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Mat. čas. 24, 1974, No 1, 31—42 

SESQUIREGULAR MEASURES IN PRODUCT SPACES 
AND CONVOLUTION OF SUCH MEASURES 

MILOSLAV DUCHON 

In the theory of measure in locally compact spaces some attention has been 
devoted to a "nondirect" prodi ct of measures [3, 7, 8, 13, 14, 15]. I n this 
paper some slight generalizations will be given in presence of sesquiregularity 
[4]. Also some applications to the direct poduct of measures and to the con­
volution of measures will be give n. 

1. Throughout, S and T denote locally compact Hausdorff spaces. We 
follow the terminology of [1, 2, 3, 4]. In particular, the class of Baire [Borel; 
weakly Borel] sets in S is the cr-ring &o(S) [&(S), 08W(S)\ generated by t h e 
compact C?<5 [compact; closed] sets in S. A weakly Borel measure T on S [that 
is a measure defined on 88W(S) a id finite for the compact sets] will be called 
sesquiregular if it is outer regular, T(A) = inf {T(U) :U ZD A, U is open}, 
A e&w(S), and if T(U) == sup {T(C) : C <--- U, C is compact} for all open sets 
U. The definition of sesquiregularity coincides with the definition of regularity 
in [10, pp. 122 and 230; 11. p. 127] (cf. also [17]). 

The following theorem gives a generalization of a theorem proved in [3], 
p. 139. The result is useful in the theory of spectral and vector-valued measures 
[6]. We confine ourselves to the finite measures. Then T(A) = sup {T(C), 
C <= A, C is compact} for all sets A in &tv(S) [4, Th. 3]. The following proof is 
a modification of the proof in [3 p. 139]. 

Theorem 1. Suppose that X is a nonnegative finite measure on the a-algebra 
&w(S) X &w(T) such that (i) for each closed set C in S, the correspondence 

F^X(C xF), (Fe^w(T)), 

is a sesquiregular weakly Borel measure on T, and (ii) for each closed set D in T, 
the correspondence 

E->X(ExD), (Ee<%w(S)), 

is a sesquiregular weakly Borel measure on S. Then X may he extended to one and 
only one sesquiregular weakly Bo) el measure \xw on S X T. 
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Proof . The uniqueness of fiw follows from the fact that the domain of defi­
nition of X includes the Baire sets of S X T and that every Baire [regular 
Borel] measure has the unique regular Borel [sesquiregular weakly Borel] 
extension [1, Th . 1, Sec 62; 4, Th . 2 and Cor.]. 

The restriction X+ of X to 3S(S) x &(T) satisfies the conditions of the theorem 
in [3, Th . 3] and hence there is the unique regular Borel extension X\ of X+ 
(coinciding with X on 36>(S) X 3S(T)) [Xi is the extension of the Baire restriction 
Xo of X+ [3. Th. 3]]. Let /iw be the unique sesquiregular weakly Borel extension 
of Xi [also of A- and Xo] [4, Th. 2 and Cor.]. We shall show that 

( + ) MH) = X(H), 

for all sets / / in 3SW(S) X 3SW(T). 
Let E x F be a closed rectangle in 3SW(S) X 3SU(T). By the assumption (i) 

and by the proof of a theorem in [4, Th. 3] there is a a-compact set D m T 
such that 

X(E x F) = X((E x F)nD) 

arid by the assumption (ii) and [4, Th. 3] there is a cr-compact set C in S such 
that 

X(E xF) = X((E xF)nD)= X((E n C) x (F n D) . 

Since E nC and F n D are cr-compacV. then (E n C) A (F n D) ib in 38(8) X 
X 3#(T) and we have 

X(E x F) = X((E nC) x (Fn D)) = X+((E nC) > (F n D)) = 

= pw((E nC) x (Fn D)) ^ pw(E , F). 

On the other hand, since juw is a finite sesquiregular weakly Borel measure on 
S X T, then according to [4, Th. 3] there is a cr-compact set K in 8 ' T such 
that 

pw(E xF) = JLIW((E x F)n K). 

If Ps and PT are the projection mappings of S X T onto S and T, respectively, 
then we have that PsK and PTK and also E n PsK, F n PTK are cr-compact, 
K c PSK x PTK, and 

l*w(E xF) = pw((E xF)n K) <, pw((E x F) n (PSK PTK)) = 

= filv((E n Ps) X (Fn PTK)) = X,((E n PsK) (F n PTK)) -

- X((E n PSK) x (Fn PTK)) ^ X(E x F). 

