Matematický časopis

Jozef Kačur
 Application of Rothe's method to nonlinear evolution equations

Matematický časopis, Vol. 25 (1975), No. 1, 63--81

Persistent URL: http://dml.cz/dmlcz/127040

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

APPLICATION OF ROTHE'S METHOD TO NONLINEAR EVOLUTION EQUATIONS

JOZEF KAČUR

This paper deals with the initial boundary value problem for abstract nonlinear evolution equations of the form

$$
\begin{equation*}
\frac{\mathrm{d} u(t)}{\mathrm{d} t}+A(t) u(t)=f(t), \quad u(0)=u_{0}, \quad 0 \leqslant t \leqslant T<\infty \tag{1}
\end{equation*}
$$

where $A(t)$ is for every $t \in\langle 0, T\rangle$ a nonlinear operator. Using Rothe's method, the author proved in [1] the existence of a weak solution for some class of nonlinear differential equations of the form (1). Using this method and following some technics used by J. Nečas in [2] we can generalize and strengthen the results of [l] (part II). Deriving a priori estimates we use some results of P. P. Mosolov [3].

The method of Rothe consists in the following idea: Successively, for $j=1,2, \ldots, n$ we solve (see the definition 4) the e juations

$$
\begin{equation*}
\frac{z_{j}-z_{j-1}}{h}+A\left(t_{j}\right) z_{j}=f\left(t_{j}\right) \tag{la}
\end{equation*}
$$

where $\left\{t_{j}\right\}(j=0,1, \ldots, n)$ is an equidistant partition of the interval $\langle 0, T\rangle$, $h=T n^{-1}$ and $t_{j}=j h . z_{0} \equiv u_{0}$, where u_{0} is from (1). Then, under certain assumptions, Rothe's function

$$
\begin{equation*}
z^{n}(t)=z_{j-1}+\left(t-t_{j-1}\right) h^{-1}\left(z_{j}-z_{j-1}\right) \quad \text { for } \quad t_{j-1} \leqslant t \leqslant t_{j} \tag{*}
\end{equation*}
$$

$j \quad 1,2, \ldots, n$ converges toward the solution of (1). This method, introduced by E. Rothe in [4], has been used by many authors - for this purpose see references [1]-[8].

Assumptions

Let V be a real reflexive Banach space and V^{\prime} its dual space. The duality between V and V^{\prime} we denote by [., .]. Let H be a real Hilbert space with
scalar product (. . .) and the norm $\|\|.$. The norm in V, V^{\prime} we denote by $\cdot v$, $\|\cdot\|_{V^{\prime}}$. We assume that $V \cap H$ is a dense set in both V and H with the corresponding norms. $A(t), t \in\langle 0, T\rangle$ is a system of operators satisfying

$$
\begin{equation*}
A(t): V \rightarrow V^{\prime} \quad \text { is continuous for each } \quad t \in\langle 0, T\rangle \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
[A(t) u-A(t) v, u-v] \geqslant 0 \quad \text { for all } \quad u, v \in V, t \in 0, T \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
[A(t) u, u] \geqslant\|u\|_{V} r\left(\|u\|_{V}\right) \quad \text { for all } \quad u \in V, t \in\langle 0, T \tag{4}
\end{equation*}
$$

where the function $r(s)$ is nondecreasing for $s \geqslant s_{0}>0$, bounded in $\left\langle 0, s_{0}\right.$ and satisfying $\lim _{s \rightarrow \infty} r(s)=\infty$.

$$
\begin{equation*}
A(t) u=\operatorname{grad} \Phi(t, u) \quad \text { for } \quad t \in\langle 0, T\rangle, u \in V, \tag{5}
\end{equation*}
$$

where $\Phi(t, u)$ is a functional defined on V, i.e., $A(t)$ are potential operators.
There exist derivatives $A^{\prime}(t) u, A^{\prime \prime}(t) u$ of $A(t) u$ in V^{\prime} with respect to $t \in$ $\in(0, T)$ and

$$
\begin{equation*}
\left\|A^{\prime}(t) u\right\|_{V^{\prime}}+\left\|A^{\prime \prime}(t) u\right\|_{V^{\prime}} \leqslant C_{1}+C_{2} r\left(\|u\|_{V}\right) . \tag{6}
\end{equation*}
$$

We shall assume that $f(t)$ is Lipschitz continuous from $\langle 0, T\rangle$ into H, i.e.,

$$
\begin{equation*}
\left\|f(t)-f\left(t^{\prime}\right)\right\| \leqslant L\left|t-t^{\prime}\right| \text { for all } t, t^{\prime} \in\langle 0, T\rangle \tag{7}
\end{equation*}
$$

Remark 1. If $V \equiv W_{p}^{k}$ (Sobolev space) with $p>1$, then $r(s)=C_{1} s^{1}-$ $-C_{2}$.
Remark 2. In Remark 4 we point out that the conditions (4) and (6) can be substituted by (4^{\prime}) and (6^{\prime}), which are more general in some sense:

$$
\left(\|u\|_{V}\right)^{-1}[A(t) u, u] \rightarrow \infty \quad \text { for } \quad\|u\|_{V} \rightarrow \infty
$$

uniformly in $t \in\langle 0, T\rangle$.
i) $\left|\frac{\partial}{\partial t} \Phi(t, u)\right|+\left|\frac{\partial^{2}}{\partial t^{2}} \Phi(t, u)\right| \leqslant C_{1}+C_{2}|\Phi(t, u)|$
ii) $\left\|A^{\prime}(t) u\right\|_{V^{\prime}}<\infty$ for all $t \in\langle 0, T\rangle, \quad u \in V^{\prime}$
iii) $|\Phi(t, u)| \leqslant C_{1}+C_{2}[A(t) u, u]$.

- Remark 3. In (6) or (6^{\prime}) it suffices to consider the difference quotient of the first and second order in the place of corresponding derivatives of $A(t)$ and $\Phi(t, u)$.
Definition 1. $u(t) \in C_{w}^{1}(\langle 0, T\rangle, H)$, iff $(u(t), v) \in C^{1}(\langle 0, T\rangle)$ for all $v \in H$. If $u(t) \in C_{w 0}^{1}(\langle 0, T\rangle, H)$, then $\frac{u(t+h)-u(t)}{h}$ is weakly convergent in H for
$h \rightarrow 0$ and we denote by $\frac{\mathrm{d} u(t)}{\mathrm{d} t}$ this weak limit.
Definition 2. Under the solution of the problem (1) we understand a strongly continuous function $u(t):\langle 0, T\rangle \rightarrow H$ such that $u(t) \in C_{w}^{1}(\langle 0, T\rangle, H), u(t) \in$ $\in V \cap H$ for $t \in\langle 0, T\rangle, u(0)=u_{0}$ and $u(t)$ satisfies (1) for all $t \in(0, T)$.

Let X be a Banach space with the norm $\|\cdot\|_{x}$.
Definition 3. $B y L_{\infty}(\langle 0, T\rangle, X)$ we denote the set of all measurable functions (see [9]) $u(t):\langle 0, T\rangle \rightarrow X$ with $\|u\|_{\left.L_{\infty}(<0, T\rangle, X\right)}=\sup _{t<0, T\rangle}\|u(t)\|_{X}<\infty$.

The space $V \cap H$ with the norm $\|\cdot\|_{V \cap H}=\|\cdot\|+\|\cdot\|_{V}$ is a reflexive Banach space. We denote the weak convergence by \rightharpoonup and the strong convergence by $\rightarrow . u(t)$ is weakly continuous in $V \cap H$ with respect to $t \in\langle 0, T\rangle$, iff $u(t) \longrightarrow$ $\rightharpoonup u\left(t_{0}\right)$ for $t \rightarrow t_{0}$ holds for each $t_{0} \in\langle 0, T\rangle$, where $t \in\langle 0, T\rangle$.

The positive constants will be denoted by C and the dependence of C on the parameter ε will be denoted by $C(\varepsilon) . C$ and $C(\varepsilon)$ will denote even different constants in the same consideration.

