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M A T E M A T I C K O - F Y Z I K Á L N Y Č A S O P I S 
R O Č N Í K 1 6 1966 Č Í S L O 4 

REFLECTORS AND COREFLECTORS 
ON DIAGRAMS 

ARNOLD A. JOHNSON, Toledo (USA) 

I. INTRODUCTION 

In the fall of 1957 the writer began a Ph.D. dissertation under the direction 
of K. B. L e a c h investigating what K a n [1] was to call direct and inverse 
limits and what F r e y d [2] was to call left and right roots (or reflections and 
coreflections). The work was essentially complete by the time Kan's article 
[1] on adjoint functors, appeared in the Transactions during the following 
year. Due to circumstances beyond the control of the writer there was a delay 
in the publication of his results and in the meantime some of the results such 
as the factorization of left roots into differences of products were published 
independently by other writers [2]. However, since the results in which the 
dissertation culminates have no t to the writer's knowledge ye t appeared it 
seemed to him worthwhile to write them up for publication, adapting for this 
purpose the elegant language invented by Kan. 

The main tool of this paper is the concept suggested by E. B. Leach of a rela
tive reflection: an object A" in a category -^ is a relative reflection of an object 
X in y/J irith res peel to a functor G: s/ -> ~/J provided there is a morphism A" - X 
in • '/} satisfying the universal mapping property with respect to GA for all 
objects A in s/. We define a category Q of diagrams over a category , r/, 
in which the diagrams are not necessarily of the same form, and imbed r/ 
as a subcategory of Q by means of a functor -/: ^/ --> f/. If a diagram I) has 
a subdiaqram functor I)': ;//' > Q (see below) and if L: <$ -> s/ is a reflector 
[2 | then LI)' is a relative reflection of J). Since a reflection of relative reflection 
of /) is a reflection of I) (and dually for coreflections) a procedure is obtained 
lor the iteration of reflections and coreflections which leads naturally to the 
investigation of the associativity, "commutativity", and distributivity of 
reflectors and coreflectors. Categories r/i(M) of diagrams of the form I): 
v * -r/ are defined in which for each morphism a in ,f, Doc is constrained 
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to lie in a class M(oc) of morphisms in s/. Reflectors and coreflectors on these 

categories are s tudied. E x a m p l e s are sums, p roducts , quo t ien t s , subobjects , 

e tc . Given functors 0 : &i(M) -> ,z/ and lP : r/j(M') -> si a n d a d iagram 1) 

in .(tiixj(MxM') we define subdiagram functors D\ : J ~> 0 'j(M') and Do : 

, / -> (F/(M) and define the composit ions 0 VJ : &I:<j(M X M') -> .V and 

V <2> : &IXJ(M x J / ' ) > - ^ by set t ing (<F 0 ) D = lJJ(0 D2) a n d ( 0 7')/> 

- 0(xFD1). If xF(0D2) is isomorphic to 0(^1)^) then 0 and V are said to 

commute even t h o u g h 0 and V7 have different domains . Invariance of reflectors 

and coreflectors unde r one ano the r is defined and it is shown t h a t one reflector 

0 : ^i(M) -> stf commutes wi th ano the r W : (ij(M') > stf p rovided each is 

invar ian t under the o ther . There is a dua l resul t on coreflectors . If 0 : ii(M) -

-> sf is a coreflector and W : Q)j(M') -> si is a reflector such t h a t each is 

invar ian t unde r t he o ther t hen 0 does no t generally c o m m u t e with W bu t 

there exists a na tu ra l t rans format ion W 0 -> 0 T7. The la t te r specializes to t he 

celebrated minimax theorem a n d m a y be fur ther specialized to the one-sided 

d is t r ibut ive law (x . y) + (x . z) < x . (y -f z) of lat t ice theory 13]. 

II. RELATIVE REFLECTIONS 

Definition. Let G: s$ -> $8 be a functor and let X -> X be a morphism in s/J. 

