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SES QUIREGULAR MEASURES IN PRODUCT SPACES
AND CONVOLUTION OF SUCH MEASURES

MILOSLAV DUCHON

In the theory of measure in locally compact spaces some attention has been
devoted to a ‘“‘nondirect’’ prodict of measures [3, 7, 8, 13, 14, 15]. In this
paper some slight generalizations will be given in presence of sesquiregularity
[4]. Also some applications to the direct poduct of measures and to the con-
volution of measures will be given.

1. Throughout, S and 7' denote locally compact Hausdorff spaces. We
follow the terminology of [1, 2, 3, 4]. In particular, the class of Baire [Borel;
weakly Borel] sets in S is the o-ring %o(S) [Z(S), #»(8)] generated by the
compact G5 [compact; closed] sets in S. A weakly Borel measure 7 on S [that
is a measure defined on %,(S) a1d finite for the compact sets] will be called
sesquiregular if it is outer regular, 7(4) =inf {x(U): U > A, U is open},
A e A.(S), and if 1(U) = sup {z(0) : ¢ = U, C is compact} for all open sets
U. The definition of sesquiregularity coincides with the definition of regularity
in [10, pp. 122 and 230; 11. p. 127] (cf. also [17]).

The following theorem gives a generalization of a theorem proved in [3],
p- 139. The result is useful in the theory of spectral and vector-valued measures
[6]. We confine ourselves to the finite measures. Then z(4) = sup {z(C),
C < A, C is compact} for all sets 4 in Hy(S) [4, Th. 3]. The following proof is
a modification of the proof in [3 p. 139].

Theorem 1. Suppose that 2 is a nonnegative finite measure on the o-algebra
Buw(S) X Buw(T) such that (i) for each closed set C in S, the correspondence

F - AC X F), (FeZuT)),

is a sesquireqular weakly Borel measure on T, and (ii) for each closed set D in T,
the correspondence

E > AE < D), (EecZu?9)),

18 @ sesquireqular weakly Borel measure on S. Then A may be extended to one and
only one sesquiregular weakly Boiel measure p, on S X T.
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Proof. The uniqueness of u, follows from the fact that the domain of defi-
nition of 2 includes the Baire sets of S X 7' and that every Baire [regular
Borel] measure has the unique regular Borel [sesquiregular weakly Borel]
extension [1, Th. 1, Sec. 62; 4, Th. 2 and Cor.].

The restriction A+ of 4 to Z(S) x Z(T') satisfies the conditions of the theorem
in [3, Th. 3] and hence there is the unique regular Borel extension 4; of 2.
(coinciding with 4 on Z(S) X Z(T)) [4 is the extension of the Baire restriction
2o of 2+ [3, Th. 3]]. Let uw be the unique sesquiregular weakly Borel extension
of 41 [also of Z_ and 4] [4, Th. 2 and Cor.]. We shall show that

(+) puw(H) = A(H),

for all sets H in %,(S) X Bu(T).

Let £ X F be a closed rectangle in %,.(S) X %y (T). By the assumption (i)
and by the proof of a theorem in [4, Th. 3] there is a s-compact set D in 7'
such that

ME x F) = »(E ¥ F) N D)

and by the assumption (ii) and [4, Th. 3] there is a g-compact set (' in S such
that

MEXF)=XMEXF)ND)=W((ENC) < (FnD).
Since £ N C and F N D are o-compact, then (E N C) ~ (F N D) is in B(S) X
X Z(T) and we have
MEXF)=MENC)X FND)=:aENC) > (FND) =
= pu((B 0 C) X (FND)) £ pull ~ F).

On the other hand, since p,, is a finite sesquiregular weakly Borel measure on
S x T, then according to [+, Th. 3] there is a o-compact set X in S - 7 such
that

(B X F) = uu((E % F) 0 K).

If Ps and Pr are the projection mappings of § x 7" onto S and 7', respectively,
then we have that PsK and PrK and also £ N PsK, F N PrK are s-compact,
K < PsK x PrK, and

pu(B X F) = pu((B X F) N K) = pu((E X F) N (PsK PrK)) =
= uw((E N Ps) X (F N PrK)) =2,(F nPsK) (Fn PrK)) —
= M N PsK) X (F N PrK)) < ME X F).
Thus uw(E X F) = A(E x F) for all closed rectangles.
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Let now Z,(S) be the ring generated by the closed sets in S. Every set in
Hw(S) is a finite disjoint union of “proper differences” €' — C*, where € and
C* are closed sets such that C o C* [1, Th. 1, Sec. 58]. Similarly for Z.(T).

