Matematicko-fyzikálny časopis

Arnold A. Johnson

Reflectors and Coreflectors on Diagrams

Matematicko-fyzikálny časopis, Vol. 16 (1966), No. 4, 309--319
Persistent URL: http://dml.cz/dmlcz/126983

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1966
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

REFLECTORS AND COREFLECTORS ON DIAGRAMS

ARNOLI A. JOHNSON, Toledo (USA)

I. INTRODUC'ITON

In the fall of 1957 the writer began a Ph.I). dissertation under the direction of E. B. Leach investigating what Kan [1] was to call direct and inverse limits and what Freyd [2] was to call left and right roots (or reflections and coreflections). The work was essentially complete by the time Kan's article (1) on adjoint functors appeared in the Transactions during the following year. Due to circumstances beyond the control of the writer there was a delay in the publication of his results and in the meantime some of the results such as the factorization of left roots into differences of products were published independently by other writers [2]. However, since the results in which the dissertation culminates have not to the writer's knowledge yet appeared it seemed to him worthwhile to write them up for publication, adapting for this purpose the elegant language invented by Kan.

The main tool of this paper is the concept suggested by E. B. Leach of a rela tive reflection: an object \bar{X} in a category $: \not B B^{2}$ a relative reflection of an object X in AB with respect to ufunctor $G: \infty \rightarrow \mathscr{B}$ provided there is a morphism $X \cdots \bar{X}$ in ${ }^{\prime \prime}$ satisfying the universal mapping property with respect to ${ }^{1} \mathrm{~A}$ for all objecte A in . . We define a category of diagrams over a category of, in which the diagrams are not necessarily of the same form, and imbed of as a subcategory of y by means of a functor $J: \mathscr{A} \rightarrow \mathscr{I}$. If a diagram I) has a subdiugram functor $D^{\prime}: \mathscr{K} \rightarrow X$ (see below) and if $L: O \rightarrow S$ is a reflector $\lfloor\because \mid \text { then } L I)^{\prime}$ is a relative reflection of $\left.I\right)$. Since a reflection of relative reffection of I) is a reffection of D (and dually for coreflections) a procedure is obtained for the iteration of reflections and coreflections which leads naturally to the invertigation of the associativity, "commutativity", and distributivity of reflectors and coreflectors. Categories $Q_{1}(M)$ of diagrams of the form I): $\%$. $/$ are defined in which for each morphism α in $\mathscr{I}, D \alpha$ is constrained
to lie in a class $M(\alpha)$ of morphisms in $\varnothing /$. Reflectors and coreflectors on these categories are studied. Examples are sums, products, quotients, subobjects, etc. Given functors $\Phi: \mathscr{D}_{I}(M) \rightarrow \mathscr{A}$ and $\Psi: \mathscr{D}_{J}\left(M^{\prime}\right) \rightarrow \mathscr{d}$ and a diagram $)$ in $\mathscr{D}_{I \times J}\left(M \times M^{\prime}\right)$ we define subdiagram functors $\bar{D}_{1}: \mathscr{I} \rightarrow \mathcal{Y}_{J}\left(M^{\prime}\right)$ and $\bar{\Pi}_{2}$: $\mathscr{F} \rightarrow \mathscr{O}_{I}(M)$ and define the compositions $\Phi \Psi: \mathscr{L}_{I J}\left(M \times M^{\prime}\right) \cdots$ and $\Psi \Phi: \mathscr{D}_{I \times J}\left(M \times M^{\prime}\right) \rightarrow \mathscr{A}$ by setting $\quad(\Psi \Phi) D=\Psi\left(\Phi \bar{D}_{2}\right) \quad$ and $\left.\quad\left(\Phi \varphi^{\prime}\right) /\right)$ $=\Phi\left(\Psi \bar{D}_{1}\right)$. If $\Psi\left(\Phi \bar{D}_{2}\right)$ is isomorphic to $\left.\Phi\left(\Psi \bar{D}_{1}\right)\right)$ then Φ and Ψ are said to commute even though Φ and Ψ have different domains. Invariance of reflectors and coreflectors under one another is defined and it is shown that one reflector $\Phi: \mathscr{D}_{I}(M) \rightarrow \mathscr{A}$ commutes with another $\Psi: \mathscr{D}_{J}\left(M^{\prime}\right) \rightarrow \mathscr{A}$ provided each is invariant under the other. There is a dual result on coreflectors. If $\Phi:_{I}(1 /)$. $\rightarrow \mathscr{A}$ is a coreflector and $\Psi^{\prime}: \mathscr{D}_{J}\left(M^{\prime}\right) \rightarrow \mathscr{A}$ is a reflector such that each is invariant under the other then Φ does not generally commute with ψ^{\prime} but there exists a natural transformation $\Psi \Phi \rightarrow \Phi \Psi$. The latter specializes to the celebrated minimax theorem and may be further specialized to the one-sided distributive law $(x . y)+(x . z)<x \cdot(y+z)$ of lattice theory $|3|$.

