-factors [18] was issued, many papers have 
appeared on this subject or its generalizations [1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 
14, 15, 17, 19, 20, 21] (our list is incomplete). One part of the proofs uses 
hyperprime graphs (e. g. [9, 11, 15, 18]) and another uses the method of al
ternating paths (e. g. [2, 3, 4, 5, 17, 19]). G a l l a i [6] was the first, who used 
a further technique, namely his proof of the Tutte theorem is based on the 
Konig-Hall theorem (see [12] and [8] or Ore [16]) on perfect matchings in bi
partite graphs (a proof of this kind is also in [1]. In his later paper G a l l a i 
mentioned (see [7], the remark on p . 408) a modification of his method sug
gested by L. P o s a and V. T. Sos. The aim of this paper is to show that if 
we prefer in the method due to Ga l l a i , P o s a and Sos an induction on the 
number of lines instead of points, then the Tutte theorem can be proved wit
hout using the Konig-Hall theorem. Such a proof seems to be new, although 
its separate steps or their modifications are mostly well-known with the 
exception of one (see step 6 in the sequel) in which we deduce the Konig-Hall 
theorem from the Tutte theorem. 

The notions used below are based on H a r a r y [10]. The following denota
tions will be used: A graph G is denoted by (V, E), where V = V(G) and 
E = E(G) are its point and line sets respectively. If U C V(G), then the 
induced subgraph of G on U is denoted by G(U). US C V(G), then by tG(S) 
we denote the number of odd components of the graph G — S = G( V(G) — S) 
(by an odd component we mean one with an odd number of points). By (Vi, 
V2, E) we denote a bipartite graph G with Vi n V2 = 0, V(G) = Vi U V2, 
E(G) = E, in which there is no line of the form v±v2 with v±, v2 e Vi or V\,v2e 
e V2. If A C Vi, then we put V2(^l) = {y \ x e A, xyeE}. 

The Tutte theorem [18]: A graph G is without 1-factors if and only if there 
is a setS C V(G) with tG(S) > \S\. 

Proof . To prove the part "if" we use the argument due to T u t t e [18]: 
For any S C V(G), every perfect matching matches at least one point of each 
odd component of G — S to a point of S. Therefore, if tG(S) > \S\, then no 
perfect matching can exist. 

To prove the part "only if" it is sufficient to present a proof in the case 
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if | V(G)\ is even (otherwise we can put S = 0). We shall proceed by induction 
on the number of lines of G. If \E(G)\ = 0, the assertion is trivial. Therefore 
let \E(G)\ > 1. Choose an arbitrary line e EE(G) and form the graph G' = 
= G — e = (V(G), E(G) — {e}). As G' is without a 1-factor too, there is by 
induction hypothesis a set S' C V(G') = V(G) with tG>(S') > \S'\. We shall 
assume that 
(1) \S'\ = max |ilf|, where the maximum is taken over all M C V(G) with 
<2) tG>(M) - \M\ = max (tG>(N) - |N | ) . 

NCV(G) 

As \V(G)\ is even, tG>(S') — \S'\ > 2. Since the adding of e to Gf changes 
no more than two odd components of G' — S', tG(S') > tG>(S') — 2. Therefore 
in the case if tG>(S') — \S'\ > 2, we can put S = S', which gives tG(S) — 
— \S\ > 0 as desired. Thus we can assume that 
(3) tG>(S') - \S'\ = 2: 
Now we shall prove 
(4) Every even component G\ of the graph G' — S' has a \-factor. 
In the other case, there is by the induction hypothesis a set S\ C V(G\) with 
*M) - \S'{\ > 2. However, then tG>(S' U ASQ — \S' U S'J > 4, contradicting 
(2) and (3). Analogously we have 
(5) Every odd component Gj of G' — S' after the deleting of one arbitrary point uj 

has a I-factor. 
Otherwise, there is by the induction hypothesis a set Sj C V(G'. — %) with 
to; u^S'j) - |SJ| > 2. Then we have tG>(S' U S, U {uj}) - \S' U S's U {uj}\ = 
= tG>(S') - 1 + tG>ru}(Sj) - \S'\ - Ifljl - 1 > 2. By (2) and (3) the last 
relation is equality. However, we have a contradiction with (1). Now we are 
going to prove 

(6) The validity of the induction hypothesis (i. e. the main part of the Tutte 
theorem) for any graph G with \E(G)\ < m implies the validity of the following 
assertion (i. e. the main part of the Konig-Hall theorem) for any bipartite 
graph B = (Vi, V2,F) with | Vi| = | V2| and |F| < m: If B has no l-factor, 
then there is a set A C Vi with \A\ > \ V2(A)\. 

If B has no 1-factor, then there is a set S = Si U S2 with Si C Vi, S2 C V2 

and tB(S) > \S\. We shall assume that S has the maximum cardinality among 
all sets with these properties. Then every component of B — S consists of 
a single point as it can be easily seen. If |Vi — Si\ > \S2\, then we can put 
A = Vi - Si (since V2(Vi - #i) CS2, thus \A\ > \S2\ > |V2(-4)|). Pu t 
n = \Vi] = \V2\- In the case if | Vi — ASI| < \S2\ we have n = \S±\ + | Vi — Si| < 
< \Si\ + \S2\ = \S\ and on the other hand \S\ < tB(S) = \Vi - Sx\ + 
+ |V2 — S2\ < |AŜ 2| + |V2 — S2\ = n, which is a contradiction. 

Note that if we have proved the part of Konig-Hall theorem for any n, 
then the case |V i | ^ |V2 | can be derived immediately. 
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If the line e is incident with at most one odd component of G' — S', then 

we can put S = S' and obviously we have tG{S) — \S\ = tG'{S') — \S'\ = 

— 2 > 0. Thus there remains the possibility 

(7) The line e connects two different odd components of G' — S'. 

Then by (3) the graph G — S' has exactly tG{S') = tG>{S') — 2 odd compo

nents: G[, CT2, . . . . G'm, where m = tG{S') = \S'\. Shrink each component G\ 

to a single point m, 1 < i < m, to form a graph G. Consider the maximal 

bipartite subgraph B of G with V\ = V\{B) = {u\ ,U2, . . . , ^ m } and V2 = 

_ V2(H) = S'. If B has a 1-factor, then each component G\, 1 < i < m, 

has a point v* matched into S'. Since the line e matches two points of the other 

twro odd components of G' — S', thus by (4) and (5) G has a 1-factor, which 

is impossible. Therefore we have 

(8) There is no perfect matching of V\ onto V2 in the graph B. 

This means according to (6) that there is a set A C V\{B) with \A\ > |V2(-4)|. 

If we put /S = V2(^4) C S', then the graph G — S has at least \A\ odd com

ponents, i. e. tG{S) > \S\. This completes the proof. 
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