Let Z,(S x T) be the ring generated by the class of all rectangles £ X F
with sides in #,(S) and Z,(T'), respectively. Each set in Z,,(S X T) can be
written as a finite dijoint union of sets of the form

(€ — C*) x (D — D¥*),

where both of the indicated differences are proper [1, Th. 1, Sec. 34]. Such
a set can be written in the form

(1) (C x D—C x D*) — (C* x D — C* x D¥),

where each of the indicated differences is proper.

We have verified (+4) for rectangles H = E X F with closed sides; it follows
from (1) that (4) holds for all sets in Zw(S X T') [9, p. 37] and therefore for
all sets in the o-ring generated by Z.(S X T') [9, p. 54], in other words for all
sets in Hw(S) X Zu(T) [1, p. 118).

The following theorem represents a generalization of a result proved in [13].

Theorem 2. Suppose that A is a nonnegative finite set function defined on the

system of the sets of the form E x F, E € Bu(S), F € Bu(T) such that
(i) for each E in Buw(8S), the correspondence g : F — A(E X F) is a sesquire-
gular weakly Borel measure on T,

(ii) for each F in ZBu(T), the correspondence Ap: B — A(E X F) is a sesquire-
gular weakly Borel measure on S.

Then 2 is c-additive on the system of the sets B X F € Bu(S) X Buw(T) and
on Bu(S X T) there is one and only one sesquiregular weakly Borel measure
Jw coinciding with A for B X F in Buw(S) X Buw(T).

Proof. Denote by A the unique additive extension of A to the ring # ge-
nerated by the sets of the form £ X F, E in %,(S), F in #,(T'). We shall prove,
in a standard manner, that 4, is o-additive on %. To prove the o-additivity of
A1 take an arbitrary decreasing sequence G, Gp e Z, n = 1, 2, ... of the form

kn
an UE?XF?
71

with 0 <e < A(Gyp),n=1,2,...'

From the inner regularity of 2 and Ar it follows [4, Th. 3 or 10, Th. 2.40]
that for every » there exist compact sets C}, D}, Cf < E}, D} < F", i =
1, ..., ky, such that

€
MO — Ya)< ,n=12 ...,
om
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where
n
Y.= U C; x D;.

-1
Denote

X.— Y.
i1
Then m < n implies Xn © X and

n kn
MG — Xa) =Mk (U (Gn — Y3)) < zlzl(Gi — YY) <e.

[}

-

It follows that A1(X,) > 0, n = 1,2, ..., that is the sets X, are nonempty
o0 0
and X, < X,. Since X, are compact we have n G, o n X, %+ 0. From this

n 1 n 1
and from the finite additivity of 1; the s-additivity of 4; follows.

The measure A; has the unique extension to the measure » on the g-algebra
Buw(S) X Bu(T) generated by Z. The measure » fulfils the assumptions of
Theorem 1 and thus we may complete the proof using Theorem 1.

Both Theorem 1 and Theorem 2 involve a measurc defined on the g-algebra
ABuw(S) X Bw(T) that is not a weakly Borel measure if %, (S) X Bu(T) +
+ Buw(S X T). Nevertheless this measure is regular in the following sense
[ef. 10, Th. 21.18].

Theorem 3. Let 2 be a nonnegative finite set function defined on the system of
the sets B X F € Bu(S) X Bu(T) such that the assumptions (i) and (ii) of
Theorem 2 are satisfied. Let t be the extension of T to the measuie on %, (S) X
X Bu(T) existing according to Theorem 2. Then 1 is reqular on #.(S) X Ay (T)
wn the sense that

(@) w(B)=inf{x(U):E < U, U e HB,(S) x Bu(T), U is open},
(b) ) =sup{z(F):E > F,F e Bu(S) X Bu(T), F is compact}.

