Matematický časopis

Mária Polinová

Representation of Lattices by Equivalence Relations

Matematický časopis, Vol. 24 (1974), No. 1, 3--6

Persistent URL: http://dml.cz/dmlcz/127061

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

REPRESENTATION OF LATTICES BY E QUIVALENCE RELATIONS

MÁRIA POLINOVÁ

Introduction

P. M. Whitman [5] proved that every lattice L can be embedded into the lattice of all equivalence relations on a set M. If L is countable (in particular finite), then P. M. Whitman's construction yields M countable. S. K. Thomason [4] gave a more simple construction for the case of L finite. In this paper we shall show that to any sublattice \mathscr{L} of the lattice of all equivalence relations on a set M with card $\mathscr{L} \leqq m$, where m is an infinite cardinal number, there is a subset $Q \subset M$ with card $Q \leqq m$ such that the lattice of reduced equivalence relations to the set Q is isomorphic to \mathscr{L}. An analogous result will be proved for algebraic lattices. By an algebraic lattice (see e.g.[1]) it is meant a complete lattice in which every element is a join of compact elements. Denote by $\mathscr{E}(M)$ and $\mathscr{C}(\mathfrak{M})$ the lattice of all equivalence relations on the set M, or the lattice of all congruence relations on the algebra \mathfrak{M}, respectively. Let \mathscr{L} be a sublattice of the lattice $\mathscr{E}(M)$: then, according to B. Jónsson [3], \mathscr{L} is
(1) of type 1 if $\Theta \vee \Phi=\Theta . \Phi$,
(2) of type 2 if $\Theta \vee \Phi=\Theta . \Phi . \Theta$,
(3) of type 3 if $\Theta / \Phi==\Theta . \Phi . \Theta . \Phi$
for every $\Theta, \Phi \in \mathscr{L}(\Theta . \Phi$ denotes the product of Θ and $\Phi)$. Let Θ be a binary relation on a set M. We denote by Θ_{Q} the restriction of Θ to the subset $Q \subset M$, i. e. $(x, y) \in \Theta_{Q}$ if and only if $x, y \in Q$ and $(x, y) \in \Theta$. If Θ is an equivalence relation, then Θ_{Q} is an equivalence relation, too. If \mathscr{L} is a sublattice of $\mathscr{E}(M)$ and $Q \subset M$, then $\mathscr{L}_{Q} \quad\left\{\Theta_{Q} \mid \Theta \in \mathscr{L}\right\}$.

Results

Theorem 1. Let \mathscr{L} be a sublattice of $\delta(M)$ with card $\mathscr{L} \leqq m$, where m is an infinite cardinal number. Then there exists a subset $Q \subset M$ with card $Q \leqq m$
such that \mathscr{L}_{Q} is a sublattice of $\mathscr{E}(Q)$ isomorphic to \mathscr{L}. Moreover if \mathscr{L} is of type $p(p \in\{1,2,3\})$, then \mathscr{L}_{Q} is of type p, too.

Corollary 1. Let m be an infinite cardinal number and let L be a lattice with card $L \leqq m$. Then L is isomorphic to a sublattice of $\mathscr{E}(Q)$ with card $Q \leqq m$. In particular any countable (or finite) lattice is isomorphic to a sublattice of $\mathscr{E}(N)$ with card $N \leqq N_{0}$.

Theorem 2. If the lattice \mathscr{L} of Theorem 1 is a complete sublattice [1] of $\mathscr{E}(M)$, then the lattice \mathscr{L}_{Q} of Theorem 1 is a complete sublattice of $\mathscr{E}(Q)$, too.

Corollary 2. Any algebraic lattice L with card $L \leqq m$, where m is an infinite cardinal number, is isomorphic to a complete sublattice of $\mathscr{E}(Q)$ with card $Q \leqq m$.