iI. ReLATIVE REFLECTIONs

Definition. Let $G: \mathscr{A} \rightarrow \mathscr{B}$ be a functor and let $X \rightarrow \bar{X}$ be a morphism in . \mathscr{B}. suppose that for any morphism $X \rightarrow G A$ in which A is an object in st there exists a unique morphism $\bar{X} \xrightarrow{\beta} G A$ such that

commutes. Then $X \rightarrow \bar{X}$ is a relative reflection and \bar{X} is a relative reflection of X (both with respect to (X). When there exists an object X^{\prime} and a unique morphism $X^{\prime} \stackrel{\propto}{\rightarrow} A$ in \mathscr{A} such that $\beta=G \alpha$ then the relative reflection is absolute: in this case X^{\prime} is called a reflection of X and $X \rightarrow G X^{\prime}$ is called a reflection (both with respect to G).

Relative reflections with respect to a functor $G: \mathscr{A} \rightarrow$ form a subcategor! of. \mathscr{B}. A reflection of a relative reflection of an object X is a reflection of X. Furthermort if $X \rightarrow \bar{X}$ is a relative reflection and $X \rightarrow G X^{\prime}$ is a reflection then there is a unique morphism $\bar{X} \rightarrow G X^{\prime}$ such that (1) the diagram

commutes and (2) the morphism $\bar{X} \approx\left(N^{\prime}\right.$ is a reflection.

Recall that a diagram D over a category \mathscr{A} is a functor $D: \mathscr{I} \rightarrow \mathscr{A}$ in which \mathscr{I} is a small category [1]. If $D: \mathscr{I} \rightarrow \mathscr{A}$ and $D^{\prime}: \mathscr{I}^{\prime} \rightarrow \mathscr{A}$ are diagrams, then a mapping $\tau: D \rightarrow D^{\prime}$ consists of a functor $\tau_{1}: \mathscr{I} \rightarrow \mathscr{I}^{\prime}$ onto \mathscr{I}^{\prime}, together with a natural transformation $\tau_{2}: D \rightarrow D^{\prime} \tau_{1}$. We will write $\tau=\left(\tau_{1}, \tau_{2}\right)$. (If τ_{1} is obvious we will write only τ_{2} instead of $\left(\tau_{1}, \tau_{2}\right)$.) A morphism equal to $\tau_{2} i$ for some i in \mathscr{I} is called a component of the mapping.

Definition. If $\sigma: F \rightarrow F^{\prime}$ is a natural transformation between functors F, F^{\prime} : $X^{\prime} \cdots \notin$ and if $G: \mathscr{C} \rightarrow \mathscr{X}$ is a functor then $\sigma G: F G \rightarrow F^{\prime} G$ is the natural transformation defined by $(\sigma G) c=\sigma(G c)$ for each object c in \mathscr{C}.

Definition. If $\tau^{\prime}: D^{\prime} \rightarrow D^{\prime \prime}$ is another mapping then $\tau^{\prime} \tau: D \rightarrow D^{\prime \prime}$ is defined by $\left(\tau^{\prime} \tau\right)_{1}=\tau_{1}^{\prime} \tau_{1}$ and $\left(\tau^{\prime} \tau\right)_{2}=\left(\tau_{2}^{\prime} \tau_{1}\right) \tau_{2}$. Consequently we obtain the category of diagrams over \mathscr{A}.