Proof. [ef. 10, Th. 21.18]. Let Z be the family of all sets £ € 4, (S) X B.(T)
for which the assertions (a) and (b) hold. We will prove that # — #,(S) X
X Buw(T). It easy to prove that Z is closed under the formation of countable

unions.
We shall prove that # contains each rectangle £ < F = .4,.(S) x Z.(T).
By the assumptions (i) and (ii) we have

B X F)=ME »x F)=sup{MC X F):C < I, ("is compact)
sup {H(C X D):C < E, D < F,Cand D are compact] <
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< sup {t(K) : K € Bu(9) X Bu(T), K< E X F, Kis compact}.
Let K< E X F be an arbitrary compact set in Zu(S) X Zu(T). We have
(K 2 1(E X F),
sup {t(K): K € E X F, K € Bu(S) X Buw(T), K is compact} = 7(B X F).
Further we have
(E X F)=inf{A(E X V):V < F, Visopen} =
=inf{}(U X V): U< E,V <F,Uand V are open} =
=2inf{3(0):0 5 E X F, 0 ByuS) X BuT), 0is open}.

On the other hand, let 0 be an arbitrary open set in Zu(S) X Zu(T), 0 >
> I X F. We have

(B X F) £ 7(0), (B X F) <irf{r(0):0 > E < F, 0€BuS) X Bu(T), 0

is open}.
Thus we have

(B X F) inf {z(0):0 € Buw(S) X Zu(T), 0oE F, 0 is open},
B X F) sup{t(K): KeHBuS) X %u(T), K =« E x F, K is compact}.

We shall prove that Z is closed under complementation. Let E € # and let
e > 0 be given. There is a compact sct F and an open set U, both in %, (S) X
X Buw(T) such that F <« E < U and J(U N F<) < e. Since 8 X T € %, there
exists a compact set K in %, (S) X Zw(T)such that K = 8 x T and 7(K¢) < e.

Now Fe is open and K N Uc is ccmpact. Further it is clear that K N Ue <
< Fec < Fe and that

ey —t(KNU)—tFen(KNUe)) < r(FenKe) Lr(Fenl)<e +
+ & 2e.

This proves that F¢ is in Z if £ 1 in #£. Thus we have # = %,(S) X Bu(T)
and the proof is completed.

2. We shall give some applications of the preceding theorems. It is known
that #w(S) X Bu(T) < Buw(S X T), where the inclusion can be proper [3, p.
136]. Now, if we have two sesquiregular weakly Borel measures y and » on §
and T, respectively, then their prc luct 4 u > », as defined in [1 or 9] (that
is regular in the sense asin Theorem 310, Th. 21.18]) cannot be a weakly Borel
measure on S X T when #,.(S) Au(T) + 4.(S x T). In order to obtain
a weakly Borel measure we may use Theorem 1 or Theorem 2. Namely, we may
take the unique sesquiregular wea ly Borel extension of 2 — ¢ ». It is easy
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to verify that the conditions of Theorem 1 (or those of Theorem 2) are satisfied
using the fact that

HE x F) = p(Bp(E),
for all rectangles with closed (weakly Borel) sides. Thus we have the following.

Theorem 4. Let p be a finite nonnegative sesquiregular weakly Borel measure
on S and v be a finite nonnegative sesquireqular weakly Borel measure on T'. Then
there is one and only one sesquiregular weakly Borel measure 1, on S X T that
extends A = u X v. More explicitely, we will write Ay = u @ ».

3. A complex measure u defined on the o-ring %o(S) [the o-ring #(S); the
o-algebra %,,(S)] is said to be a complex regular Baire [regular Borel: sesquire-
gular weakly Borel] measure on 8 if its total variation, |u| [necessarily bounded,
[10, p. 360]] is a Baire [regular Borel; sesquiregular weakly Borel] measure on S.
We may now give a generalization of Theorem 1 (and also of Theorem 2) for

complex measures.