Let us denote by $x^{n}(t)$ the step function

$$
\begin{equation*}
x^{n}(t)=z_{j} \quad \text { for } \quad t_{j-1}<t \leqslant t_{j}, \quad j=1,2, \ldots n \tag{**}
\end{equation*}
$$

and $x^{n}(0)=u_{0}$, where $z_{j} \in V \cap H(j=1,2, \ldots n)$ are the solutions of the equations ($1 a$) and $u_{0} \in V \cap H$ is from (1).

Theorem. Let us assume that (2)-(7) are fulfilled. If $u_{0} \in V \cap H$ and $A(0) u_{0} \in$ $\in H$, then there exists a unique solution $u(t)$ of (1) with the following properties:
a) $u(t)$ is Lipschitz continuous from $\langle 0, T\rangle$ into H
b) $u(t) \in L_{\infty}(\langle 0, T\rangle, V \cap H)$ and $u(t)$ is weakly continuous in $V \cap H$ with respect to $t \in\langle 0, T\rangle$.
c) $A(t) u(t)$ is weakly continuous in H with respect to $t \in\langle 0, T\rangle$.
d) $u(t) \in C_{w}^{1}(\langle 0, T\rangle, H)$ and $\frac{\mathrm{d} u(t)}{\mathrm{d} t} \in L_{\infty}(\langle 0, T\rangle, H)$
e) $\max _{0<t<T}\left\|z^{n}(t)-u(t)\right\|^{2} \leqslant C\left(u_{0}, f\right) n^{-1}$
f) $\max _{0<t<T}\left\|z^{n}(t)-x^{n}(t)\right\| \leqslant C\left(u_{0}, f\right) n^{-1}$
g) $z^{n}(t) \rightharpoonup u(t), x^{n}(t) \rightharpoonup u(t)$ in $V \cap H$ for $n \rightarrow \infty$ and for each $t \in\langle 0, T\rangle$
h) If $u_{i}(i=1,2)$ is a solution of the problem (1) corresponding to the righthand side f_{i} and the initial condition $u_{0 i}$, then

$$
\max _{0<t<T^{\prime}}\left\|u_{1}(t)-u_{2}(t)\right\| \leqslant 2 \int_{0}^{T}\left\|f_{1}(t)-f_{2}(t)\right\| d t+\left\|u_{01}-u_{02}\right\|
$$

First, in several assertions we obtain a priori estimates and deduce some consequences. Then, we prove the theorem.

For simplicity we denote $A(j) \equiv A\left(t_{j}\right)$ and $f(j) \equiv f\left(t_{j}\right) \quad(j=1,2, \ldots n)$.
Successively, for $j=1,2, \ldots n$ let us solve the equations

$$
\left(z_{j}-z_{j-1}\right) h^{-1}+A(j) z_{j}=f(j)
$$

where $z_{0} \equiv u_{0}$.
Definition 4. $z_{j} \in V \cap H$ is a solution of (8), iff

$$
\left(\frac{z_{j}-z_{j-1}}{h}, v\right)+\left[A(j) z_{j}, v\right]=(f(j), v)
$$

holds for all $v \in V \cap H$.
Due to (4), the operator $A(t) u+\lambda u$ for $\lambda>0$ is coercive in the space $V \cap H$ and strictly monotone. Thus, there exists a unique solution $z_{j} \in V \cap$ $\cap H$ of (8) which is also a point of minimum for the coercive, strictly convex functional

$$
\begin{equation*}
\Phi\left(t_{j}, u\right)+(2 h)^{-1}\left\|u-z_{j-1}\right\|^{2}-(f(j), u) \equiv \Psi\left(t_{j}, u, z_{j-1}\right) \tag{9}
\end{equation*}
$$

on the reflexive space $V \cap H$.
Assertion 1. There exist $C\left(u_{0}, f\right)$ and $h_{0}>0$ such that
i)

$$
\sum_{j=1}^{n} h\left\|z_{j}\right\|_{V} r\left(\left\|z_{j}\right\|_{V}\right) \leqslant C\left(u_{0}, f\right) \quad \text { ii) } \quad\left\|z_{j}\right\| \leqslant C\left(u_{0}, f\right)
$$

for each $j=1,2, \ldots n$ and $h \leqslant h_{0}$.
Proof. We have

$$
\begin{equation*}
\left[A(j) z_{j}, v\right] \perp h^{-1}\left(z_{j}-z_{j-1}, v\right)=(f(j), v) \tag{10}
\end{equation*}
$$

for all $v \in V \cap H, \quad j=1,2, \ldots n$. Let $1 \leqslant p \leqslant n$. Substituting $v=h z_{j}$ and summing (10) through $j=1,2, \ldots p$ we obtain

$$
\begin{equation*}
\sum_{j}^{n} h\left[A(j) z_{j}, z_{j}\right]+\sum_{j 1}^{p}\left(z_{j}-z_{j-1}, z_{j}\right)=h \sum_{j 1}^{n}\left(f(j), z_{j}\right) . \tag{11}
\end{equation*}
$$

The following identity

$$
\begin{equation*}
\sum_{j 1}^{p} 2\left(z_{j}-z_{j-1}, z_{j}\right)=\sum_{j}^{p}\left\|z_{j}-z_{j-1}\right\|^{2}+\left\|z_{p}\right\|^{2}-\| z_{0}^{2} \tag{12}
\end{equation*}
$$

holds.
Using Young's inequality

$$
\begin{equation*}
a b \leqslant 2^{-1} \varepsilon^{2} a^{2}+\left(2 \varepsilon^{2}\right)^{-1} b^{2} \quad(\varepsilon \neq 0) \tag{13}
\end{equation*}
$$

we estimate

$$
\begin{equation*}
\left|\left(f(j), z_{j}\right)\right| \leqslant\|f(j)\|\left\|z_{j}\right\| \leqslant 2^{-1}\left\|z_{j}\right\|^{2}+2^{-1}\|f(j)\|^{2} . \tag{14}
\end{equation*}
$$

Due to (4), we deduce that there exists a C such that

$$
\left[A(j) z_{j}, z_{j}\right] \geqslant-C \quad \text { for each } n \text { and } j=1,2, \ldots n .
$$

From this estimate, (7), (11), (12) and (14) we obtain

$$
\left\|z_{p}\right\|^{2} \leqslant C+\left\|u_{0}\right\|^{2}+\sum_{j=1}^{p} h\|f(j)\|^{2}+\sum_{j=1}^{p} h\left\|z_{j}\right\|^{2} \leqslant C\left(u_{0}, f\right)+\sum_{j 1}^{p} h\left\|z_{j}\right\|^{2} .
$$

From this inequality for $h \leqslant h_{0}<1$ we successively deduce

$$
\begin{aligned}
& \left\|z_{1}\right\|^{2} \leqslant C\left(u_{0}, f\right)(1-h)^{-1} \quad(\text { for } p=1), \\
& \left\|z_{2}\right\|^{2} \leqslant C\left(u_{0}, f\right)(1-h)^{-1}\left(1+\frac{h}{1-h}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\left\|z_{i}\right\|^{2} \leqslant C\left(u_{0}, f\right)(1-h)^{-1}\left(1+\frac{h}{1-h}\right)^{i-1} \tag{15}
\end{equation*}
$$

for $i \quad 1,2, \ldots n$.
There exists a C such that $\quad\left(1+\frac{h}{1-h}\right)^{i-1} \leqslant C$
for each $h \leqslant h_{0}$ and $i=1,2, \ldots n$. Thus, from (15) we obtain Assertion 1 ii). From ii), (4) and (11) we easily obtain Assertion 1 i).

Assertion 2. There exist $C\left(u_{0}, f\right)$ and $h_{0}>0$ such that $\left.\| \frac{z_{1}-z_{0}}{h} \right\rvert\, \leqslant C\left(u_{0}, f\right)$ for each $h \leqslant h_{0}$.