Thus juw(E x F) = X(E x F) for all closed rectangles. 
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Let now &2v(S) be the ring generated by the closed sets in S. Every set in 
iJ#w(S) is a finite disjoint union of "proper differences" G — C*, where C and 
C* are closed sets such that C D C * [1, Th . 1, Sec. 58]. Similarly for @W(T). 

Let 0tw(S x T) be the ring generated by the class of all rectangles E X F 
with sides in Jtw(S) and &W(T), respectively. Each set in 0tw(S X T) can be 
written as a finite dijoint union of sets of the form 

(C - C*) X (D - D*), 

where both of the indicated differences are proper [1, Th. 1, Sec. 34]. Such 
a set can be written in the form 

(1) (C x D-C X D*) - (O* X D - O* X D*), 

where each of the indicated differences is proper. 
We have verified ( + ) for rectangles H = E X F with closed sides; it follows 

from (1) that ( + ) holds for all sets in MW(S X T) [9, p. 37] and therefore for 
all sets in the cr-ring generated by &W(S X T) [9, p. 54], in other words for all 
sets in @W(S) X 8SW(T) [1, p. 118). 

The following theorem represents a generalization of a result proved in [13]. 

Theorem 2. Suppose that X is a nonnegative finite set function defined on the 
system of the sets of the form E X F,E e 3SW{S), F e £SW(T) such that 

(i) for each E in 3SW(S), the correspondence EX : F -> X(E x F) is a sesquire-
gular weakly Borel measure on T, 

(ii) for each F in 3SW(T), the correspondence Xp : E -> X(E X F) is a sesquire-
gular weakly Borel measure on S. 

Then X is a-additive on the system of the sets E X F e 3SW(S) X &W(T) and 
on 83W(S x T) there is one and only one sesquiregular weakly Borel measure 
piw coinciding ivith X for E x F in 3SW(S) X &W(T). 

Proof. Denote by Xi the unique additive extension of X to the ring & ge­
nerated by the sets of the form E X F, E in SSW(S), F in 3SW(T). We shall prove, 
in a standard manner, tha t X± is cr-additive o n £ To prove the tf-additivity of 
Xi take an arbitrary decreasing sequence Gn, Gne 01, n = 1,2, . . . of the form 

On = \J E? x F? 

with 0 < s < X(Gn), n = 1, 2, . . . ' 

From the inner regularity of X and XF it follows [4, Th. 3 or 10, Th. 2.40] 
that for every n there exist compact sets Of, D™, C? <= Kf, D? <= F\, i = 

1, . . ., kn , such that 

Xi(Gn- Yn)<
 £ ,n= 1,2, . . . , 

2n 
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where 

Yn = U C'l X D? 
i-1 

Denote 
n 

xn = n Yt. 
11 

Then m ^ n implies Xn ^ Xm and 

Ai(o» -Xn) = h(\j (On - ro) ^ 2 M& - ^ ) < e. 
i 1 i l 

I t follows that Ai(Xn) > 0, ra == 1, 2, . . ., that is the sets Xn are nonempty 
oo oo 

and Kn-fi <-= I w . Since Kw are compact we have p) C7W => f ) _KW 4= 0. From this 
n 1 n 1 

and from the finite additivity of Ai the G-additivity of Ai follows. 
The measure Ai has the unique extension to the measure v on the cr-algebra 

3SW(S) X 3SW(T) generated by 0t. The measure v fulfils the assumptions of 
Theorem 1 and thus we may complete the proof using Theorem 1. 

Both Theorem 1 and Theorem 2 involve a measure defined on the O-algebra 
0Sw(S) X 3&w(T) that is not a weakly Borel measure if SSU(S) X 3SU{T) #= 
4= 3SW(S X T). Nevertheless this measure is regular in the following sense 
[cf. 10, Th. 21.18]. 

Theorem 3. Let A be a nonnegative finite set function defined on the system of 
the sets E x F e SSW(S) X 3#W(T) such that the assumptions (i) and (ii) of 
Theorem 2 are satisfied. Let r be the extension of r to the measure on 3SU(S) X 
X3SW(T) existing according to Theorem 2. Then r is regular on .J&V{S) x ttfv (T) 
in the sense that 

(a) r(E) = inf {r(U) : E cz U, U e &lc(S) X ®W(T), U is open}, 

(b) r(E) = sup {r(F) :E z> F,Fe 3SW(S) X @w(T), F is compact}. 