Corollary 3. Let $\mathfrak{H}=(A, F)$ be an algebra having only finitary operations and let C be a sublattice of the lattice $\mathscr{C}(\mathfrak{H})$ with card $C \leqq m$, where m is an infinite cardinal number. Then there exists a subalgebra $\mathfrak{A}^{\prime}=\left(A^{\prime}, F\right)$ of the algebra \mathfrak{H} with card $A^{\prime} \leqq(m+\operatorname{card} F) \aleph_{0}$ such that the lattice C is isomorphic to a sublattice C^{\prime} of the lattice $\mathscr{C}\left(\mathfrak{H}^{\prime}\right)$. In particular if card $F \leqq \aleph_{0}$, then card $A^{\prime} \leqq m$. If C is of type $p(p \in\{1,2,3\})$ then C^{\prime} is of the type p, too. If C is a complete sublattice of $\mathscr{C}(\mathfrak{H})$, then C^{\prime} is a complete sublattice of $\mathscr{C}\left(\mathfrak{A}{ }^{\prime}\right)$, too.

Proofs of Results

Lemma. Let \mathscr{L} be a sublattice of the lattice $\mathscr{E}(M)$ and let $Q \subset M$. Then for the elements of \mathscr{L}_{Q} the following conditions hold $\left(\Theta, \Phi, \Theta_{\gamma} \in \mathscr{L}\right)$.
(1) If $\Theta \leqq \Phi$, then $\Theta_{Q} \leqq \Phi_{Q}$.
(3) $\quad\left(\bigvee_{\gamma \in \Gamma} \Theta_{\gamma}\right)_{Q} \geqq \bigvee_{\gamma \in \Gamma}\left(\Theta_{\gamma}\right)_{Q}$.

Proof of Lemma.
(1) If $(x, y) \in \Theta_{Q}$ then $x, y \in Q \subset M$ and $(x, y) \in \Theta$.

This implies $x, y \in Q$ and $(x, y) \in \Phi$, hence $(x, y) \in \Phi_{Q}$.
(2) $\quad(x, y) \in\left(\bigwedge_{\gamma \in L} \Theta_{\gamma}\right)_{Q}$ if and only if $x, y \in Q$ and $(x, y) \in \bigwedge_{\gamma \in I} \Theta_{\gamma}$. This is true if and only if $x, y \in Q$ and $(x, y) \in \Theta_{\gamma}$ for each $\gamma \in \Gamma$. This is equivalent to $(x, y) \in$ $\in \bigwedge_{\gamma \in \Gamma}\left(\Theta_{\gamma}\right)_{Q}$.
(3) follows from (1).

Proof of Theorem 1. According to the Lemma it is sufficient to show that there exists $Q \subset M$ such that the following three conditions are fulfilled:
(4) \quad card $Q \leqq m$.
(5) The correspondence $\Theta \mapsto \Theta_{Q}$ is one-one.
(6) $(\Theta \vee \Phi)_{Q} \leqq \Theta_{Q} \vee \Phi_{Q}$ for any $\Theta, \Phi \in \mathscr{L}$.