Proof. From (10) for $j=1, v=z_{1}-z_{0}$ we obta n

$$
\begin{gather*}
{\left[A(1) z_{1}, z_{1}-z_{0}\right]-\left[A(1) z_{0}, z_{1}-z_{0}\right]+h^{-1}\left\|z_{1}-z_{0}\right\|^{2}=} \tag{16}\\
-\left(f(\mathrm{l}), z_{1}-z_{0}\right)+\left(\left[A(0) z_{0}, z_{1}-z_{0}\right]-\left[A(1) z_{0}, z_{1}-z_{0}\right]\right)- \\
-\left[A(0) z_{0}, z_{1}-z_{0}\right] .
\end{gather*}
$$

Using Lagrange's theorem we have

$$
\left[1(0) z_{0}, z_{1}-z_{0}\right]-\left[A(1) z_{0}, z_{1}-z_{0}\right]=\left[A^{\prime}\left(0+\vartheta t_{1}\right) z_{0}, z_{1}-z_{0}\right] . h
$$

for suitable $0 \leqslant \vartheta \leqslant l$. Hence, due to (6) we have

$$
\begin{gather*}
\left|\left[A(0) z_{0}, z_{1}-z_{0}\right]-\left[A(1) z_{0}, z_{1}-z_{0}\right]\right| \leqslant h\left\|z_{1}-z_{0}\right\|_{V}\left(C_{1}+\right. \tag{17}\\
+C_{2} r\left(\left\|z_{0}\right\|_{V}\right) \leqslant C_{1} h\left\|z_{1}\right\|_{V}+h C_{2}\left(u_{0}\right) .
\end{gather*}
$$

Since $A(0) z_{0} \equiv A(0) u_{0} \in H$, the estimate

$$
\begin{equation*}
\left|\left[A(0) z_{0}, z_{1}-z_{0}\right]\right| \leqslant\left\|A(0) z_{0}\right\|\left\|z_{1}-z_{0}\right\| \tag{18}
\end{equation*}
$$

holds. From (3), (16), (17) and (18) we deduce

$$
\left\|\frac{z_{1}-z_{0}}{h}\right\|^{2} \leqslant\|f(1)\|\left\|\frac{z_{1}-z_{0}}{h}\right\|+\left\|A(0) u_{0}\right\|\left\|\frac{z_{1}-z_{0}}{h}\right\|+C_{1}\left\|z_{1}\right\|_{V}+C_{2}\left(u_{0}\right)
$$

and hence applying (13) we obtain

$$
\begin{equation*}
\left\|\frac{z_{1}-z_{0}}{h}\right\|^{2} \leqslant C_{1}\left(u_{0}, f\right)+C_{2}\left\|z_{1}\right\|_{V} \leqslant C_{2}\left(u_{0}, f\right)+C_{2}\left\|z_{1}\right\|_{V} r\left(\|\left. z_{1}\right|_{V}\right) \tag{19}
\end{equation*}
$$

From (10) for $j=1$ and $v=z_{1}$ we have

$$
\left[A(1) z_{1}, z_{1}\right]=-\left(\frac{z_{1}-z_{0}}{h}, z_{1}\right)+\left(f(1), z_{1}\right)
$$

Thus, due to (3), (13), (19) and Assertion 1 ii) we have

$$
\begin{aligned}
& \left\|z_{1}\right\|_{V} r\left(\left\|z_{1}\right\|_{V}\right) \leqslant\left\|\frac{z_{1}-z_{0}}{h}\right\|\left\|z_{1}\right\|+\|f(1)\|\left\|z_{1}\right\| \leqslant \\
& \leqslant 2^{-1} \varepsilon^{2} C_{2}\left(u_{0}, f\right)+2^{-1} \varepsilon^{2} C_{2}\left\|z_{1}\right\|_{V} r\left(\left\|z_{1}\right\|_{V}\right)+ \\
& +2^{-1} \varepsilon^{-2}\left\|z_{1}\right\|^{2}+\|f(1)\|\left\|z_{1}\right\| \leqslant C_{3}\left(u_{0}, f, \varepsilon\right)+ \\
& +2^{-1} \varepsilon^{2} C_{2}\left\|z_{1}\right\|_{V} r\left(\left\|z_{1}\right\|_{V}\right)
\end{aligned}
$$

Let us put $\varepsilon=\frac{1}{\sqrt{ } C_{2}}$. Then, the estimate

$$
\begin{equation*}
\left\|z_{1}\right\|_{V} r\left(\left\|z_{1}\right\|_{V}\right) \leqslant C_{4}\left(u_{0}, f\right) \tag{20}
\end{equation*}
$$

is valid and hence, due to (19), the proof of Assertion 2 follows.
Estimating $\left\|\frac{z_{j}-z_{j-1}}{\mathrm{~h}}\right\|$ we use a variational method. The idea of such an estimation is due to P. P. Mosolov [3]. Analogously as in [3] (Lemma 1 and Lemma 6) we prove Assertions 3 and 4.

Assertion 3. The inequality

$$
\begin{equation*}
\Phi\left(t_{i}, z_{i}\right) \leqslant \Phi\left(t_{i}, z\right)+h^{-1}\left(z-z_{i}, z_{i}-z_{i-1}\right)-\left(f(i), z-z_{i}\right) \tag{21}
\end{equation*}
$$

is valid for all $z \in V \cap H$.
For completness we sketch the proof of this assertion. $\Phi(t, u)$ is convex in u, since $A(t)$ is a monotone (see (3) and (5)). From the minimality property of z_{i} for $\Psi\left(t_{i}, z, z_{i-1}\right)$ (see (9)) we have $\Psi\left(t_{i}, z_{i}, z_{i-1}\right) \leqslant \Psi\left(t_{i}, r z_{i}+s z, z_{i-1}\right)$ for all $0 \leqslant r, s \leqslant 1$ with $r+s=1$ and $z \in V \cap H$. Thus, from the identity

$$
\begin{gathered}
(r u+s v-w, r u+s v-w)=r(u-w, u-w)+ \\
\quad+s(v-w, v-w)-r s(u-v, u-v)
\end{gathered}
$$

where $u, v, w \in H, 0 \leqslant r, s \leqslant 1$ with $r+s=1$ and the convexity of $\Phi(t, u)$ we obtain

$$
\begin{gathered}
\Phi\left(t_{i}, z_{i}\right)+(2 h)^{-1}\left\|z_{i}-z_{i-1}\right\|^{2}-\left(f(i), z_{i}\right) \leqslant \\
\leqslant r \Phi\left(t_{i}, z_{i}\right)+s \Phi\left(t_{i}, z\right)+(2 h)^{-1} r\left\|z_{i}-z_{i-1}\right\|^{2}+ \\
+(2 h)^{-1} s\left\|z-z_{i-1}\right\|^{2}-(2 h)^{-1} r s\left\|z_{i}-z\right\|^{2}- \\
-r\left(f(i), z_{i}\right)-s(f(i), z)
\end{gathered}
$$

and hence

$$
\begin{gathered}
\Phi\left(t_{i}, z_{i}\right) \leqslant \Phi\left(t_{i}, z\right)-(2 h)^{-1}\left\|z_{i}-z_{i-1}\right\|^{2}+ \\
+(2 h)^{-1}\left\|z-z_{i-1}\right\|^{2}-(2 h)^{-1} r\left\|z_{i}-z\right\|^{2}+\left(f(i), z_{i}-z\right)
\end{gathered}
$$

From this inequality and from the identity

$$
\begin{gathered}
-\left\|z_{i}-z_{i-1}\right\|^{2}+\left\|z-z_{i-1}\right\|^{2}-r\left\|z_{i}-z\right\|^{2}= \\
=2\left(z-z_{i}, z_{i}-z_{i-1}\right)+s\left\|z-z_{i}\right\|^{2}
\end{gathered}
$$

we deduce

$$
\begin{aligned}
\Phi\left(t_{i}, z_{i}\right) & \leqslant \Phi\left(t_{i}, z\right)+h^{-1}\left(z-z_{i}, z_{i}-z_{i-1}\right)+ \\
& +\left(f(i), z_{i}-z\right)+s\left\|z-z_{i}\right\|^{2}
\end{aligned}
$$

Thus, by limiting process $s \rightarrow 0$ we obtain (21).
Assertion 4. There exist $C\left(u_{0}, f\right), C$ and $h_{0}>0$ such that
$\left\|\frac{z_{j}-z_{j-1}}{h}\right\|^{2} \leqslant C\left(u_{0}, f\right)+C \max _{1<p \leq j}\left\|z_{p}\right\|_{V} r\left(\left\|z_{p}\right\|_{V}\right)$ holds for each $h \leqslant h_{0}$ and $j=1,2, \ldots n$.