Proof, [cf. 10, Th. 21.18]. Let 9t be the family of all sets Ee3n(S) x 3SV(T) 
for which the assertions (a) and (b) hold. We will prove tha t $ — Sl{j(S) X 
X 3SW(T). I t easy to prove that M is closed under the formation of countable 
unions. 

We shall prove that M contains each rectangle E X F c .J#ir(S) X 3tv(T). 
By the assumptions (i) and (ii) we have 

r(E X F) = A(K X F) = sup {X(C X F):C a E, G is compact) 

sup {)\C X D):C c E, D c F,G and D are compact] < 
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^ sup {T(K) : K e @W(S) x 3SW{T), K a E X F, K is compact}. 

Let Kc= K x F be an arbitrary compact set in / JU#) X @W(T). We have 

T(K ^ T(K X F), 

sup {T(K) : K c K X F, K e 0tt(flf) X ^ ( T ) , K is compact} ^ T(E X F). 

Further we have 

T(E XF) = inf {).(E X V) : V c F, V is open} = 

= inf {X(U X V) : U cz E, V c F, U and V are open} ^ 

^ inf {;.(0) : 0 ZD K X F, 0 e ^ ( A S ) X ^ ( T 7 ) , 0 is open}. 

On the other hand, let 0 be an arbitrary open set in 3SW(S) X 3SW(T), 0 z> 
z> E X F. We have 

T(E x F) ^ T(0), T(E x F) £ i i f {T(0) : 0 =, K X F, Oe0Sw{S) X @W{T), 0 

is open}. 
Thus we have 

T(E x F) inf {T(0) : 0 e ^ ( S ) X ^ ( T ) , 0=>K F, 0 is open}, 

T(E x F) sup {T(K) : K e 3SW( SY) X ^ ( T ) , K a E x F, K is compact}. 

We shall prove that 31 is closed under complementation. Let 5 e S and let 
£ > 0 be given. There is a compact set F and an open set U, both in 23W(S) X 
X 8SW(T) such that F cz K cz U and /(U n F^) < s. Since S x T e l , there 
exists a compact set K in ^?tt-(£) X J ^ ( T ) such that K a S X T and T(Kr) < e. 
Now Fr is open and K n U> is c< mpact. Further it is clear that K n Uc <= 
cz /£<• cz Fc a n ( l that 

T(F*) - T(K n C7>) - T(F^ n (K n 17^) rg T(F* n K<) + T(F^ n l)< s + 
+ 8 28. 

This proves that E<> is in 0t if K i in A. Thus we have M _= ^ ( / S ) X ^ ( T ) 
and the proof is completed. 

2. We shall give some applications of the preceding theorems. I t is known 
that 3SW(S) X £SW(T) <= 3SW(S X T), where the inclusion can be proper [3, p. 
136]. Now, if we have two sesquiregular weakly Borel measures ju and v on S 
and T, respectively, then their pre luct A /u > v, as denned in [1 or 9J (that 
is regular in the sense as in Theorem 3 [10, Th. 21.18]) cannot be a weakly Borel 
measure on S X T when 3SW(S) 3SW(T) =(= JStv(S X T). In order to obtain 
a weakly Borel measure we may use Theorem 1 or Theorem 2. Namely, we may 
take the unique sesquiregular wea ]y Borel extension of A — jiz v. I t is easy 
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to verify that the conditions of Theorem 1 (or those of Theorem 2) are satisfied 
using the fact that 

X(E xF)= v(E)v(F), 

for all rectangles with closed (weakly Borel) sides. Thus we have the following. 

Theorem 4. Let ^ be a finite nonnegative sesq^tiregular ^veakly Borel measure 
on S and v be a finite nonnegative sesquiregular weakly Borel measure on T. Then 
there is one and only one sesq^liregular ^veakly Borel meamre Xw on S X T that 
extends X = /i X v. More explicitely, we will ^vrite Xw = JLL (X) V. 

3. A complex measure JLI defined on the c/-ring &Q(S) [the cr-ring 33(S); the 
c/-algebra &W(S)] is said to be a complex regular Baire [regular Borel: sesquire­
gular weakly Borel] measure on S if its total variation, |//| [necessarily bounded, 
[10, p. 360]] is a Baire [regular Borel; sesquiregular weakly Borel] measure on S. 
We may now give a generalization of Theorem 1 (and also of Theorem 2) for 
complex measures. 