There is an obvious imbedding functor $J: \mathscr{A} \rightarrow \mathscr{D}$ and under this imbedding we may regard \mathscr{A} as a subcategory of \mathscr{A}. It follows that a reflector [2] F : \prime, α is a (direct) limit functor. By a reflection of a diagram D over \mathscr{A} we mect" a reflection of D with respect to J. We will usually suppress mention of J and identify objects A and morphisms α in \mathscr{A} with their corresponding diagrams . A and $J \alpha$.

A mapping $\tau: D \rightarrow A$ in which A is an object of \mathscr{A} consists of a family of morphisms $\tau i: D i \rightarrow A$ indexed by objects in \mathscr{I} such that for each morphism $\alpha: i \rightarrow i^{\prime}$ in \mathscr{I} the diagram

rommutes.
A category \mathscr{A} has an opposite category \mathscr{A} op in which the objects and morphisms of $\mathscr{\alpha}$ are the objects and morphisms of \mathscr{A} op but $\operatorname{hom}_{\mathscr{A}}(A, B)==$ $-\operatorname{hom}_{\alpha}^{(1)}(B, A)[4]$. Moreover the product $\alpha \circ \beta$ of morphisms α, β in . α op is defined by $\alpha \circ \beta=\beta \alpha$ whenever $\beta \alpha$ is a product in \mathscr{A}.

If $I): \mathscr{Y} \rightarrow \mathscr{A}$ and $D^{\prime}: \mathscr{I}^{\prime} \rightarrow \mathscr{A}$ are diagrams then a comapping $\tau: D \rightarrow D^{\prime}$ is a functor $\tau_{1}: \mathscr{I}^{\prime} \rightarrow \mathscr{I}$ together with a natural transformation $\tau_{2}: D \tau_{1} \rightarrow D^{\prime}$. In effect a comapping has the same definition as a mapping except that domain and range are interchanged and components of τ from \mathscr{A} are replaced by morphisms from oop. The converse category \mathscr{D}^{*} of diagrams is the category whose objects are diagrams and whose morphisms are comappings. Coreflections are defined using comappings.
 a diagram consists of a family of morphisms $t i: A$. IVi indexed hy objecte in. I such that for each morphism $\alpha: i \rightarrow i^{\prime}$ in \mathscr{I} the diagram

commutes.
Definition. Let $P: y \rightarrow \mathbb{K}^{\prime}$ be a functor. A functor induced culegor?! $P^{\prime}\left(. \mathscr{K}^{\prime}\right)$ is defined as follows: the objects are diagrums $E_{K}: \mathscr{I}_{K}$. I ome for ard oljert K in \mathscr{K} and there corresponds to each morphism $\beta: K$ • $K^{\prime \prime}$ i" $\mathscr{K}^{\prime \prime}$ moppin!! $\left(F_{\beta}, \sigma_{\beta}\right): E_{K} \rightarrow E_{K^{\prime}}$. The functor induced category satisfies the propertics:
(1) A morphism α in II is an image under E_{K} if and omly if P' α ' k.
(2) Each morphism. in I is the product of factors a such that x i., ithor "11 image under one of the E_{K} or a component of " mappint $\left(F_{\beta}, \sigma_{\beta}\right)$ such that $P \alpha=\beta$.
(3) E_{K} is an imbedding, i. e. is one-to-one into.
(4) $\left(F_{\beta}, \sigma_{\beta}\right)$ is an identity if and only if β is all identity.
(5) $\left(\mathrm{F}_{\beta_{2}}, \sigma_{\beta_{2}}\right)\left(F_{\beta_{1}}, \sigma_{\beta_{1}}\right)=\left(F_{\beta_{2} \beta_{1}}, \sigma_{\beta_{2} \beta_{1}}\right)$.

If such a category $P^{1}(\mathscr{K})$ exists then the mapping $P^{\prime}: \not \mathscr{K}^{\prime} \rightarrow P^{\prime}\left(\mathscr{K}_{1}\right)$. defined by $P^{-1} K=E_{K}$ for each object K in \mathscr{K} and $P^{\prime} \beta^{\prime}$ - $\left(F_{\beta}, \sigma_{\beta}\right)$ for cach morphism β in \mathscr{K}, is by (4) and (5) a functor. The functor P indures a factorization of g into subeategories and morphisms between the wheategories. Thus $P^{1}: \mathscr{K} \rightarrow P^{-1}(\mathscr{K})$ may be called a factorizution of .
 such that $\bar{D}\left(E_{K}\right) \cdots I E_{K}$ and $\bar{D}\left(F_{\beta}, \sigma_{\beta}\right)=\left(F_{\beta}, V_{\sigma_{\beta}}\right)$. Thus I) is "restriction

 the functor P is a projection functor of I)
 transformution induced by L, [1] (called a fromed adjunction by Mar Lant 4 !