Proof. Consider (21) w.th $i=j, z=z_{j-1}$ and with $i=j-1, z=z_{j}$. Summing up these ine fualities we obtain

$$
\begin{align*}
& \tag{22}\\
& \Phi\left(t_{j}, z_{j}\right)-\Phi\left(t_{j}, z_{j-1}\right)+\Phi\left(t_{j-1}, z_{j-1}\right)-\Phi\left(t_{j-1}, z_{j}\right)+ \\
&+h^{-1}\left\|z_{j}-z_{j-1}\right\|^{2} \leqslant h^{-1}\left(z_{j}-z_{j-1}, z_{j-1}-z_{j-2}\right)+ \\
&+\left(f(j)-f(j-1), z_{j}-z_{j-1}\right)
\end{align*}
$$

Let us denote

$$
\Phi_{j}=\Phi\left(t_{j}, z_{j}\right)+\Phi\left(t_{j-1}, z_{j-1}\right)-\Phi\left(t_{j-1}, z_{j}\right)-\Phi\left(t_{j}, z_{j-1}\right)
$$

From (22) and (13) we obtain

$$
\begin{align*}
& \left.\left\|\frac{z_{j}-z_{j-1}}{h}\right\|^{2} \leqslant\left\|\frac{z_{j}-z_{j-1}^{\prime}}{h}\right\| \| f(j)-f(j-1) \right\rvert\,+ \tag{23}\\
+ & 2^{-1}\left\|\left.\frac{z_{j}-z_{j-1}}{h}\right|^{2}+2^{1}\right\| \frac{z_{j-1}-z_{j-2}}{h} \|^{2}-\frac{\Phi_{j}}{h}
\end{align*}
$$

Due to (7) and (13) we have

$$
\begin{gathered}
\left\|\frac{z_{j}-z_{j-1}}{h}\right\|\|f(j)-f(j-1)\| \leqslant\left\|\frac{z_{j}-z_{j-1}}{h}\right\| L h \leqslant \\
\leqslant\left\|\frac{z_{j}-z_{j-1}}{h}\right\|^{2} 2^{-1} L h+2^{-1} L h
\end{gathered}
$$

and hence from (23) we obtain

$$
\begin{equation*}
\left\|\frac{z_{j}-z_{j-1}}{h}\right\|^{2}(1-L h) \leqslant\left\|\frac{z_{j-1}-z_{j-2}}{h}\right\|^{2}+L h-\frac{2 \Phi_{j}}{h} \tag{2t}
\end{equation*}
$$

Let us aussme that $h_{0}<L^{-1}$. Thus, from (24) we obtain successively

$$
\begin{gather*}
\left\|\frac{z_{j}-z_{j-1}}{h}\right\|^{2}(1-L h)^{j-1} \leqslant\left\|\frac{z_{1}-z_{0}}{h}\right\|^{2}+L h \sum_{i=2}^{j}(1-L h)^{i 2}- \tag{25}\\
-\sum_{i=2}^{j} \frac{2 \Phi_{i}}{h}(1-L h)^{i-2} .
\end{gather*}
$$

The inequality $1 \geqslant(1-L h)^{i} \geqslant \exp (-L T)$ holds and $(1-L h)^{i}$ is decreasing in i. Thus, using
Abel's summation formula we estimate

$$
\left|\sum_{12}^{j} \frac{2 \Phi_{i}}{h}(1-L h)^{i-2}\right| \leqslant \max _{1 \leq j \leq p}\left|\sum_{i-2}^{j} \frac{2 \Phi_{i}}{h}\right|
$$

and hence, owing to Assertion 2, from (25) we obtain

$$
\begin{equation*}
\left|\frac{z_{j}-z_{j-1}}{h}\right|^{2} \leqslant C\left(u_{0}, f\right)+C \max _{1 \leq p \leq j}\left|\sum_{\imath-2}^{p} \frac{2 \Phi_{i}}{h}\right| \tag{26}
\end{equation*}
$$

since $L h \sum_{i=2}^{j}(1-L h)^{i-2} \leqslant L h .(j-2)<L T$.
The strength of the variational method used consists in the following estimate

$$
\begin{equation*}
\left|\sum_{i=2}^{p} \frac{\Phi_{i}}{h}\right| \leqslant C\left(u_{0}, f\right)+C\left\|z_{p}\right\|_{V} r\left(\left\|z_{p}\right\|_{V}\right) \tag{27}
\end{equation*}
$$

Indeed, the sum in (27) can be rewritten into the form

$$
\begin{gather*}
\sum_{i=2}^{p} \frac{\Phi_{i}}{h}=h^{-1}\left(\Phi\left(t_{p}, z_{p}\right)-\Phi\left(t_{p-1}, z_{p}\right)\right)- \tag{28}\\
-h^{-1}\left(\Phi\left(t_{2}, z_{1}\right)-\Phi\left(t_{1}, z_{1}\right)\right)-\sum_{i 3}^{p} h^{-1}\left(\Phi\left(t_{i}, z_{i-1}\right)-\right. \\
\left.-\Phi\left(t_{i-1}, z_{i-1}\right)\right)-h^{-1}\left(\Phi\left(t_{i-1}, z_{i-1}\right)-\Phi\left(t_{i-2}, z_{i-1}\right)\right) .
\end{gather*}
$$

The formula $\Phi(t, u)=\int_{0}^{1}[A(t) \tau u, u] d \tau$ is true and thus, using Lagrange's formula and the assumption (6), the expression in the last sum in (28) can be estimated by

$$
\begin{aligned}
& \mid h^{-1} \int_{0}^{1}\left[A\left(t_{i}\right) \tau z_{i-1}-2 A\left(t_{i-1}\right) \tau z_{i-1}+A\left(t_{i-2}\right) \tau z_{i-1}\right. \\
& \left., z_{i-1}\right] d \tau \mid \leqslant h\left\|z_{i-1}\right\|_{V} \int_{0}^{1}\left(C_{1}+C_{2} r\left(\tau \mid z_{i-1} \|_{V}\right) d \tau \leqslant\right. \\
& \leqslant C_{1} h\left\|z_{i-1}\right\|_{V}+C_{2} h\left\|z_{i-1}\right\|_{V} r\left(\left\|z_{i-1}\right\|_{V}\right) \leqslant \\
& \leqslant h C_{3}\left\|z_{i-1}\right\|_{V} r\left(\left\|z_{i-1}\right\|_{V}\right)+h C_{4},
\end{aligned}
$$

since $r(s)$ is nondecreasing for $s \geqslant s_{0}$ and bounded in $\langle 0, s 0\rangle$. Analogously, from (6) we deduce

$$
\left|h^{-1}\left(\Phi\left(t_{p}, z_{p}\right)-\Phi\left(t_{p-1}, z_{p}\right)\right)\right| \leqslant C_{1}+C_{2}\left\|z_{p}\right\|_{V} r\left(\left\|z_{p}\right\|_{V}\right)
$$

and

$$
\left|h^{-1}\left(\Phi\left(t_{2}, z_{1}\right)-\Phi\left(t_{1}, z_{1}\right)\right)\right| \leqslant C_{1}+C_{2}\left\|z_{1}\right\|_{V} r\left(\left\|z_{1}\right\|_{V}\right) \leqslant C\left(u_{0}, f\right),
$$

where the estimate (20) has been used. From these estimates, Assertion 1, (28), (27) and (26) the proof follows.