We shall construct a sequence of sets Q_{n} by induction. For every $\Theta, \Phi \in \mathscr{L}$ with $\Theta<\Phi$ choose elements $a, b \in M$ with $(a, b) \in \Phi$ but $(a, b) \notin \Theta$; denote Q_{0} the set of all these elements a, b. Obviously, card $Q_{0} \leqq m$. Now we construct the sets $O_{i}, i \in\{1,2, \ldots\}$, as follows. Let us suppose that we have already constructed $Q_{i}(i \in\{0,1, \ldots\}$,$) . For every pair \Theta, \Phi \in \mathscr{L}$ and for every pair $(a, b) \in$ $\in Q_{i} \times Q_{i}$ with $(a, b) \in(\Theta \vee \Phi)_{Q_{i}}$ but $(a, b) \notin \Theta_{Q_{i}}$ " $\Phi_{Q_{i}}$ choose a finite sequence $t_{0}, t_{1}, \ldots, t_{n} \in M$ such that $a=t_{0} \Theta t_{1} \Phi t_{2} \ldots t_{n-1} \Phi t_{n}=b$ and all elements of these sequences add to the set Q_{i}. Thus we obtain the set $Q_{i}{ }_{1}$. It is easy to prove that card $Q_{i+1} \leqq m$. Obviously, $Q_{i} \subset Q_{i+1}$ for each $i \in\{0,1, \ldots\}$. Let $Q \quad \bigcup_{i}^{\infty} Q_{i}$. Obviously, card $Q \leqq m$, which proves (4). Now we prove (5). If $\Theta \neq \Phi$, then either $\Theta \wedge \Phi<\Theta$ or $\Theta \wedge \Phi<\Phi$. If $\Theta \wedge \Phi<\Theta$, then there exist elements $a, b \in Q_{0} \subset Q \subset M$ with $(a, b) \in \Theta$ but $(a, b) \notin \Theta \wedge \Phi$, i. e. $(a, b) \notin \Phi$. This means $\Theta_{Q} \neq \Phi_{Q}$. The proof for $\Theta \wedge \Phi<\Phi$ is analogous. It remains to prove (6). If $a, b \in Q$ and $(a, b) \in(\Theta \vee \Phi)_{Q}$, then there exists an $i \in N$ such that $(a, b) \in(\Theta \vee \Phi)_{Q_{i}}$. If $(a, b) \in \Theta_{Q_{i}} \vee \Phi_{Q_{i}}$, then obviously $(a, b) \in$ $\in \Theta_{Q} \vee \Phi_{Q}$. If $(a, b) \notin \Theta_{Q_{i}} \vee \Phi_{Q_{i}}$, then there exists a finite sequence $t_{0}, t_{1}, \ldots, t_{n} \in$ $\in Q_{i+1}$ such that $a=t_{0} \Theta t_{1} \Phi t_{2} \ldots t_{n-1} \Phi t_{n}=b$; this means $(a, b) \in \Theta_{Q_{i+1}} \vee \Phi_{Q_{i+1}}$ and also $(a, b) \in \Theta_{Q} \vee \Phi_{Q}$. It can easily be seen that if \mathscr{L} is of type $p(p=1,2,3)$ the construction of Q can be realised in such a way that \mathscr{L}_{Q} is of the type p, too.

Proof of Corollary 1. By Whitman's theorem [5] L is isomorphic to a sublattice \mathscr{L} of the lattice $\mathscr{E}(M)$ on a set M. By Theorem 1 , there exists a set $Q \subset M$ with card $Q \leqq m$ such that \mathscr{L} is isomorphic to \mathscr{L}_{Q}. Hence L is isomorphic to \mathscr{L}_{Q}.

Proof of Theorem 2. Using the isomorphism $\Theta \rightarrow \Theta_{Q}$ of Theorem 1, we get $\left(\Theta_{1} \vee \Theta_{2} \quad \ldots \vee \Theta_{n}\right)_{Q}=\left(\Theta_{1}\right)_{Q} \vee\left(\Theta_{2}\right)_{Q} \vee \ldots \vee\left(\Theta_{n}\right)_{Q}$ for an arbitrary natural number n. This implies immediately the following inequality

$$
\begin{equation*}
\left(\bigvee_{\gamma<\Gamma} \Theta_{\gamma}\right)_{Q} \leqq \bigvee_{\gamma \in \Gamma}\left(\Theta_{\gamma}\right)_{Q} \text { for } \Theta_{\gamma} \in \mathscr{L} . \tag{7}
\end{equation*}
$$

Proof of Corollary 2. By [2], L is isomorphic to the lattice $\mathscr{L}=\mathscr{C}(\mathfrak{M})$ on a finitary algebra $\mathfrak{M}=(M, F)$. By Theorem 2 , there exists $Q \subset M$ with card $Q \leqq m$ such that \mathscr{L} is isomorphic to \mathscr{L}_{Q}. Hence L is isomorphic to \mathscr{L}_{Q}.