Proof. In order to establish that the transformation t: I - LIN'l in nathal let $\alpha: i$ - i^{\prime} be a morphism in I. There are two cases to consider.
(ase 1. There exists a morphism $\alpha^{\prime}: j \rightarrow j^{\prime}$ in \mathscr{I}_{k} such that $E_{k} \alpha^{\prime}=\alpha$ for some object \dot{k} in \mathscr{K}. It follows that $\left(D^{\prime} k\right) \alpha^{\prime}=\left(D E_{k}\right) \alpha^{\prime}=D \alpha$ and since the natural transformation $\varkappa\left(D E_{k}\right): D E_{k} \rightarrow L\left(D E_{k}\right)$ may be regarded as a mapping. the diagram

(ommutes. But $L\left(D E_{k}\right)=L\left(D^{\prime} k\right)=L\left(D^{\prime} P i\right)=L\left(D^{\prime} P i^{\prime}\right)$ and $P \alpha=e_{k}$ and consequently the diagram

commutes.
(ase ${ }^{2} . P \alpha=\beta$ and α is a component of $\left(F_{\beta}, \sigma_{\beta}\right)$, i. e. there exists j such that $\sigma_{\beta} j=\alpha$. Let k and k^{\prime} be objects in \mathscr{K} such that $E_{k} j=i$ and $E_{k^{\prime}} j^{\prime}=i^{\prime}$. The diagram

commutes and consequently for each j in \mathscr{I}_{k} the diagram

commutes. But

$$
\begin{aligned}
& \left.L(I) E_{k}\right)=L\left(D^{\prime} k\right)=L D^{\prime} P i \\
& L\left(D E_{k^{\prime}}\right)=L\left(D^{\prime} k^{\prime}\right)=L I^{\prime} P^{\prime} i^{\prime}, \\
& \left.L D^{\prime} P \alpha=L D^{\prime} \beta=L\left(F_{\beta}, I\right)_{\sigma_{\beta}}\right) .
\end{aligned}
$$

and therefore the diagram

commutes.
Since all morphisms α in \mathscr{I} are produces of morphisms of the trpes in raver 1 and 2 it follows that τ is natural.

Now let $\pi: I) \rightarrow A$ be an arbitrary mapping into . For cach whject $l:$ in \mathscr{K} there is a unique morphism $\ldots k$ such that

commutes.
'The transformation $\omega: L D^{\prime} \rightarrow A$ is a mapping because if $\beta: k^{*}-k^{\prime}$ is a morphism in \mathscr{K} then $L D^{\prime} \beta$ is the unique morphism such that

commutes. Since $x\left(D^{\prime} k\right)=\tau E_{k}$ it follows from diagram (1) that (1):LI I^{\prime} $\rightarrow A$ is the unique mapping such that

commutes.

Theorem 1 can be readily applied to proving known theorems such as the associativity of sums and products and that reflections of diagrams may be factored into a summation followed by a "quotient" and that coreflections may be factored into a multiplication followed by a "difference". (This may be seen from the following.)

Definition. $\hat{\mathscr{A}}$ is the largest discrete subcategory of the category \mathscr{A}. (A discrete category [2] is a category whose only morphisms are identities.)

Definition. If $D: \mathscr{I} \rightarrow \mathscr{A}$ is a diagram and $E: \hat{\mathscr{I}} \rightarrow \mathscr{I}$ is an injection then \hat{I} : $\hat{\mathscr{I}} .1$ is the family defined by $\hat{D}=D E$. (A family $(D i)_{i \in I}$ is a diagram I): $\mathscr{I} \times \mathscr{A}$ in which \mathscr{I} is a discrete category). Thus \hat{D} is the largest family in I.

We finally show that every diagram $D: \mathscr{I} \rightarrow \mathscr{A}$ has a subdiagram functor $I I^{\prime}: \nVdash \quad-\mathscr{D}$ of the form $\Delta: \hat{D} \rightarrow \hat{D}$ in which Δ is a family of mappings. Such a functor may be called an object-map factorization.