Assertion 5. There exist $C\left(u_{0}, f\right)$ and $h_{0}>0$ such that

$$
\text { i) }\left\|\frac{z_{j}-z_{j-1}}{h}\right\| \leqslant C\left(u_{0}, f\right), \quad \text { ii) }\left\|z_{j}\right\|_{V} \leqslant C\left(u_{0}, f\right)
$$

holds for each $h \leqslant h_{0}$ and $j=1,2, \ldots n$.
Proof. Suppose that

$$
\max _{1 \leq p \leq n}\left\|z_{p}\right\|_{V} r\left(\left\|z_{p}\right\|_{V}\right)=\left\|z_{p_{0}}\right\|_{V} r\left(\left\|z_{p_{0}}\right\|_{V}\right) .
$$

Then, owing to Assertion 4 we obtain

$$
\left\|\frac{z_{p_{0}}-z_{p_{0}-1}}{h}\right\|^{2} \leqslant C\left(u_{0}, f\right)+C \| z_{p_{0} \| V} r\left(\left\|z_{p_{0}}\right\| V\right),
$$

where $C\left(u_{0}, f\right)$ and C are from Assertion 4. Using (13) and Assertion 1 we estimate

$$
\begin{align*}
& \left|\left(\frac{z_{p_{0}}-z_{p_{0}-1}}{h}, z_{p_{0}}\right)\right| \leqslant\left(2 \varepsilon^{2}\right)^{-1}\left\|z_{p_{0}}\right\|^{2}+ \tag{29}\\
& +\varepsilon^{2} 2^{-1}\left\|\frac{z_{p_{0}}-z_{p_{0}-1}}{h}\right\|^{2} \leqslant C\left(u_{0}, f, \varepsilon\right)+ \\
& +2^{-1} \varepsilon^{2} C\left\|z_{p_{0}}\right\| V r\left(\left\|z_{p_{0}}\right\| V\right)
\end{align*}
$$

Let us choose $\varepsilon>0$ so that $\varepsilon^{2} C=2^{-1}$. From (10) for $j=p_{0}, v=z_{p_{0}}$ and with respect to (29) and Assertion 1 we obtain

$$
\left[A\left(p_{0}\right) z_{p_{0}}, z_{p_{0}}\right] \leqslant C\left(u_{0}, f\right)+2^{-1}\left\|z_{p_{0}}\right\|_{V} r\left(\left\|z_{p_{0}}\right\|_{V}\right) .
$$

Hence, due to (4) we deduce

$$
\left\|z_{p_{0}}\right\|_{V} r\left(\left\|z_{p_{0}}\right\|_{V}\right) \leqslant C\left(u_{0}, f\right)
$$

from which Assertion ii) follows. From ii) and Assertion 4 we deduce Assertion i) and the proof of Assertion 5 is complete.
Remark 4. Assertion 5 holds true if (4), (6) are substituted by (4^{\prime}), (6^{\prime}).

Indeed, we work with the expression $[A(t) u, u]$ instead of $\|u\|_{V} r\left(\|u\|_{V}\right)$. Assertion 2 can be proved on the base of (6^{\prime}) ii). In estimating (20) in Assertion 4 we use Lagrange's formula and the inequality

$$
|\Phi(t, u)| \leqslant C\left(1+\left|\Phi\left(t^{\prime}, u\right)\right|\right)
$$

which we obtain from (6^{\prime}) i) with C independent of either t, t^{\prime} or u. Then, using (6^{\prime}) i) and iii) we infer

$$
\left\|\frac{z_{j}-z_{j-1}}{h}\right\|^{2} \leqslant C\left(u_{0}, f\right)+C \max _{1 \leq p<j}\left[A\left(t_{p}\right) z_{p}, z_{p}\right]
$$

from which we obtain Assertion 5.
Let us define the step function f^{n} by

$$
f^{n}(t)=f(j) \quad \text { for } \quad t_{j-1}<t \leqslant t_{j}, \quad j=1,2, \ldots n
$$

and

$$
f^{n}(0)=f(0)
$$

Similarly we define the operator $A^{n}(t)$ by

$$
A^{n}(t)=A\left(t_{j}\right)=A(j) \quad \text { for } \quad t_{j-1}<t \leqslant t_{j}, \quad j=1,2, \ldots n
$$

and

$$
A^{n}(0)=A(0)
$$

Rothe's function $z^{n}(t)$ (see $\left(^{*}\right)$) is differentiable from the left and

$$
\begin{gathered}
\frac{\mathrm{d}^{-} z^{n}(t)}{\mathrm{d} t}=\frac{z_{j}-z_{j-1}}{h} \text { for } t \in\left(t_{j-1}, t_{j}\right\rangle \\
j=1,2, \ldots n
\end{gathered}
$$

where $\frac{\mathrm{d}^{-}}{\mathrm{d} t}$ is the derivative from the left.
With respect to this notation relation (10) can be rewritten in the form

$$
\begin{equation*}
\left(\frac{\mathrm{d}-z^{n}(t)}{\mathrm{d} t}, v\right)+\left[A^{n}(t) x^{n}(t), v\right]=\left(f^{n}(t), v\right) \tag{30}
\end{equation*}
$$

for all $v \in V \cap H$ and $t \in\langle 0, T\rangle$.
Before we carry out the limiting process in (30) we prove some assertions. Assertion 6 There exists $C\left(u_{0}, f\right)$ such that

$$
\left\|A^{n}(t) x^{n}(t)\right\| \leqslant C\left(u_{0}, f\right) \quad \text { for all } n \text { and } \quad t \in\langle 0, T\rangle
$$

Proof. Due to Assertion 5 from (30) we conclude

$$
\left|\left[A^{n}(t) x^{n}(t), v\right]\right| \leqslant C\left(u_{0}, f\right)\|v\|
$$

for all $n, t \in\langle 0, T\rangle$ and $v \in V \cap H$. Since $V \cap H$ is dense in H we have

$$
A^{n}(t) x^{n}(t) \in H \quad \text { and } \quad\left\|A^{n}(t) x^{n}(t)\right\| \leqslant C\left(u_{0}, f\right)
$$

Assertion 7. There exists $C\left(u_{0}, f\right)$ such that

$$
\left|\left[A^{n}(t) x^{n}(t), v-v^{\prime}\right]\right| \leqslant C\left(u_{0}, f\right)\left\|v-v^{\prime}\right\|
$$

holds for all $v, v^{\prime} \in V \cap H$ and $t \in\langle 0, T\rangle$.
Proof. From (30) we deduce

$$
\begin{gathered}
{\left[A^{n}(t) x^{n}(t), v-v^{\prime}\right]=-\left(\frac{\mathrm{d}-z^{n}(t)}{\mathrm{d} t}, v-v^{\prime}\right)+} \\
+\left(f(t), v-v^{\prime}\right)
\end{gathered}
$$

On the base of Assertion 5 i) we have

$$
\left\|\frac{\mathrm{d}^{-} z^{n}(t)}{\mathrm{d} t}\right\| \leqslant C\left(u_{0}, f\right) \quad \text { for all } n \text { and } \quad t \in\langle 0, T
$$

from which we obtain the required result.
From the definition of $z^{n}(t), x^{n}(t)$ (see (*) and (**)) and Assertion 5 i) we immediately obtain

$$
\begin{equation*}
\left\|z^{n}(t)-x^{n}(t)\right\| \leqslant C\left(u_{0}, f\right) n^{-1} . \tag{31}
\end{equation*}
$$

From (7) we deduce

$$
\begin{equation*}
\left\|f^{n}(t)-f(t)\right\| \leqslant T L n^{-1} \tag{32}
\end{equation*}
$$

Assertion 8. There exists $u(t):\langle 0, T\rangle \rightarrow H$ such that $z^{n}(t) \rightarrow u(t), x^{n}(t) \rightarrow$ $\rightarrow u(t)$ for $n \rightarrow \infty$ in H uniformly on $\langle 0, T\rangle$.