Suppose that for any morphism X -> GA in which A is an object in sJ there 

exists a unique morphism X -p-> GA such that 

X 

ß 

^GA 

commutes. Then X -> X is a relative reflection and X is a relative reflection of X 

(both with respect to G). When there exists an object X' and a unique morphism 

X' a-> A in si such that ft = Goc then the relative reflection is absolute: in this 

case X' is called a reflection of X and X > GX' is called a reflection (both with 

respect to G). 

Relative reflections with respect to a functor G: si -> H form a subcategory of ./J. 

A reflection of a relative reflection of an object X is a reflection of X. Furthermore 

if X —> X is a relative reflection and X > GX' is a reflection then there is a unique 

morphism X->GX' such that (1) the diagram 

- **X 

\ ! 
GX 

commutes and (2) the morphism X -> GX' is a reflection 
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Recall that a diagram D over a category stf is a functor D: J -> stf in which 
«/ is a small category [1]. If D: J -> s/ and D': . / ' -> s/ are diagrams, then 
a )napping r: D —> D' consists of a functor TI: ,/—> . / ' onto - / ' , together with 
a natural transformation r^: D -> D'r\. We will write T = (TI, T2). (If TI is 
obvious we will write only T2 instead of (TI, T2).) A morphism equal to r^i 
for some i in «/" is called a component of the mapping. 

Definition. 7/ G: F ->F' is a natural transformation between functors F, F': 
.T - * •/) and if G: *& -> T̂ is a functor then o G: FG -> F'6? is ^ e natural trans
formation defined by (o G)c = o(Gc) for each object c in *&'. 

Definition. If r': D' -> D" is another mapping then r'r: D -> D" is defined by 
(T'T)I -- T,'TI and (r'r)^ = (T2TI)T2. Consequently we obtain the category r3 of 
diagrams over s/. 

There is an obvious imbedding functor J: s/ -> 3) and under this imbedding 
we may regard stf as a subcategory of f$. I t follows that a reflector [2] F: 
(/ ^ .0/ is a (direct) limit functor. By a reflection of a diagram D over s4 we 
mean a, reflection of D with respect to J. We will usually suppress mention of J 
and identify objects A and morphisms a in s/ with their corresponding diagrams 
J A and J a . 

A mapping r: D -> A in which A is an object of stf consists of a family of 
morphisms Ti: Di -> A indexed by objects in r0 such that for each morphism 
a: i —> /' in J the diagram 

commutes, 
A category s/ has an opposite category <C/°P in which the objects and mor

phisms of ,c/ are the objects and morphisms of s/°v but hom^, (A, B) --
honV$ (B, A) [4], Moreover the product a ° ft of morphisms a, /? in s/°v 

is defined by a° ft ~ ftoc whenever ft a is a product in ,s/. 
[f /): . / —> stf and D': ./' -> s/ are diagrams then a comapping r: D-> D' 

is a functor TI : / ' —> . / together with a natural transformation T2 : Dr± -> D'. 
In (effect a comapping has the same definition as a mapping except that domain 
and range are interchanged and components of r from s/ are replaced by 
morphisms from ..c/op. The converse category @* of diagrams is the category 
whose objects are diagrams and whose morphisms are comappings. Corefiections 
are defined using comappings. 
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A e o m a p p i n g r: A — I) in which A is an object in r / and I): .9 * ./ is 

a d iagram consists of a family of morphi sms ri: A - Di indexed by objects 

in-/ such t h a t for each morphism a: / -> /7 in J t h e diagram 

Pt D g > Di' 

Ђ \ / * ' 

•ommutcf 

Definition. Ltd F:-/ -^ Jf be a functor. A functor induced category P ' (>/ ) 

/* defined as follows: the objects are diagrams EK- JK * J out for (uch obj(cf 

K in rJ and there corresponds to each morphism. jl: K > K' in .'/r a mapping 

(Fp, op): EK^EK'. The functor induced category satisfies the proj)(rti( •<• 

(1) A morphism oc in J is an image under EK if and only if POL eK . 

(2) Each morphism in J is the product of factors oc such that x is < ith< r an 

image under one of the EK or a component of a mapping (Fp. <ip) such that 

Poc - p . 
(3) EK is an imbedding, i. e. is one-to-one into. 

(4) (F(3, op) is an identity if and only if [j is an identity. 