Theorem 5. Suppose that A is a complex measure on the o-algebra Zu(S) X
X Bw(T) such that (i) for each closed set C' in S, the correspondence

cA:F—>AC X F), (FePBT)),

s @ complex sesquiregular weakly Borel measure on T and (ii) for each closed set
D in F, the correspondence

ip: B —MNE X D), (EeZuS)),

18 a complex sesquireqular weakly Borel measure on S.
Then A may be extended to one and only one complex sesquireqular weakly Borel

measure y on S X T.
4
Proof. Let > a;4; be the Jordan decomposition of 2 [10, p. 311]. The measures
i1
A;, J =1, 2, 3, 4 all satisfy the conditions of Theorem 1 using the fact that
4

v = > ajv; is a complex sesquiregular weakly Borel measure if and only if all
i
vi, ) =1, 2,3, 4 [or |[v|] are nonnegative sesquiregular weakly Borel measures

[10, p. 360]. Take now a sesquiregular weakly Borel extension u; of 2;,j = 1,
4

2, 3, 4. Then > a;u; gives a required measure u.
il
It is also possible to give a generalization of Theorem 2 for a complex case.

In this case one supposes that 1 is bounded on the algebra generated by the
sets of the form B X F, B € #,(8), F € 4.(T) [8, p. 242].
From Theorem 5 we obtain the following.
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Theorem 6. Let u be a complex sesquiregular weakly Borel measure on S and v
be a complex sesquireqular weakly Borel measure on T. Then there is one and only
one complex sesquiregqular weakly Borel measure 4, on S X T which extends
A= u X v. We will write, more e. plicitely, 2y = u ® ».

From the Riesz representation theorem [10, p. 346] it follows that the measu-
re 4 ® v from Theorem 6 is the unique complex sesquiregular weakly Borel
measure on S X T such that for every continuous function f on S X T' va-
nishing at infinity [i. e. f€ Co(S > T')] we have

[ fdu®@v=[ { [ fls,)du(o)}dn(t) = [ { [ f(s, 0)}dv(t)dp(s)-
N T8 57

In particular, the measure x4 @ » coincides with the product measure con-

structed in [11, p. 182]. Therefore from [11, Th. 14.24] we have the following.

Theorem 7. Let pu, v and u ® v be as in Theorem 6. Then we have |p @ v| =
— lul ® .

4. We shall give some connections with Fubini’s theorem. We recall that
the real-valued function on § is called the weakly Borel function if it is me-
asurable with respect to the o-algebra of weakly Borel sets [1, p. 181]. If u, »
and x4 @ » are as in Theorem 6 and f is a bounded weakly Borel function on
S X T, then f is |u ® »|-integrable and it follows from Fubini’s theorem in
[11, Th. 14.25] that f(s, t) qua function of s is |u|-integrable for |v|-almost all

t €T and the function ¢ — ’. f(s, t)dp(s) is |v|-integrable and we have
8

I fadp @v = [ { [ f(s, hdo(@)}dp(s) = [ { [ f(s, )du(s)}d(t).
ST ¥ T 7S
In particular. if ¢ is a weakly Botel set in S x 7', we have
p@uUG) = | zedu ®v= [ { [ zals, YdO)}du(s) = [ { | zals, )dp(s)}dr(t).
sNT N TS
Sometimes it may be interesting to know that if f is a bounded weakly Borel
function on S x T, then s — f(s, t) is a bounded weakly Borel function on S
and £ — | f(s, t)du(s) is a bounded weakly Borel function on 7.

If Ps and Py are the projection mappings of S X 7' onto S and 7', respecti-
vely, then

Gt ={seS:(s,t eG} = Ps[GN (S x ],
Gs={teT:(s,t)eG} = Pr[G N ({s} x T)].

If GeABu(S) X #Buw(T), then Gt € Z,(S) for all teT, and Gse BuW(T) for all
s €S [9, 34A]. The same result holds for any Borel set [12] and we shall show
that for any weakly Borel set G in S x 7', too.
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Lemma 1. If G € Z,(S X T), then Gt € By(S) for all teT, and Gse Hu(T)
forall seS.

Proof. Let Z be the class of all G = 8§ x T such that Gt € Z,(S) for all
tel, and G5 Buw(T) for all se 8. Since sections preserve countable unions
and set-theoretic differences, # is a ¢-algebra. We shall show that # contains
the closed sets in § x 7.

- Let G be a closed set in S X 7', and let £ €T. Then S x {t} is closed, the

restriction Ps| 5,4 of Ps on S X {t} is a homeomorphism from S x {f}
onto S, and

Gt = Ps[G N (S x {])],

is closed because G = Ps | 4.4 (/. Hence G!e Hy(S) for all t e T. Nimilarly,
G5 € B,(T) for all s € S. Hence G € Z and Lemma 1 then follows.