Theorem 5. Suppose that X is a complex measure on the a-algebra &W(S) X 
X 3#iv(T) s^tch that (i) for each closed set C in S, the correspondence 

CX:F-+X(C XF), (Fe<%w(T)), 

is a complex sesq^lireg^dar weakly Borel measure on T and (ii) for each closed set 
D in F, the correspondence 

XD:E^X(E x D), (Ee<%w(S)), 

is a complex sesq^liregular ^veakly Borel measure on S. 
Then X may be extended to one and only one complex sesquiregular weakly Borel 

measure /u on S x T. 
4 

Proof, Let 2 aAj be the Jordan decomposition of X [10, p. 311]. The measures 
3 1 

Xj, j = I, 2, 3, 4 all satisfy the conditions of Theorem 1 using the fact that 
4 

v = 2 aJvJ is a complex sesquiregular weakly Borel measure if and onlyr if all 
J-i 

Vj, j = 1, 2, 3, 4 [or |T|] are nonnegative sesquiregular weakly Borel measures 
[10, p. 360], Take now a sesquiregular weakly Borel extension /t; of Xj, j = 1, 

4 

2, 3, 4. Then 2 ajftj gives a required measure /u. 
j i 

I t is also possible to give a generalization of Theorem 2 for a complex case. 
In this case one supposes that X is bounded on the algebra generated by the 
sets of the form E x F,Ee @W(S), F e J$U{T) [8, p. 242]. 

From Theorem 5 we obtain the following. 
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Theorem 6. Let ju be a complex sesquiregular weakly Borel measure on S and v 
be a complex sesquiregular weakly Borel measure on T. Then there is one and only 
one complex sesquiregular weakly Borel measure lw on S x T which extends 
X — fi X v. We vjill write, more e. plicitely, Xw = /u ® v. 

From the Riesz representation theorem [10, p. 346] it follows that the measu­
re fi (x) v from Theorem 6 is the unique complex sesquiregular weakly Borel 
measure on S X T such that for every continuous function / on S X T va­
nishing at infinity [i. e. / e Go(S > T)] we have 

J /d/4 ® V = J { J f(s, t)dpL(8)}dv(t) = J { J f(8, t)}dv(t)dfi(8). 
s T T S S T 

In particular, the measure /u 0 v coincides with the product measure con­
structed in [11, p. 182]. Therefore from [11, Th. 14.24] we have the following. 

Theorem 7. Let //, v and ju (x) v be as in Theorem 6. Then we have \fx (x) v\ = 
= \f*\ ® v\. 

4. We shall give some connections with Fubini's theorem. We recall tha t 
the real-valued function on S is called the weakly Borel function if it is me­
asurable with respect to the o-a,l$. ebra of weakly Borel sets [1, p. 181]. If//, v 
and jit (x) v are as in Theorem 6 and / is a bounded weakly Borel function on 
S X T, then / i s \fi ® r|-integrable and it follows from Fubini's theorem in 
[11, Th. 14.25] tha t / (5 , t) qua function of s is |^|-integrable for |i>|-almost all 
t e T and the function t -> J* f(s, t)d/.i(s) is |i>|-integrable and we have 

s 

| fdft ® v = f { f / 0 , t)dv(t)}d^(s) = f { f/(«, t)dM(s)}dv(t). 
s T S T T S 

In particular, if G is a weakly Botel set in S X T, we have 

ft ® v(G) = J XGdfA ®v= J { f *G(s, 0<M0}<W = \ { J #.(*, l)d//(s)}di>(l). 
N \ T £ T T S 

Sometimes it ma}^ be interesting to know that if/ is a bounded weakly Borel 
function on S X T, then s->f(s, t) is a bounded weakly Borel function on S 
and t -> | /($, l)d//(s) is a bounded weakly Borel function on T. 

,s 

If Ps and PT are the projection mappings of S X T onto S and T, respecti­
vely, then 

G* = {seS :(s,t eG} = PS[G n (S x {t})], 

Gs = {teT: (s, t)eG} = PT[G n ({s} x T)]. 

If G e @W(S) X &W(T), then Q* e J$W(S) for all t e T, and Gs e 38W(T) for all 
s e S [9, 34A]. The same result holds for any Borel set [12] and we shall show 
that for any weakly Borel set G in S x T, too. 
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Lemma 1. If G e 3SW(S X T), then Gt e 8SW(S) for all t e T, and Gs e ^U(T) 
for all s e S. 