Proof.

$$
\begin{gather*}
\frac{\mathrm{d}^{-}}{\mathrm{d} t}\left\|z^{m}-z^{n}\right\|^{2}=2\left(\frac{\mathrm{~d}^{-} z^{m}(t)}{\mathrm{d} t}-\frac{\mathrm{d}^{-} z^{n}(t)}{\mathrm{d} t}, z^{m}(t)-z^{n}(t)\right)- \tag{33}\\
=2\left(f^{m}(t)-f^{n}(t), z^{m}(t)-z^{n}(t)\right)- \\
-2\left[A^{m}(t) x^{m}(t)-A^{n}(t) x^{n}(t), z^{m}(t)-z^{n}(t)\right]
\end{gather*}
$$

Now, we estimate

$$
\begin{gather*}
{\left[A^{m}(t) x^{m}(t)-A^{n}(t) x^{n}(t), z^{m}(t)-z^{n}(t)\right]=} \tag{34}\\
{\left[A^{m}(t) x^{m}(t)-A^{n}(t) x^{n}(t), z^{m}(t)-z^{n}(t)-x^{m}(t)+x^{n}(t)\right]+} \\
+\left[A^{m}(t) x^{m}(t)-A^{n}(t) x^{n}(t), x^{m}(t)-x^{n}(t)\right] .
\end{gather*}
$$

From (31) and Assertion 7 we conclude

$$
\begin{align*}
\mid\left[A^{m}(t) x^{m}(t)\right. & \left.-A^{n}(t) x^{n}(t), z^{m}(t)-x^{m}(t)-z^{n}(t)+x^{n}(t)\right] \mid \leqslant \tag{35}\\
& \leqslant C\left(u_{0}, f\right)\left(m^{-1}+n^{-1}\right) .
\end{align*}
$$

From (3) we deduce

$$
\begin{align*}
& \quad\left[A^{m}(t) x^{m}(t)-A^{n}(t) x^{n}(t), x^{m}(t)-x^{n}(t)\right]= \tag{36}\\
& =\left[A^{m}(t) x^{m}(t)-A^{m}(t) x^{n}(t), x^{m}(t)-x^{n}(t)\right]+ \\
& +\left[A^{m}(t) x^{n}(t)-A^{n}(t) x^{n}(t), x^{m}(t)-x^{n}(t)\right] \geqslant \\
& \geqslant\left[A^{m}(t) x^{n}(t)-A^{n}(t) x^{n}(t), x^{m}(t)-x^{n}(t)\right] .
\end{align*}
$$

Using Lagrange's theorem and (6) we have

$$
\left[A\left(t^{\prime}\right) v-A\left(t^{\prime \prime}\right) v, z\right]=\left(t-t^{\prime}\right)\left[A^{\prime}\left(t^{\prime \prime}+\tau\left(t^{\prime}-t^{\prime \prime}\right) v, z\right]\right.
$$

for a suitable $0 \leqslant \tau \leqslant 1$ and thus

$$
\begin{equation*}
\left|\left[A\left(t^{\prime}\right) v-A\left(t^{\prime \prime}\right) v, z\right]\right| \leqslant\left|t-t^{\prime}\right|\|z\|_{V}\left(C_{1}+C_{2} r\left(\|v\|_{V}\right)\right) . \tag{36a}
\end{equation*}
$$

On the base of these estimates, Assertion 5 ii)

$$
\left(\left\|x^{n}(t)\right\|_{V}+\left\|x^{m}(t)-x^{n}(t)\right\|_{V} \leqslant C\left(u_{0}, f\right)\right)
$$

and the definitions of $A^{n}(t), x^{n}(t)$ we conclude

$$
\begin{equation*}
\left|\left[A^{m}(t) x^{n}(t)-A^{n}(t) x^{n}(t), x^{m}(t)-x^{n}(t)\right]\right| \leqslant\left(m^{-1}+n^{-1}\right) C\left(u_{0}, f\right) \tag{37}
\end{equation*}
$$

Hence, from (33) - (37) we conclude
d^{-}
$\mathrm{d} t \quad\left\|z^{m}(t)-z^{n}(t)\right\|^{2} \leqslant 2\left\|f^{m}(t)-f^{n}(t)\right\|\left\|z^{m}(t)-z^{n}(t)\right\|+C\left(u_{0}, f\right)\left(m^{-1}+n^{-1}\right)$ and hence

$$
\begin{align*}
& \left\|z^{m}(t)-z^{n}(t)\right\|^{2} \leqslant 2 \int_{0}^{T}\left\|f^{m}(t)-f^{n}(t)\right\|\left\|z^{m}(t)-z^{n}(t)\right\| d t+ \tag{38}\\
& +T C\left(u_{0}, f\right)\left(m^{-1}+n^{-1}\right) \leqslant C\left(u_{0}, f\right)\left(m^{-1}+n^{-1}\right)
\end{align*}
$$

since

$$
\left\|z^{m}(t)-z^{n}(t)\right\| \leqslant C\left(u_{0}, f\right)
$$

and

$$
\left\|f^{m}(t)-f^{n}(t)\right\| \leqslant L\left(m^{-1}+n^{-1}\right) \quad \text { for all } t \in\langle 0, T\rangle .
$$

From this fact it follows that there exists $u(t) \in H$ for $t \in\langle 0, T\rangle$ such that $z^{n}(t) \rightarrow u(t)$ in H for $n \rightarrow \infty$ uniformly with respect to $t \in\langle 0, T\rangle$. Thus, from (31) it follows $x^{n}(t) \rightarrow u(t)$ in H uniformly with respect to $t \in\langle 0, T\rangle$ and the proof of Assertion 8 is complete.

Assertion 9. Let $u(t)$ be the function from Assertion 8. Then,
i) $u(t)$ is Lipschitz continuous from $\langle 0, T\rangle$ into H
ii) $u(t) \in V \cap H$ for each $t \in\langle 0, T\rangle$
iii) $u(t)$ is weakly continuous in $V \cap H$ with respect to $t \in 0, T\rangle$
iv) $u(t) \in L_{\infty}(\langle 0, T\rangle, V \cap H)$.

Proof.
i) Using triangle inequality and Assertion 5i) we obtain easily

$$
\begin{equation*}
\left\|z^{n}(t)-z^{n}\left(t^{\prime}\right)\right\| \leqslant C\left(u_{0}, f\right)\left|t-t^{\prime}\right| \tag{39}
\end{equation*}
$$

and hence, owing to Assertion 8, we obtain i).
ii) Due to Assertion 1 ii) and Assertion 5 ii) we have

$$
\left\|x^{n}(t)\right\|_{V}+\left\|x^{n}(t)\right\| \leqslant C\left(u_{0}, f\right)
$$

and hence owing to the reflexivity of $V \cap H$ there exists a subsequence $\left\{x^{n_{k}}(t)\right\}$ and $w_{t} \in V \cap H$, so that $x^{n_{k}}(t) \rightharpoonup w_{t}$ in $V \cap H$, where t is a fixed point from $\langle 0, T\rangle$. Thus,

$$
\left\|w_{t}\right\|_{V}+\left\|w_{t}\right\| \leqslant C\left(u_{0}, f\right)
$$

On the other hand $x^{n}(t) \rightarrow u(t)$ in H for $n \rightarrow \infty$ and thus $u(t) \equiv w_{t}$. From this fact it follows $x^{n}(t) \rightharpoonup u(t)$ in $V \cap H$ for each $t \in\langle 0, T\rangle$ and

$$
\begin{equation*}
\|u(t)\|_{V}+\|u(t)\| \leqslant C\left(u_{0}, f\right) \quad \text { for each } \quad t \in\langle 0, T\rangle \tag{40}
\end{equation*}
$$

Thus, Assertion ii) is proved.
iii) Suppose that $t_{n} \rightarrow t_{0}$ for $n \rightarrow \infty, t_{n}, t_{0} \in\langle 0, T\rangle$. From (40) it follows that there exists a subsequence $\left\{u\left(t_{n_{k}}\right)\right\}$ from $\left\{u\left(t_{n}\right)\right\}$ and $v \in V \cap H$ such that $u\left(t_{n_{k}}\right) \rightarrow v$ in $V \cap H$ for $k \rightarrow \infty$. On the other hand from Assertion Ω i) it follows $u\left(t_{n_{k}}\right) \rightarrow u\left(t_{0}\right)$ in H for $k \rightarrow \infty$ and thus $u\left(t_{0}\right) \equiv v$. From this fact it follows $u\left(t_{n}\right) \rightarrow u\left(t_{0}\right)$ in $V \cap H$ for $n \rightarrow \infty$ and iii) is proved.
iv) Since $u(t) \in V \cap H$ for each $t \in\langle 0, T\rangle$ and (40) holds, it suffices to prove that $u(t)$ is measurable. For this purpose it suffices to prove (see [9] Theorem of Pettis) that the set $\{u(t)$; for each $t \in\langle 0, T\rangle\}$ is separable in $V \cap H$ and that $u(t)$ is weakly measurable, i.e., $x^{*}(u(t))$ is a measurable function in $t \in$ $\in\langle 0, T\rangle$ for each $x^{*} \in(V \cap H)^{\prime}$ (dual space), where $x^{*}(x)$ is the value of
$x^{*} \in(V \cap H)^{\prime}$ at the point $x \in V \cap H$. Since $u(t)$ is weakly continuous in $V \cap H$ with respect to $t \in\langle 0, T\rangle$, it is weakly measurable. Let us consider the countable set $M=\{u(r)$, for each rational number $r \in\langle 0, T\rangle\}$.