Let $E: \hat{\mathscr{F}} \rightarrow \mathscr{I}$ be an injection and for each morphism $\alpha: i \rightarrow i^{\prime}$ in I define $\left(F_{1}, \sigma_{1}\right): E \rightarrow E$ as a mapping having α as a component and whose other romponents are identity morphisms. Let \mathscr{K} be the category whose only object is E and whose morphisms are mappings $\left(F_{\alpha}, \sigma_{\alpha}\right): E \rightarrow E$. Define $P i=E$ and $P^{\prime} \alpha-\left(F_{1}, \sigma_{\alpha}\right)$ for each object i and each morphism α in \mathscr{I}. Define $D^{\prime}: \mathscr{K}$, 少 hy setting $D^{\prime} E=\hat{D}$ and $D^{\prime} P \alpha=\left(F_{\alpha}, D \sigma_{\alpha}\right): \hat{D} \rightarrow \hat{D}$. Then D is of the form 1 : $\hat{l}) \cdot \hat{l}$ in which Λ is a family of mappings $D^{\prime} P \alpha$ each of which consists of $I) \alpha$ together with identity morphisms.

III. "(OMMUTATIVITY" OF REFLECTORS AND COREFLEOTORS

In the category of R-modules in which R is a commutative ring with identity the direct sum functor Φ has as its domain families of modules and the quotient functor Ψ has as its domain pairs of modules of which one is a submodule of the other. It is known that "the quotient of the sums is the sum of the quotients" so that in a sense Φ "commutes" with Ψ although Φ and Ψ have different domains. In this section we characterize such functors in the cases they may be regarded as reflectors and coreflectors and define the composition of such functors relative to which they commute.

Given a diagram $D: \mathscr{I} \times \mathscr{J} \rightarrow \mathscr{A}$ there correspond subdiagram functors of the forms $D_{1}: \mathscr{I} \rightarrow \mathscr{D}$ and $D_{2}: \mathscr{J} \rightarrow \mathscr{D}$. A theorem on the commutativity of reflectors and coreflectors will be proved by applying Theorem 1 to these functors.

Let $E_{j}: \mathscr{I} \rightarrow \mathscr{I} \times \mathscr{J}$ be the imbedding functor defined by $E_{j} i=(i, j)$, $E_{j}^{\prime} \alpha=\left(\alpha, e_{j}\right)$ and let $E^{i}: \mathscr{J} \rightarrow \mathscr{I} \times \mathscr{J}$ be the imbedding functor defined by $E^{i} j=(i, j), E^{i}=\left(e_{i}, \beta\right)$ for objects i in \mathscr{I}, j in \mathscr{J} and morphisms α in \mathscr{I}, β in $\mathscr{\mathscr { F }}$. Since the E^{i} are all of the same form, a mapping or a comapping E^{i}.

- E^{i} may be regarded as a natural transformation. For each morphism $x: i>i^{\prime}$ in I let $\sigma^{r}: E^{i} \rightarrow E^{i}$ be the transformation defined by $\left(\sigma^{r}\right) j ;(x, j)$ for each object j in \mathscr{F}. To show that σ^{x} is natural let $\beta: j \rightarrow j^{\prime}$ be a morphism in \mathscr{f}. Then $E^{i} \beta=\left(e_{i}, \beta^{\prime}\right)$ and $E^{i^{\prime}} \beta=\left(e_{i^{\prime}}, \beta\right)$ and the diagram

commutes. The natural transformation $\sigma^{\alpha}: E^{i} \rightarrow E^{\prime}$ induces a natural trans. formation $D \sigma^{\alpha}: D E^{i} \rightarrow D E^{i}$. Define a functor $I_{1}: \mathscr{Y} \rightarrow 2$ by setting I_{1} i
$I E^{\imath}$ and $D_{1} \alpha=D \sigma^{\alpha}$ for each object i and each morphism α in. \mathscr{y}.
A similar procedure generates a functor $D_{2}: \mathscr{I} \rightarrow \mathscr{y}$. For each morphism, $;$ $j \rightarrow j^{\prime}$ in \mathscr{J} and for each object i in \mathscr{I} we set $\sigma_{\beta} i=\left(\kappa_{i}, \beta\right)$ and then define $D_{2} \beta=D \sigma_{\beta}$ and set $D_{2} j=D E_{j}$ for each object j in \mathcal{F}.