Proof . Let 2% be the class of all G c S x T such that Gt e 0Sw(S) for all 
t eT, and Gs e 3SW(T) for all s e S. Since sections preserve countable unions 
and set-theoretic differences, 01 is a o--algebra. We shall show that 0} contains 
the closed sets in S X T. 

Let G be a closed set in S X T, and let t e T. Then S x {t} is closed, the 
restriction Ps | sx(v °-? Ps on S x {t} is a homeomorphism from S X {t} 
onto £, and 

Gt = Ps [£ n (fif x {t})], 

is closed because Gt = Ps \ sx(t G. Hence Gl e 3SW(S) for all t eT. Similarly, 
Gs e 3?W(T) for all s e S. Hence 6 e ^ and Lemma 1 then follows. 

Lemma 2. Let f be a weakly Borel fanction on S X T. Then fs : t ->f(s, t) 
is a weakly Borel function on T and ft : s ->f(s, t) is a ^veakly Borel function on S, 
for all s e S and t e T. 

Proof . If G is any set of real numbers, then (fs)
 X(G) — (/_1(G))S and 

(/0_1(6r) = (^(G))1. The lemma now follows directly from Lemma 1. 
Let now G be airy set in SSW(S X T). Then the characteristic function %G 

is a bounded nonnegative weakly Borel function on S T. For complex 
sesquiregular weakly Borel measures /n and v we may write 

| XG{S, t)dv(t) = f XGs(t)&v(t) = v(Gs), 
f T 

\ %G(s, t)dfi(s) = | XG>(SW(S) = MGt)-

s s 
We wish to prove that the function fG:s-> v(Gs) is weakly Borel on S, and 
hG : t -> ̂ (Gt) is weakly Borel on T. 

Theorem 8. Let ^ and v be compter sesquiregvlar ^veakly Borel measures on S 
and T, respectively. Then fG:s-> v(Gs) is a iveakly Borel function on S and 
hG:t-> [x(Gt) is a weakly Borel function on T for every G e 3SW(S X T). 

Proof . We may suppose that /n and v are nonnegative measures. I t will 
suffice to prove that fG is a weakly Borel function for all open sets in S x T. 

Suppose G is a nonvoid open set in S X T. Let F be the set of all functions 
/ECQ0(/S X T) [i. e. nonnegative continuous functions on S \ T with the 
compact support] such t h a t / ^ xc- Since G is an open set, Urysohn's theorem 
[10, Th. 6.80] implies that sup {/ : / e F } = XG. For every feF, for each fixed 
seS, the function t~>f(s, t) is in C^0(T), the function s--> | f(s, t)dv(t) is in 

f 
CQ0(S). Further for each fixed sQ e S we have 

XG(8O, t) = sup {/(*<,, 0 :feF}, for all t e T. 
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Every function t ^f(so, t) is in CQ0(T). I t is obvious that the set of functions 

{8->jf(s,t)dv(t):feF}, 
T 

is directed upward. Applying [10, Th. 9.11 and Th. 12.35] we have 

v(GSo) = \ XG(SO, t)dv(t) = sup { \f(80, t)dv(t) :feF}. 
T T 

This being true for all s0e S we have that the function 

8 -> \ XG(8, t)dv(t) = v(G8),] 
T 

is lower semicontinuous [10, Th. 7.22] and hence is a weakly Borel function 
[10, Cor. 11.5]. 

According to Theorem 8 we may form the iterated integrals 

J { f XG(s, t)dv(t)}df,(s), j { f XG(8, t)dft(s)}dv(t). 
S T T S 

Define a set function JLI . v by the relation 

ix . v(G) = J* { | %G(8, t)dv(t)]dp(8), G e ^W(S x T). 
S T 

I t is obvious that /u . v is a weakly Borel measure on S X T. We shall prove 
tha t fi .v = JLI ®v on @W(S x T). 

Theorem 9. Let JLI and v be complex sesquiregidar weakly Borel measures on S 
and T, respectively. Then for all G e £8tv(S X T) we have JLI . v(G) = /u 0 v(G). 