Let $L(M)$ be the smallest closed linear subspace of $V \cap H$ containing M. Then, $L(M)$ is a separable space. We prove that $u(t) \in L(M)$ for each $t \in$ $\in 0, T\rangle$.

Let $t \in\langle 0, T\rangle$ be a fixed point. There exist $r_{n}, n=1,2, \ldots\left(r_{n} \in\langle 0, T\rangle\right.$ rational points) such that $r_{n} \rightarrow t$ for $n \rightarrow \infty$. From iii) we have $u\left(r_{n}\right) \rightarrow u(t)$ in $V \cap H$ for $n \rightarrow \infty$. Since $u\left(r_{n}\right) \in L(M)$ and $L(M)$ is weakly closed, $u(t) \in$ $\in L(M)$ and the proof of iv) is complete.

Assertion 10.

$$
A^{n}(t) x^{n}(t) \longrightarrow A(t) u(t) \quad \text { in } \quad H \quad \text { for } \quad n \rightarrow \infty,
$$

for all $t \in\langle 0, T\rangle$.
Proof. From Assertion 6 it follows that there exists a subsequence $\left\{x^{n_{k}}(t)\right\}$ of $\left\{x^{n}(t)\right\}$ and $g_{t} \in H(t \in\langle 0, T\rangle$ is a fixed point) such that

$$
\left.A^{n_{k}}(t) x^{n_{k}}(t) \rightharpoonup g_{t} \quad \text { in } H \quad \text { also in }(V \cap H)^{\prime}\right)
$$

From the inequality

$$
\begin{gathered}
\left|\left[A^{n_{k}}(t) x^{n_{k}}(t), x^{n_{k}}(t)\right]-\left[g_{t}, u(t)\right]\right| \leqslant \\
\leqslant\left|\left[A^{n_{k}}(t) x^{n_{k}}(t)-g_{t}, u(t)\right]\right|+\left|\left[A^{n_{k}}(t) x^{n_{k}}(t), x^{n_{k}}(t)-u(t)\right]\right|
\end{gathered}
$$

and owing to the assertions 7 and 8 we conclude that

$$
\begin{equation*}
\left[A^{n_{k}}(t) x^{n_{k}}(t), x^{n_{k}}(t)\right] \rightarrow\left[g_{t}, u(t)\right] . \tag{41}
\end{equation*}
$$

From (3) we have

$$
\begin{equation*}
\left[A^{n_{k}}(t) v-A^{n_{k}}(t) x^{\eta_{k}}(t), v-x^{n_{k}}(t)\right] \geqslant 0 \tag{42}
\end{equation*}
$$

for all $v \in V \cap H$.
From (36a) it follows $A^{n_{k}}(t) v \rightarrow A(t) v$ in $(V \cap H)^{\prime}$ for $k \rightarrow \infty$. Since $x^{n_{k}}(t) \longrightarrow$ $\rightharpoonup u(t)$ in $V \cap H$ for $k \rightarrow \infty$ (see the proof of Assertion 9 ii)), we have

$$
\left[A^{n_{k}}(t) v, v-x^{n_{k}}(t)\right] \rightarrow[A(t) v, v-u(t)]
$$

and hence from (41) and (42) we conclude

$$
\left[A(t) v-g_{t}, v-u(t)\right] \geqslant 0 \quad \text { for all } \quad v \in V \cap H .
$$

We put $v=u(t)+\lambda w$, where $w \in V \cap H, \lambda>0$. By the limiting process $\lambda \rightarrow 0$ we obtain

$$
\left[A(t) u(t)-g_{t}, w\right]=0 \quad \text { for all } \quad w \in V \cap H
$$

and hence $A(t) u(t) \equiv g_{t}$. From this fact follows Assertion 10.

Assertion 11. $A(t) u(t)$ is weakly continuous in H with respect to $t \in 0, T$.
Proof. Consider $\left[A\left(t_{k}\right) u\left(t_{k}\right), v\right]$, where $v \in V \cap H$ and $t_{k} \rightarrow t_{0} \in\langle 0, T$ Owing to Assertion 10 and 5 i) by the limiting process in (30) we deduce that there exists $w_{t_{k}} \in H$ such that

$$
\begin{equation*}
\left[A\left(t_{k}\right) u\left(t_{k}\right), v\right]=-\left(w_{t_{k}}, v\right)+\left(f\left(t_{k}\right), v\right) \tag{43}
\end{equation*}
$$

for all $v \in V \cap H$, where $\left\|w_{t_{k}}\right\| \leqslant C\left(u_{0}, f\right)$. From (43) we deduce

$$
\left\|A\left(t_{k}\right) u\left(t_{k}\right)\right\| \leqslant C\left(u_{0}, f\right) \quad \text { for each } k .
$$

and hence, there exist $g_{t_{0}} \in H$ and a subsequence

$$
A\left(t_{k_{n}}\right) u\left(t_{k_{n}}\right)
$$

such that

$$
\begin{equation*}
A\left(t_{k_{n}}\right) u\left(t_{k_{n}}\right) \rightharpoonup g_{t_{0}} \text { in } H \text { for } n \rightarrow \infty . \tag{44}
\end{equation*}
$$

From (3) we have

$$
\left[A\left(t_{k_{n}}\right) v-A\left(t_{k_{n}}\right) u\left(t_{k_{n}}\right), v-u\left(t_{k_{n}}\right)\right] \geqslant 0
$$

for all $v \in V \cap H$. Hence, from (44), (43) and the fact $A\left(t_{k_{n}}\right) v \rightarrow A\left(t_{0}\right) v$ in $(V \cap H)^{\prime}$ for $n \rightarrow \infty$ (because of (36a)) we conclude that $A\left(t_{0}\right) u\left(t_{0}\right) \equiv g_{t_{0}}$ by the same argument as in Assertion 10 equality $A(t) u(t)=g_{t}$ has been proved. From this fact there follows the required result.

Proof of the theorem.
Integrating (30) over $\langle 0, t\rangle$ we obtain

$$
\begin{equation*}
\int_{0}^{t}\left[A^{n}(s) x^{n}(s), v\right] \mathrm{d} s+\left(z^{n}(t), v\right)=\int_{0}^{t}\left(f^{n}(s), v\right) \mathrm{d} s+\left(u_{0}, v\right) \tag{45}
\end{equation*}
$$