Proof of Corollary 3. Let us construct a sequence of sets A_{n} by induction. Let A_{0} have the same meaning as Q_{0} in the proof of Theorem 1. Now we construct sets $A_{i}, i \in\{1,2, \ldots\}$ as follows. Let us suppose that we have already constructed $A_{i}, i \in\{0,1, \ldots\}$. In the case of i being even we construct A_{i+1} from A_{i} in the same way as in the proof of Theorem 1 we constructed $Q_{i 1}$ from Q_{i}. If i is odd, we set $A_{i+1}=\left[A_{i}\right]$, where $\left(\left[A_{i}\right], F\right)$ is the algebra generated by A_{i}. It is easy to prove that card $A_{i+1} \leqq(m+\operatorname{card} F) \aleph_{0}$ (see e. g. [1]) in any case. Obviously, $A_{i} \subset A_{i+1}$. Let $A^{\prime}=\bigcup_{i}^{\infty} A_{i}$. Obviously, card $A^{\prime} \leqq$ $\leqq(m+\operatorname{card} F) \aleph_{0}$ and every equivalence relation $\Theta_{A^{\prime}}$ is a congruence relation of \mathfrak{A}^{\prime}. It suffices to show that the following statements are true:
(8) $\mathfrak{A} \mathfrak{X}^{\prime}=\left(A^{\prime}, F\right)$ is a subalgebra of the algebra \mathfrak{A}.
(9) The correspondence $\Theta \mapsto \Theta_{A^{\prime}}$ is one-one.

$$
\begin{equation*}
(\Theta \vee \Phi)_{A^{\prime}}=\Theta_{A^{\prime}}, \Phi_{A^{\prime}} \tag{10}
\end{equation*}
$$

If $a_{0}, a_{1}, \ldots, a_{n-1} \in A^{\prime}$, then for every $i \in\{0,1, \ldots, n-1\} \quad a_{i} \in A_{j(i)}$ for some $j(i) \in N$. Let $k=\max \{j(i), i=0,1, \ldots, n-1\}$, then $a_{i} \in A_{k}$ for every $i \in\{0,1, \ldots, n-1\}$. Hence for every $f_{\gamma} \in F, f_{\gamma}\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in$ $\in A_{k+2} \subset A^{\prime}$, which proves (8). The proof of (9) is analogous to that of (5). It remains to prove (10). If $a, b \in A^{\prime}$ and $(a, b) \in(\Theta \vee \Phi)_{A^{\prime}}$. then there exists $i \in N$ such that $(a, b) \in(\Theta \vee \Phi)_{A_{i}}$. If $(a, b) \in \Theta_{A_{i} \vee} \Phi_{A_{i}}$, then obviously $(a, b) \in$ $\in \Theta_{A^{\prime}} \vee \Phi_{A^{\prime}}$. If $(a, b) \notin \Theta_{A_{i}} \vee \Phi_{A_{i}}$, then there exists a finite sequence t_{0}, t_{1}, \ldots, $t_{n} \in A_{i+2}$ such that $a=t_{0} \Theta t_{1} \Phi t_{2} \ldots t_{n-1} \Phi t_{n}=b$. This means $(a, b) \in \Theta_{A_{i+2}}$ $\vee \Phi_{A_{i+2}}$ and $(a, b) \in \Theta_{A^{\prime}} \vee \Phi_{A^{\prime}}$, too. The last assertion of Corollary 3 can be obtained using Theorem 2.

REFERENCES

[1] GRÄTZER, G.: Universal Algebra, 1. ed. Princeton 1968.
[2] GRÄTZER, G., SCHMIDT, E. T.: Characterization of congruence lattices of abstract algebras. Acta sci. Math. Szeged 24, 1963, 34-59.
[3] JÓNSSON, B.: On the representation of lattices. Math. scand. 1. 1953. 193 206.
[4] THOMASON, S. K.: A proof of Whitman's representation theorem for finite latticen. Proc. Amer. Math. Soc. 25. 1970, 618-619.
[5] WHITMAN, P. M.: Lattices. equivalence relations and subgroups. Bull. Amer. Math. Soc. 52, 1946, $507-522$.

Received September 8, 1972