W ^ o ^ i F f l n ^ J - Wfl^Ofl^)-

Jf such a category P x(//f) exists t h e n the m a p p i n g P ': '// - F i (.>/, ). 

defined by P AK •-- EK for each object K in /J a n d P l[> (Fp. op) for 

eaeli morphism [i in J9', is by (4) a n d (5) a functor . T h e functor P i n d i c e s 

a factorization of / into subcategories a n d morphi sms between the subcate

gories. T h u s P l : J/ > P~l (J) m a y be called si factorization of -/. 

Definition. Let D: J - J be a diagram and let D : P ' (•'// ) • V b< a functor 

such that D(EK) - DEK and T)(Fp, op) (Fp. Dap). Thus I) i» a r<sfricfion 

of J) to the subcategories of J in P ' (Jf) and to the (napping* betwet n th< *uh-

caiegories. Let D' T)PX: ,9f , J then I)'K - DP >K DEK:'/K • . v 

is a, diagram for each object K in •//'. D' is called a sulnh'agram junctor of D and 

the functor P is a projection functor of D 

Theorem 1. Suppose L: L/ -> J /,s u, uflector and x: Erj --.- L /* tin natural 

transformation induced by L, [ 1 | (ealled a front adjunction by M a e L a n e \\\) 

Let D: J —.* sj In a diagram, and, let />': /9/' • Or be a snhdiugrum functor <>J D 

IfP : J -.- Jf is a projection functor of /)' and r: I) --.- LI)' P is flu tru nsformation 

such thatrEic ~ x(D'k) for each object k in Jf then (P. r): D J J) is a nla'in 

reflection. (By the. object L(DEfC) of «&/, the range-object of x(D'k). is Inn )n*un'\ 

the diagram JL(DEf) -where J: / / -3) is the chosen imix tiding of - / in / .) 

P r o o f . In order to establish t h a t t h e t rans format ion r: J) - LD' P i» n a t u r a l 

let oc: i > /' be a morphism in , / . T h e r e aiv two easels to consider, 
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Case 1. There exists a m o r p h i s m oc': j --> j ' in Jk such t h a t Ekoc' = oc for some 
object k in C/f. I t follows t h a t (D'k)oc' = (DEk)oc' = Doc a n d since t h e n a t u r a l 
t rans format ion x(DEk) : DEk > L(DEk) m a y be regarded as a m a p p i n g , t h e 
d iagram 

(DEk)j <DEk>a' -(DEk)j' 

[k(DE^]i 
[*(DEk)]ľ 

L (DEk) 

c o m m u t e s . B u t L(DEk) = L(D'k) = L(D'Pi) = L(D'Pi') a n d P a = ek and 
consequent ly t h e d iagram 

Di-

ГІ 

Da 
— DL 

\ri' 

LD>pi L D ' P g *LD'PІ< 

c o m m u t e s . 

Vase 2. Pa — /? a n d a is a c o m p o n e n t of (Fp , op), i. e. t h e r e exists j such t h a t 

a a j a. Let k a n d k' be objects in Cjf such t h a t Ekj = i a n d Erj' — i' • T h e 

d i a g r a m 

(Ft.Ds») 
DEk ?'UfГ . DЄk' 

K(DEk)\ 

UDEk) 
? UFf,0rf) 

K(D£k<) 

L(DEk.) 

)inmutes and consequent ly for each j in fk t h e d i a g r a m 

(DEk)j — (DEk<)j' 

[кíDEjJj [K(DEk<)]j 

T LІK.Ù9J ł 
L ( 0 £ p £ ÍL-^ í - ^ ' ) 
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commutes. But 
L(DKk) = L(D'k) = --• LD'ľi 
L(DҖ-) ..= L(D'k') , -- LІУľť, 
LD'ľoc .=. LD'ß --- L(Fß, Doß) 

and therefore the diagram 

Di 

ri 

LDPi-

Da 

\ri 
LD'Pa 

LDP*, 

commutes. 
Since all morphisms a in J are produces of morphisms of th(4 types in case-; 

