Rudolf Fiby A Functorial Construction of Fibre Bundles with a Structural Group

Matematický časopis, Vol. 23 (1973), No. 1, 43--44

Persistent URL: http://dml.cz/dmlcz/126994

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

A FUNCTORIAL CONSTRUCTION OF FIBRE BUNDLES WITH A STRUCTURAL GROUP

RUDOLF FIBY, Bratislava

The usual definition of a fibre bundle with a structural group can be formulated in terms of categories. The advantage of such a definition is that the functorial properties of fibre spaces with a structural group follow immediately.

Terminology: categories, direct products and functors will be used in the same sense as in [3].

Notations:

$\mathscr{S}p$	the	e category of topological spaces and continuous maps;
Bun	\dots the	e category of topological bundles and bundle mor-
	\mathbf{phi}	isms (see [2], Chap. II, § 3);
$\mathscr{S}p_{G}$	the	category of G - spaces and G - morphisms (see [2],
	\mathbf{Ch}	ap. IV, §1.3);
\mathscr{P}_{G}	\dots the	e category of free perfect actions of a topological
	gro	Sup G on topological spaces (see [1], Chap. III, § 4);
${\mathcal I}_G$	\dots the	e forgetful functor from $\mathscr{S}p_{G}$ to $\mathscr{S}p$ which assigns
	to	every object of $\mathcal{S}p_{G}$ its action topological space
	and	l preserves morphisms;
Ørb	\dots the	e functor from Sp_G to $\mathcal{S}p$ which assigns to each
	obj	ect A of $\mathscr{S}p_{G}$ the corresponding orbital decomposi-
	tio	n A/G endowed with the induced topology and to
	eac	the morphism $f: A \rightarrow A'$ the induced continuous map
	f/G	$A': A/G \to A'/G;$
$(A \wedge B,$		
$\pi_A: A \wedge B \to A,$		
$\pi_B: A \wedge B \to B)$	\dots the	direct product of objects A , B of $\mathscr{G}p_{G}$;
٨	\dots the	functor from the category $\mathscr{S}p_G \times \mathscr{S}p_G$ (the Car-
	\mathbf{tes}	ian product of $\mathscr{S}p_{\mathcal{G}}$ with itself) to the category $\mathscr{S}p_{\mathcal{G}}$
	def	ined by: $(A, B) \rightarrow A \land B$ for each object (A, B)
	of	$\mathscr{S}p_G \times \mathscr{S}p_G$ and $(f,g) \to f \land g$ for each morphism
	(f,	g) of $\mathscr{S}p_G \times \mathscr{S}p_G$, where $f \wedge g$ is uniquely defined by
	\mathbf{the}	e commutative diagram (0).

The definition of the functor \wedge is correct since the direct product extsis for all objects of $\mathscr{S}p_G$.

Let \mathscr{F}_G be the functor from the category $\mathscr{S}p_G \times \mathscr{S}p_G$ to the category $\mathscr{B}un$ defined by

 $(A, B)\mathscr{F}_G = ((A \wedge B)\mathscr{O}rb, (\pi_A)\mathscr{O}rb, (A)\mathscr{O}rb)$

for each object (A, B) of $\mathscr{S}p_G \times Sp_G$ and

$$(f,g)\mathscr{F}_G = ((f \wedge g)\mathscr{O}rb, (f)\mathscr{O}rb)$$

for each morphism (f, g) of $\mathscr{S}p_G \times \mathscr{S}p_G$.

The definition of the functor \mathscr{F}_G is justified by the commutativity of the diagram (0).

Since \mathscr{P}_G is a subcategory of $\mathscr{S}p_G$, \mathscr{F}_G can be restricted to $\mathscr{P}_G \times \mathscr{S}p_G$ and this restriction will be denoted by $\mathscr{A}sb_G$. Then the basis of (A, B) $\mathscr{A}sb_G$ is a Hausdorff space for each object (A, B) of $\mathscr{P}_G \times \mathscr{S}p_G$ (see [1], Chap. III, § 4.2); moreover (A, B) $\mathscr{A}sb_G$ is a fibre bundle over $(A) \mathscr{O}rb_G$ with a fiber $(B)\mathscr{I}_G$ and G as a structural group (see [2], Chap. IV, § 5). Therefore a fibre bundle with a structural group G can be defined by use of the functor $\mathscr{A}sb_G$.

Remark. It is possible to take the category of principal G - spaces with the same morphisms as in $\mathscr{S}p_G$ (see [2], Chap. III, § 2) instead of \mathscr{P}_G . In such a case the basis of $(A, B) \mathscr{A}sb_G$ is not necessarily a Hausdorff space.

REFERENCES

- [2] HUSEMOLLER, D.: Fibre bundles. New York, McGraw-Hill Book Co., 1966.
- [3] LANG, S.: Algebra. Reading, Mass., Addison-Wesley P. Co., 1965.

Received April 23, 1971

Katedra geometrie Prírodovedeckej fakulty Univerzity Komenského Bratislava

^[1] BOURBAKI, N.: Topologie générale, 3rd ed. Paris Hermann, 1965.