If $\alpha: i \rightarrow i^{\prime}$ is a morphism in \mathscr{I} and $\beta: j \rightarrow j^{\prime}$ is a morphism in \mathscr{F} then

$$
\begin{aligned}
(\alpha, \beta) & =\left(\alpha, e_{j^{\prime}}\right) \circ\left(e_{i}, \beta\right) \\
& =E_{j^{\prime}} \alpha \circ \sigma_{\beta} i \\
& =\sigma^{\alpha} j^{\prime} \circ E^{i} \beta .
\end{aligned}
$$

It follows that each morphism (α, β) in $\mathscr{I} \times \mathscr{J}$ is the product of two factor: one of which is an image under $E_{j^{\prime}}$ and the other is a component of one the mappings $E_{j}>E_{j^{\prime}}$, and furthermore one of them is an image under E^{i} and the other is a component of a mapping $E^{i} \rightarrow E^{i}$. Consequently $D_{1}:$, and $I_{2}: \mathscr{J} \rightarrow \varnothing$ are subdiagram functors.

Corresponding to the subdiagram functors are the projection functors P_{1}. $\mathscr{I} \times \mathscr{F} \rightarrow \mathscr{Y}$ and $P_{2}: \mathscr{I} \times \mathscr{F} \rightarrow \mathscr{F}$. It follows from Theorem 1 and it. dual that if $L: \infty \rightarrow \infty$ is a reflector or a coreflector then $L\left(L D_{1}\right)$ is isomorphic to $L\left(L D_{2}\right)$. We now apply this result to the study of the commutativity of re Hectors and coreflectors.

Definition. Let \mathscr{I} be a small category, let st be a category and lat \boldsymbol{y}_{1} br the category of diagrams of the form $D: \mathscr{I} \rightarrow$. For every morphism x in . ${ }^{\prime}$ l.t $M(\alpha)$ be a class of morphisms in \mathscr{A} such that if α is an identity then $M(\alpha)$ is the class of identity morphisms in . . Define $\mathscr{N}_{I}(M)$ as the full subcategor! of (1) such that $I) \alpha$ belongs to $M(\alpha)$ for every morphism α in \mathscr{F}.

Examples. I. If \mathscr{I} is a discrete category then $\mathcal{C}_{I}(M)={ }_{\prime} / 1$ and a reflector $\prime_{I}(M) \rightarrow . /$ is a sum functor and a coreflector $I_{I}(M) \rightarrow s$ is a product functor.
\because Let \mathscr{A} be the category of modules over a commutative ring R with identity and let \mathscr{I} be a category consisting of two objects i and i^{\prime} (with corresponding identities) and two morphisms $\alpha: i \rightarrow i^{\prime}$ and $\alpha^{\prime}: i \rightarrow i^{\prime}$ Let $M(x)$ consist of
monomorphisms in α^{\prime} and let $M\left(\alpha^{\prime}\right)$ consist of trivial homomorphisms so that $I x^{\prime}: D i \cdots D i^{\prime}$ maps $D i$ onto the zero element of $D i^{\prime}$. Then a reflector Φ : $\left(I_{I}(I I) \rightarrow C\right.$ is a quotient functor and $\left.\Phi I\right)=D i^{\prime} \mid D i$ for every diagram D in $A_{I}(M)$.

Definition. Let $\Phi: \mathcal{I}_{I}(M) \rightarrow \mathscr{A}$ and $\Psi: \mathscr{I}_{J}\left(M^{\prime}\right) \rightarrow \mathscr{A}$ be reflectors or coreflectors. Then Ψ is invariant under Φ (or Φ-invariant) provided for every morphism τ in $\rangle_{I}(M)$ the morphism Φ_{τ} is in class $M^{\prime}(\alpha)$ of Ψ whenever every component of τ is in $M^{\prime}(\alpha)$.

Examples. 3. Sum and product functors are invariant under any reflector of coreflector $\Phi: \mathscr{L}_{I}(M) \rightarrow \mathscr{A}$ since as shown in example 1 the classes $M^{\prime}(\alpha)$ of sum and product functors contain only identities.
4. A quotient functor as in example 2 is direct sum invariant. For if τ : $D \cdots)^{\prime}$ is a morphism in \mathscr{L}_{I} and τi is a monomorphism for each object i in I then $\sum_{i \in I} \tau i$ is a monomorphism and if τi is trivial for each object i in \mathscr{I} then $\sum_{i \in 1} \pi i$ is trivial.