1 and 2 it follows that r is natural. 
Now let TT: 1) -> A be an arbitrary mapping into -r/. For each object /; in 

,>T there is a unique morphism <ok such that 

D>- K(D'k) 

л £ Г 

L(D'k) 

Uk 

commutes. 
The transformation <o: LJL)' --> A is a mapping because if jj: k -* k' is a mor

phism in J f then LWfi is the unique morphism such that 

D'k-
D'ß 

K(D'k) 

L(D'k) 

^XEL XEJ 

~D'k' 

U k ^ ^ük 

^ L(D'ß) 

K(D'k') 

*~Шk') 

commutes. Since K(L)'k) = rE/c it follows from diagram (1) that e> : LI)' 
-> A is tne unique mapping such that 

Ţ-+LD' 
u 

A 

commutes. 
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Theorem 1 can be readily applied to proving known theorems such as the 
associativity of sums and products and that reflections of diagrams may be 
factored into a summation followed by a "quotient" and that coreflections may 
be factored into a multiplication followed by a "difference". (This may be 
seen from the following.) 

Definition, jj is the largest discrete subcategory of the category .$/. (A discrete 
category [2] is a category whose only morphisms are identities.) 

Definition. If D: J -> s$ is a diagram and E: J ->J is an injection then D: 
J v ,0/ is the family defined by D = DE. (A family (Di)ie/ is a diagram D: 
J - J in which J is a discrete category). Thus D is the largest family in D. 

We finally showr that every diagram D: J --> sJ has a subdiagram functor 
I)': '//' > & of the form A: D-> I) in which A is a family of mappings. Such 
a functor may be called an object -map factorization. 

Let E: J -> . / be an injection and for each morphism a: i --> i' in . / define4 

(FA. ox): E >E as a mapping having a as a component and whose other 
components are identity morphisms. Let JC be the category whose only object 
is E and whose morphisms are mappings (Fa, oa\- E ~>E. Define Pi = E and 
Pot - ( I \ , cra) for each object i and each morphism a in / . Define D': Jf > J 
by setting D'E = D and D'Poc = (I\, Daa): D -> I). Then D is of the form L 
/) * I) in which A is a family of mappings D'Poc each of which consists of 
Doc together with identity morphisms. 

III. ,(X)MMUTATIVITY^ OF REFLFCTORS AND CORKFLKCTOKS 

In the category of I?-modules in which If* is a commutative ring with identity 
the direct sum functor 0 has as its domain families of modules and the quotient 
functor W has as its domain pairs of modules of which one is a submodule of 
the other. I t is known that " the quotient of the sums is the sum of the quo
tients4' so that in a sense 0 "commutes" with W although 0 and *F have dif
ferent domains. In this section we characterize such functors in the cases they 
may be regarded as reflectors and coreflectors and define the composition 
of such functors relative to which they commute. 

(Jiven a diagram D: J X fl -> s/ there correspond subdiagram functors 
of the forms Df. J -> Q> and D2: J? ~> £$. A theorem on the commutativity 
of reflectors and coreflectors will be proved by applying Theorem 1 to these 
functors. 

Let Ef J -> - / x f be the imbedding functor defined by Kyi = (i, j ) , 
Ejoc — (a, ef) and let FJ: J> -> J X J be the imbedding functor defined by 
fijt'j == (i? j)y El = (ei, fi) for objects i in J, j in J* and morphisms a in / , 
/>' in J. Since the El are all of the same form, a mapping or a comapping El -
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-»Er may be regarded as a natura l t rans format ion. For each morphism 

y\ i > // in ./ let OX E} > Ev be t h e t r a n s f o r m a t i o n defined by {ox)j -• U, </) 

for each object j in f . To show t h a t oa is natura l let /i: j > / be a morphism 

in / . r r h e n Elji =. (ei, [}) a n d K*"/J - (<x , /J) a n d t h e diagram 

(0CЄj)\ \«X,Єj 

(ÙЉîĚLã'j'1 

commutes . The na tu ra l t r ans format ion oa\ El -> Er induces a na tura l t r ans 

format ion Doa: DEl ~» DE1', Define a functor Dy. // -> rS by se t t ing Dx i 

DE% and D\OL •-•• Do(X for each object i and each morphism a in / . 