From Assertion f_{i} and 10 we have

$$
\left[A^{n}(t) x^{n}(t), v\right] \rightarrow[A(t) u(t), v] \text { for } n \rightarrow \infty
$$

and each $t \in\langle 0, T\rangle$, where $v \in V \cap H$ is fixed.
The estimate

$$
\begin{equation*}
\left|\left[A^{n}(t) x^{n}(t), v\right]\right| \leqslant C\left(u_{0}, f\right)\|v\| \quad \text { for all } \quad t \in\langle 0, T\rangle \tag{4f}
\end{equation*}
$$

holds because of Assertion 6. Hence from Assertion 8, (32) and Lebes ;ue's theorem by limiting process in (45) we conclude

$$
\begin{equation*}
\int_{0}^{t}[A(s) u(s), v] \mathrm{d} s+(u(t), v)=\int_{0}^{t}(f(s), v) \mathrm{d} s+\left(u_{0}, v\right) \tag{47}
\end{equation*}
$$

from which we deduce that $u(t) \in C_{w}^{1}(\langle 0, T\rangle, H)$ because of Assertion 11
and (7). Thus, differentiating (47) with respect to $t \in\langle 0, T\rangle$ we conclude that $u(t)$ is a solution of the problem (1), since $u(0)=u_{0}$. Now, we prove the properties $a)-h$).
a) - c) are proved in Assertions 9, 10 and 11.
d) From (47) we deduce that

$$
\left(\frac{\mathrm{d} u(t)}{\mathrm{d} t}, v\right) \in C(\langle 0, T\rangle) \quad \text { for each } \quad v \in V \cap H
$$

because of c) and (7). Thus, $\frac{\mathrm{d} u(t)}{\mathrm{d} t}$ is weakly continuous in H with respect to $t \in\langle 0, T\rangle$ and hence $\frac{\mathrm{d} u(t)}{\mathrm{d} t}$ is weakly measurable. Analogously as in Assertion 9 iv) we prove that the set $\left\{\frac{\mathrm{d} u(t)}{\mathrm{d} t} ; t \in\langle 0, T\rangle\right\}$ is separable in H and hence $\frac{\mathrm{d} u(t)}{\mathrm{d} t}$ is measurable. Due to Assertions 6 and 8 we estimate

$$
\left(\frac{\mathrm{d} u(t)}{\mathrm{d} t}, v\right)=-[A(t) u(t), v]+(f(t), v) \leqslant C\left(u_{0}, f\right)\|v\|
$$

for all $t \in\langle 0, T\rangle$ and $v \in V \cap H$.

$$
\text { Hence, }\left\|\frac{\mathrm{d} u(t)}{\mathrm{d} t}\right\| \leqslant C\left(u_{0}, f\right) \quad \text { for all } \quad t \in\langle 0, T\rangle
$$

and the proof of d) is complete.
e) Due to Assertion 8 by a limiting process in (38) we obtain the reguired result.
f) This assertion is proved in (31).
g) From the proof of Assertion 9 ii) it follows $x^{n}(t) \rightharpoonup u(t)$ in $V \cap H$ for $n \rightarrow \infty$ and each $t \in\langle 0, T\rangle$. Analogously, with respect to the estimate $\|\left. z^{n}(t)\right|_{V}+$ $+\left\|z^{n}(t)\right\| \leqslant C\left(u_{0}, f\right)$ for each n and $t \in\langle 0, T\rangle$ (because of Assertion 1 ii) and Assertion 5 ii)), and (31) we prove $z^{n}(t) \rightharpoonup u(t)$ in $V \cap H$ for $n \rightarrow \infty$ and $t \in$ $\in\langle 0, T\rangle$.
h) Owing to (3) we have

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|u_{1}(t)-u_{2}(t)\right\|^{2}=2\left(\frac{\mathrm{~d} u_{1}(t)}{\mathrm{d} t}-\frac{\mathrm{d} u_{2}(t)}{\mathrm{d} t}, u_{1}(t)-u_{2}(t)\right)= \\
=2\left(f_{1}(t)-f_{2}(t), u_{1}(t)-u_{2}(t)\right)-
\end{gathered}
$$

$$
\begin{gathered}
-2\left[A(t) u_{1}(t)-A(t) u_{2}(t), u_{1}(t)-u_{2}(t)\right] \leqslant \\
\leqslant 2\left\|f_{1}(t)-f_{2}(t)\right\|\left\|u_{1}(t)-u_{2}(t)\right\|^{2}
\end{gathered}
$$

Integrating this inequality over $\langle 0, t\rangle$ we deduce

$$
\begin{aligned}
\left\|u_{1}(t)-u_{2}(t)\right\|^{2} \leqslant\left\|u_{1}(0)-u_{2}(0)\right\|^{2}+ \\
+2 \max _{<0, T>}\left\|u_{1}(s)-u_{2}(s)\right\| \cdot \int_{0}^{T}\left\|f_{1}(s)-f_{2}(s)\right\| \mathrm{d} s
\end{aligned}
$$

From this inequality we obtain

$$
\max _{<0, T>}\left\|u_{1}(t)-u_{2}(t)\right\| \leqslant\left\|u_{01}-u_{02}\right\|+2 \int_{0}^{T}\left\|f_{1}(s)-f_{2}(s)\right\| \mathrm{d} \cdot s
$$

since $u_{1}(0)=u_{01}$ and $u_{2}(0)=u_{02}$.
From Assertion h) the uniqueness for the solution of (1) follows. Thus, the proof of Theorem is complete.

Remark 5. Let $u(t)$ be a solution of the problem (1).
Let be $t_{0} \in\langle 0, T\rangle$ a fixed point. Consider the problem

$$
\frac{\mathrm{d} u_{1}(t)}{\mathrm{d} t}+A(t) u_{1}(t)=f(t) \quad \text { for } \quad t \in\langle 0, T\rangle, u_{1}\left(t_{0}\right)=u\left(t_{0}\right)
$$

Since $u\left(t_{0}\right) \in V \cap H$ and $A\left(t_{0}\right) u\left(t_{0}\right) \in H$, from Theorem we conclude that there exists a unique solution $u_{1}(t)$ of ($\left.l^{\prime}\right)$. But, $u(t)$ is also a solution of (l^{\prime}) and thus $u(t)=u_{1}(t)$ for $t \in\left\langle t_{0}, T\right\rangle$. On the base of this fact transition operators $U_{t_{0}}(t): U_{t_{0}}(t) u\left(t_{0}\right)=u(t) \quad t \geq t_{0}$
are defined and the identities

$$
U_{t_{0}}(t+s) \equiv U_{s}(t+s) U_{t_{0}}(s) \equiv U_{t}(t+s) U_{t_{0}}(t), \quad U_{t_{0}}\left(t_{0}\right) \equiv I
$$

(I is identity mapping and $t, s \geq t_{0}$) are valid.
If $f_{1}(t)=f_{2}(t)=0$, then from (48) we obtain

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|u_{1}(t)-u_{2}(t)\right\|^{2} \leqslant 0
$$

It means that $U_{t_{0}}(t)$ is a nonexpansive operator on its definition set $D\left(U_{t_{0}}\right)=$ $=\left\{u \in H \cap V ; A\left(t_{0}\right) u \in H\right\}$

Remark G. If $A(t) \equiv A$, the Theorem holds true without the assumption (5). Indeed, in this case we deduce easily from (3) the estimate

$$
\left\|\frac{z_{j}-z_{j-1}}{h}\right\| \leqslant C\left(u_{0}, f\right)
$$

- see [1] (part I). The more general result in this case $(A(t) \equiv A)$ is proved by J. Nečas in [2].

REFERENCES

[1] KAC̆UR, J.: Method of Rothe and nonlinear parabolic equations of arbitrary order I, II., Czech. math. J., (to appear.)
[2] NEČAS, J.: Application of Rothe's method to abstract parabolic equations. Czech. Math. J., (to appear.)
[3] MOCO. IOB, П. ПІ.: Вариационные методы в нестационарных задачах. (Параболический случай.) Изв. АН СССР, 34, 1970, 425-457.
[4] ROTHE, E.: Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben. Math. Ann., 102, 1930.
[5] ОЛЕИННИК, О. А., ВЕНТЦЕЛЬ, Т. Д.: Задача Коши и первая краевая задача для квазилинейного уравнения параболического тина. ДАН 97, 1954, 605-608.
[6] ЛАДЫЖЕНСКАЯ, О. А.: Решение в целом первой краевой задачи для квазилинейных параболических уравнений. ДАН СССР, 107, 1956, 636-639.
[7] ИЛЬИН, А. М., КАЛАШНИКОВ, А. С., ОЛЕЙНИК, О. А.: Јинейные уравнешия второго порядка параболического типа. УМН, 17, вып. 3, 1962, 3-146.
[8] REKTORYS, K.: On application of direct variational methods to the solution of parabolic boundary value problems of arbitrary order in the space variables. Czech. math. J., 21 (96), 1971, 318-339.
[9] YOSIDA, K.: Functional analysis, Springer, 1965.
Received November 14, 1973
Katedra matematickej analýzy Prirodovedeckej fakulty UK Mlynská dolina
81631 Bratislava