Definition. Let $\mathscr{D}_{I \times J}\left(M \times M^{\prime}\right)$ be the full subcategory of $\mathscr{D}_{I \times J}$ such that $I(\alpha, e) \in M(\alpha), D\left(e^{\prime}, \beta\right) \in M^{\prime}(\beta)$ whenever $\alpha($ or β) is a morphism in \mathscr{I} (or $\mathscr{F})$ "nde (or é) is an identity in $\mathscr{I}(\mathscr{J}$ respectively). Let $D: \mathscr{I} \times \mathscr{J} \rightarrow \mathscr{A}$ be a diagram in $\mathscr{S}_{I \times J}\left(M \times M^{\prime}\right)$ and let $D_{1}: \mathscr{F} \rightarrow \mathscr{D}$ and $D_{2}: \mathscr{J} \rightarrow \mathscr{D}$ be the subdiagram functors of I) as defined above. Let $\bar{D}_{1}: \mathscr{I} \rightarrow \mathscr{D}_{J}\left(M^{\prime}\right)$ and $\bar{D}_{2}: \mathscr{J} \rightarrow \mathscr{D}_{I}(M)$ be restrictions of D_{1} and D_{2} and suppose $\Phi: \mathscr{D}_{I}(M) \rightarrow \mathscr{A}$ and $\Psi: \mathscr{D}_{J}\left(M^{\prime}\right) \rightarrow \mathscr{A}$ are functors. Iefine the composition $\Phi \Psi: \mathscr{D}_{I \times J}\left(M \times M^{\prime}\right) \rightarrow \mathscr{A}$ and the composition $\Psi \Phi$: $\ddots_{ノ, ~}\left(M \times M^{\prime}\right) \rightarrow \therefore$ by setting $\left.(\Phi \Psi) I\right)=\Phi\left(\Psi \bar{D}_{1}\right)$ and $(\Psi \Phi) D=\Psi\left(\Phi \bar{D}_{2}\right)$.

Theorem 2. If Φ and Ψ are reflectors then under the composition just defined () and Y' commute provided each is invariant under the other.

Proof. Since Φ is Ψ-invariant it follows that $\Psi \bar{D}_{1}: \mathscr{I} \rightarrow \mathscr{A}$ is a diagram in $\gamma_{l}(M)$ and since Ψ is Φ-invariant it follows that $\Phi \bar{D}_{2}: \mathscr{J} \rightarrow \mathscr{A}$ is a diagram in ${ }^{\prime}, \sigma\left(M^{\prime}\right)$. Furthermore $\Psi\left(\Phi \bar{D}_{2}\right)$ is isomorphic to $\Phi\left(\Psi \bar{D}_{1}\right)$ since Φ and Ψ are reflectors.

Examples. 5. In the category of R-modules direct sums commute with quotients. However, quotients are not self-invariant: otherwise we should be able to prove that if $A \subset B \subset G$ and if $A \subset C \subset G$ then $(G / C) /(B / A)$ is isomorphic to $(G / B) /(C / A)$ using the diagram

in which the j 's are monomorphisms and the i ss are trivial. In case ($\quad . \quad 1$ the monomorphisms are preserved under quotients and it follows that ($1 ;$. A) $/(B / A)$ is isomorphic to G / B.

By a trivial modification of the proof of Theorem 2 it follows that coreflectors $\Phi: \mathscr{D}_{I}(M) \rightarrow \mathscr{A}$ and $\Psi: \mathscr{D}_{J}\left(M^{\prime}\right) \rightarrow \mathscr{A}$ commute provided each is invariant undt, the other.

Definition. Morphisms between diagram.s may be generalized us follor: : let \mathscr{K} be a small category and let $D: \mathscr{I} \rightarrow \mathscr{A}$ and $D^{\prime}: \mathscr{F} \rightarrow, \mathcal{L}$ be diagram.s such that there are projectors $P: \mathscr{K} \rightarrow \mathscr{I}$ and $P^{\prime}: \mathscr{K} \rightarrow \mathscr{J}$ onto \mathscr{I} and onto $\mathscr{F}:$ then $\mathbb{A} \mathscr{K}^{-}$ morphism $D \rightarrow D^{\prime}$ is a natural transformation $D P \rightarrow I^{\prime} P^{\prime}$. A mapping I. I' is an \mathscr{I}-morphism and a comapping is a \mathscr{F}-morphism.