A similar procedure generates a functor D2: f —> (/. For each morphism ) . 

j-> j ' in $ and for each object i in - / we set cr̂  / — (e/. ft) and then define 

/>2/> -— Dop and set I)2j -~ DJUj for each object j in / . 

If a: / > /' is a morphism in , / and /5: j > j ' is a morph i sm in / then 

(a, /}) - (a, fiT) o (e f , 0) 

--- EyOL O Opi 

~: O^ O E^J. 

It follows t h a t each morphism (a, /3) in J X ^ is the produc t of t w o factors 

one of which is an image under Ey and t h e other is a component of one the 

mappings Ej ->Ey, and fur thermore one of them is an image unde r E'1 and 

the o ther is a component of a mapp ing El-> E>-'. Consequent ly I)\\ / * / 

and J)>: Jf > J are subdiagram functors . 

Corresponding t o the subd iagram functors are the project ion functors I\. 

J x J - > - / and P 2 : . / X / -> / . I t follows from Theorem 1 a n d its dual 

t h a t if L: J •-> s/ is a reflector or a coreflector t hen L(JA)\) is isomor[)hic to 

L(LDz). We now apply th is result to the s tudy of t he c o m m u t a t i v i t y of re

flectors and coreflectors. 

Definition. Let J be a small category, let s/ be a category and let /1 b( th 

category of diagrams of the form D: J -> sj. For every morphism x in // Ut 

M(x) be a class of morphisms in stf such that if a is an identify then M(x) is tin 

class of identity morphisms in stf, Define Ji(M) as the full subcategory of /'j 

such that Da. belongs to M (ex) for every morphism a in J -

E x a m p l e s . 1. If / is a discrete category then r/j(M) -~ ' / / and a reflector 
r/i(M) -•> .9/ is a sum functor and a coreflector Jj(M) > rJ is a product functor. 

2. Let sj be the category of modules over a c o m m u t a t i v e ring R wi th ident i ty 

and let . / be a category consisting of two objects / and /' (with corresponding 

identit ies) and two morphisms a: i - - i' and x'\ i > i' Let M(x) consist of 
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monomorphisms in -r-J and let M(ot') consist of trivial homomorphisms so that 
Don': Di ^ Di' maps Di onto the zero element of Di'. Then a reflector 0 : 
fyj(M) > si is a quotient functor and 0D - Di'jDi for every diagram D in 

Definition. Let 0: ryj(M) > si and W: fyj(M') •-> si be reflectors or coreflectors. 
Then W is invariant under 0 (or 0-invariant) provided for every morphism x 
in f/i(M) the morphism 0r is in class M'(cx) of W whenever every component 
of x is in M'(oc). 

E x a m p l e s . 3. Sum and product functors are invariant under any reflector 
of corellector 0: Q?i(M) ---> si since as shown in example 1 the classes M'(oc) 
of sum and product functors contain only identities. 

4. A quotient functor as in example 2 is direct sum invariant. For if T: 
D - - ])' is a morphism in &i and xi is a monomorphism for each object i in 
. / then ^ xi is a monomorphism and if xi is trivial for each object i in ,0 then 

^ xi is trivial. 
if I 

Definition. Let fJixj (MxM') be the full subcategory of S$IXJ such that 
D(OL, e) G M(oc), D(e', /)) G M'(fi) whenever a (or fi) is a morphism in J (or $) 
and e (or e') is an identity in J (f respectively). Let D: J x J-> si'be a diagram 
in ryi <j(M x M') and let D\\ J -> ci and D2: jp -> Q) be the subdiagram functors 
of D as defined above. Let Di: J -> ^j(M') and D2: f -> £^/(M) be restrictions 
of D] and D2 and suppose 0: ($i(M) - > si and W: Q)j(M') -> si are functors. 
Define the composition 0W: 3>ixj(MxM')~>si and the composition W0: 
"yij(MxM')^.r/ by setting (0W) D .-=-. 0(W Di) and (W0) D = W(0> T)2). 