P r o o f . Take /u and v nonnegative. I t will suffice to prove that /LI . v(G) = 
— [i 0 v(G) for all open sets in S x T. Let F be the set of functions from the 
proof of Theorem 8. I t is a cotollary of the Stone-Weierstrass theorem that 
every feF is &W(S) X &tv(T)-measurable and / is also fi x r-integrable on 
S T, and we may use Fubini's theorem. The measure JLI 0 v coincides with 
JLI X v on the G-algebra 3#W(S) X 3$W{T). Applying, similarly as in proving 
Theorem 8, [10, Th . 9.11] we have 

JLI 0 v(G) = \ xad/u 0 v = sup { J fdfi 0 v :feF} = 
SxT SxT 

= sup { f fdfi X v.feF} = sup { f { f / 0 , t)dfi(s)}dv(t) :feF} = 
S T T S 

= \{\ xa(s,t)dfi(s)}dv(t) = fx . v(G). 
T S 

Let S& be the collection of all weakly Borel subsets H of S x T for which 
ju . v(H) = JLI 0 v(H) holds. By the monotone convergence theorem 3ft is a mo-
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notone class in the sense of [9, JJ. 26]. Since & contains all open sets of S X T, 
then 0t obtains all weakly Borel sets of S X T. 

We have thus 

// ® v(G) = /i . v(G) = \{JZG(S, t)dv(t)}drfs) = j {/ XG(s, t)d/,(s)}dv(t), 
S T T ,s 

for all G e 3SW(S X T). We have thus the following. 

Theorem 10. Let ju be a complex sesquiregular weakly Borel measure on S and 
v be a complex sesquiregular weakly Borel measure on T. Let f be a bounded weakly 
Borel function on S X T. Then 

(1) s->\f(s,t)dv(t), 
T 

is a weakly Borel function on S and 

(2) lf&ti®v= \{\f(s,t)dv(t)}dfx(s). 
SxT S T 

Proof . The assertion of Theorem 10 is valid for characteristic functions of 
weakly Borel sets. Since each bounded weakly Borel function on S X T is 
a uniform limit of linear combinations of %E for 2.7 weakly Borel set, the assertion 
is valid for all bounded weakly Borel functions. 

5. Let now G be a locally compact Hausdorff group; ju and v complex sesqui­
regular weakly Borel measures on G. Their convolution ju, * v is a complex 
sesquiregular weakly Borel measure on G which can be defined in two equivalent 
ways [16]. The first definition uses the Riesz representation theorem and 
H * v is taken to be the unique complex sesquiregular weakly Borel measure 
on G such that 

\f(z)d[t * v(z) = \{\ f(st)dp(s)}dv(t) = \ f(st)dM O v(s, t), 
G G G GxG 

for all continuous functions / on G which vanish at infinity. In the second de­
finition, for each weakly Borel subset D of G, JU * v (D) is defined to be /u (x) v(E), 
where E = {(s, t) : st e D} and /u ® v is the unique complex sesquiregular 
weakly Borel measure on G x G satisfying 

/ gáiji ® v) = / { / g(s, t)dp(s)}dv(t), 
GxG 

for all continuous functions on G X G vanishing at infinity. The second defi­
nition makes it possible to give ju * v(D) explicitly. 
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Theorem 11. Let G be a locally compact Hausdorff group; ju, and v be complex 

sesquiregular weakly Borel ?neasures on G. Then, for each weakly Borel subset 

DofG, 

(1) t->(Dt-i), s->(s~1D), 

are weakly Borel functions on G rnid 

(2) fi * V(D) = \ ^(Dt-^dvtf) = \ v(s-W)dp(s). 
G G 

R e m a r k . The formula (2) is stated, for D weakly Borel, in [16, p. 351] but 

no assertion about the measurability of (1) is made and no proof is given. The 

proof that (1) is M-integrable, resp. |/*j|-integrable and that of (2) is given in 

[11, p. 269]. Our contribution here is the proof of the weak Borel measurability 

of (1). For compact spaces this is done in [5]. 

Proof . Let E be the subset {(<s„ t) : st e D} of G X G.E is weakly Borel since 

the mapping (s, t) -> st ofGxG into G is continuous. We have 

| XE{8, t)dfl(s) = p(Dtri) 
G 

and the weak Borel measurability of (1) follows from the first assertion of 

Theorem 10 and (2) is a consequence of the second assertion of Theorem 10 

and the fact that 

/« * v(D) = /i® v(E) = | lEdli ® v = \ { \ XE(S, t)dp(8)}dv(t). 
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