Let $\Phi: \mathscr{D}_{I}(M) \rightarrow \mathscr{A}$ be a coreflector and let $\Psi: \mathscr{X}_{J}\left(M^{\prime}\right) \rightarrow \mathscr{A}$ be a reflector
 diagram in $\mathscr{D}_{I \times J}\left(M \times M^{\prime}\right)$. As in the proof of Theorem $\supseteq \Psi^{\prime} \bar{D}_{1}: \mathscr{J} \ldots$ is a diagram in $\mathscr{D}_{I}(M)$ and $\Phi \bar{D}_{2}: \mathscr{F} \rightarrow \mathscr{A}$ is a diagram in $\mathscr{C}_{J}\left(M^{\prime}\right)$.

There is a natural transformation $\tau: D \rightarrow \varphi^{\prime} \bar{D}_{1} P_{1}$ that defines a relative reflection $D \rightarrow \Psi \bar{D}_{1}$ and there is a natural transformation $\left.\tau^{\prime}: \Phi \bar{D}_{2} I_{2} \rightarrow I\right)$ that defines a relative coreflection $\Phi \bar{D}_{2} \rightarrow D$. Consequently the natural transfor mation $\tau \tau^{\prime}: \Phi \bar{D}_{2} P_{2} \rightarrow \Psi \bar{D}_{1} P_{1}$ is an $\mathscr{I} \times \mathscr{J}$-morphism $\Phi \bar{D}_{2} \rightarrow \Psi \bar{D}_{1}$. Hener for every object i in \mathscr{I} there is a mapping $\left(\tau \tau^{\prime}\right) E^{i}: \Phi \bar{D}_{2} \rightarrow \Psi \bar{I}_{1} i$ and for every
 be a reflection and let $\pi:(\Phi \Psi) D \rightarrow \Psi \bar{D}_{1}$ be a coreflection. Then obviously therr exist unique morphisms $(1) i$ and $(1 j$ for each object i in \mathcal{I} and j in \mathscr{I} that makes the diagrams

commutative.
Since the diagram
commutes it follows that $\omega^{\prime}:(\Psi \Phi) D \rightarrow \Psi \bar{D}_{1}$ is a comapping. Similarly ($($ $\Phi \bar{D}_{2} \rightarrow(\Phi \Psi) D$ is a mapping.

We now show that there exists a unique morphism \boldsymbol{v} such that the diagram

commutes. The existence of such a morphism follows from the existence of a unique morphism v such that $\nu \pi^{\prime}=\omega$. This yields $\pi v \pi^{\prime}=\pi \omega=\tau \tau^{\prime}$ and therefore $\pi v=(1)^{\prime}$, which establishes commutativity.

If the natural transformation $\Psi \Phi \rightarrow \Phi \Psi$ were an equivalence then reflection functors would commute naturally with coreflection functors provided that each is invariant under the other. However, there are counterexamples such as (disjoint) sums and products in the category of sets. Nonetheless, we obtain a generalization of the celebrated minimax inequality: namely that there is a natural transformation $\sum_{j \in J} \prod_{i \in I} \rightarrow \prod_{i \in I} \sum_{j \in, J}$ from which we have as a special case the one-sided distributive law $(x \cdot y)+(x \cdot z) \rightarrow x .(y+z)$. For the cases in which sum and product are lattice operations these reduce to the usual laws. [3|

REFERENCES

(1)Kan D. N.. Adjoint functors, Trans. Amer. Math. Soc. 87 (1958), $294-329$.
$[2]$ Freyd P., Abelian Categories. New York 1964.
|3| Birkhoff G., Lattice Theory, New York 1948.
| + | MacLane S., Cateyorical Algebra. New York 1963.
|F|Johnson A. A., Dissertation, Case Institute of Technology 1959.
(6) Eilenberg S., MacLane s.. General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945), 231-294.
|7| MacLane S., Homology, Berlin-Göttingen--Heidelberg 1963. Received January 15, 1965.