Theorem 2. If 0 and W are reflectors then under the composition just defined 
0 and W commute provided each is invariant under the other. 

Proof. Since 0 is ^-invariant it follows that W D\. ./"-> si is a diagram in 
'y'i(M) and since W is </*>-invariant it follows that 0D2: J? --> si is a diagram 
in ryj{M'). Furthermore W(0D2) is isomorphic to 0(WDi) since 0 and W are 
reflectors. 

E x a m p l e s . 5. In the category of /^-modules direct sums commute with 
quotients. However, quotients are not self-invariant: otherwise we should be 
able to prove that if A CB CG and if A CC CG then (GlC)l(BjA) is 
isomorphic to (GjB)j(CjA) using the diagram 

У-
ti * 

-2 \t. u 
JЗ 

A л ŁB 
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in which the j ' s are monomorphisms and the fs are trivial. In case (' A 

the monomorphisms are preserved under quotients and it follows that (// A) 

/(///A) is isomorphic to G/B. 

By a trivial modification of the proof of Theorem 2 it follows that core (lectors 

0: &z(M) ~> J>/ and W: (/j(Mf) -> ^ commute provided each is invariant unrf< r 

the other. 

Definition. Mejrphisms bet/ween diagrams may be generalized as folioirs: 

let :/f be a small category and, let D: ,f -> ,9/ and D': Jf -+ °/ be diagrams such that 

there are projectors P: Jf* -> J and P': tf --> J> onto ./ and onto rf: tla na .#'-

morphism D -> D' is a natural transformation DP -> I)'P'. A mapping D - D 

is an /-morphism and a comapping is a J*-morphism. 

Let 0: f$i(M) > -c/ be a coreflector and let XP: &j(M') -> •-/ he a reflector 

and suppose that each is invariant under the other. Let D: / \ / - ••/ be a 

diagram in .@/xj (MxM'). As in the proof of Theorem 2 iJJD\: -/ - V is a 

diagram in .(/j(M) and 0D2: cf > s/ is a diagram in r/J(M'). 

There is a natural transformation r: D -> lIJDiP\ that defines a relative 

reflection D > lfJD\ and there is a natural transformation T': 0D2P2 * D that 

defines a relative coreflection 0D2 > D. Consequently the natural transfor

mation TT': 0D2P2 > VDxPi is an / X /-morphism 0D2 - lPDi. Hence \'ov 

every object i in ./ there is a mapping (TT')E' : 0D2 ^ WDii and for every 

object j in f there> is a comapping (TT')EJ: 0>D2j > lFDi. Let zi : 0D2 - (7 0)/> 

l)e a reflection and let n: (0W)D --> lPD\ be a coreflection. Then obviously there 

exist unique morphisms c/i and oj for each object i in / and j in / that makes 

the diagrams 

f i- rГEj 
-Ѓб, 

ы j \ 

tõ,- - ^ ÿ б , . 

*'\ ^^UІ, 

(f§D' 

commutative. 
Since the diagram 

§ђ2j^(Ч)QГ(l,JÌ > ÿ б 

*'/ W-0 

( f)D 
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commutes it follows that c/: (lP@)D-> *PD± is a comapping. Similarly OK 

07)2 > (^P)I) is a mapping. 
We now show that there exists a unique morphism v such that the diagram 

fö, u -(tfto-g—>jõ, 

commutes. The existence of such a morphism follows from the existence of 

a. unique morphism v such that VJI' = co. This yields nvn — no) ----- TT' and 

therefore TT.V ----- c/, which establishes commutativity. 

Jf the natural transformation lF&-> <PW were an equivalence then reflection 

functors would commute naturally with corefiection functors provided that 

each is invariant under the other. However, there are counterexamples such 

as (disjoint) sums and products in the category of sets. Nonetheless, we obtain 

a generalization of the celebrated minimax inequality: namely that there is 

a- natural transformation 2 0 - > FI 2 fr°m w n i c r j w e have as a special case 
jeJ Ul ief jeJ 

t he one-sided distributive law (x . y) -\- (x . z) > x . (y -f- z). For the cases in which 

sum and product are lattice operations these reduce to the usual laws. |3] 
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