Lemma 2. Let f be a weakly Borel function on S X T. Then f.:t— f(s, )
18 @ weakly Borel function on T and ft : s —f(s, t) is @ weakly Borel function on S,
forallseSand teT.

Proof. If ¢ is any set of real numbers, then (f;) (&) — (f~1(())s and
(fyYF) = (f~YF))t. The lemma now follows directly from Lemma 1.

Let now G be any set in #,(S » T). Then the characteristic function y¢
is a bounded nonnegative weakly Borel function on § 7. For complex
sesquiregular weakly Borel measures u and » we may write

| zals, (1) = [ ya()dn(t) = »(Gs),

T 7
[ 26(s, du(s) = [ xe(s)du(s) = u(C).
S

S

We wish to prove that the function fg : s — »(Gs) is weakly Borel on S, and
he ot —> u(G*) is weakly Borel on 7'.

The orem 8. Let u and v be complex sesquiregular weakly Borel measures on S
and T, respectively. Then f¢:s —v(Gs) is a weakly Borel function on S and
he 1 t — u(G) is @ weakly Borel function on T for every G € B, (S x T).

Proof. We may suppose that u and » are nonnegative measures. It will
suffice to prove that f; is a weakly Borel function for all open sets in S x 7'.

Suppose G is a nonvoid open set in S X 7. Let F be the set of all functions
feCh(S X T) [i. e. nonnegative continuous functions on § % 7' with the
compact support] such that f < y¢. Since G is an open set, Urysohn’s theorem
[10, Th. 6.80] implies that sup {f: fe€F} = y¢. For every fe F, for each fixed
s €8, the function ¢ — f(s, t) is in C§(T'), the function s — 4|‘ f(s, Hdr(f) is in

i
Ct(S). Further for each fixed sp € S we have

1c(s0,t) = sup {f(s0,t) : feF}, forallteT.
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Every function ¢ — f(so, £) is in Of(T'). It is obvious that the set of functions
{s > [ f(s, ydsit) : fe F},
7
is directed upward. Applying [10, Th. 9.11 and Th. 12.35] we have

W(Gs) = [ za(s0, )dv(t) = sup { [ flso, )dw(t) : f€ F}.

T T
This being true for all so € S we have that the function
s — [ za(s, )Av(t) = v(Gs),)
T
is lower semicontinuous [10, Th. 7.22] and hence is a weakly Borel function
[10, Cor. 11.5].
According to Theorem 8 we may form the iterated integrals
[ [ zets, ydv@)}duts), [ { [ xals, Hdu(s)}dr().
5T T

Define a set function p . » by the relation
(@) = [{ [ zels, O(O}du(s), GecBu(S < T).
N

It is obvious that x . » is a weakly Borel measure on § X T'. We shall prove
that p.v = ® v on HBu(S X T).

Theorem 9. Let p and v be complex sesquiregular weakly Borel measures on S
and T, respectively. Then for all G € Buw(S X T) we have p . v(G) = p ® »(G).

Proof. Take x and » nonnegative. It will suffice to prove that u.»(G) =
— 1 ® »(G) for all open sets in § x T'. Let F be the set of functions from the
proof of Theorem 8. It is a corollary of the Stone-Weierstrass theorem that
every feF is #,.(S) X Zu(T)-measurable and f is also u X r-integrable on
S T, and we may use Fubini’s theorem. The measure 1 ® » coincides with
# X v on the og-algebra Hu(S) x Bu(T). Applying, similarly as in proving
Theorem 8, [10, Th. 9.11] we have

u @v(G) = f yedu & v:sup{ffd,u@)v:feF}:

SxT SxT
=sup { [ fdu x v:feF}=sup{ [ {[ s, )du(s)}dr(t) : fe F} =
S T 1

T

S

= [{[ ze(s.H)du(s)}ds(t) = p . »(G).
T S

Let # be the collection of all weakly Borel subsets H of S < T for which
p-v(H) = p ® v(H) holds. By the monotone convergence theorem Z is a mo-

39



notone class in the sense of [9, p. 26]. Since Z contains all open sets of S X 7',
then # obtains all weakly Borel sets of § X< T'.
We have thus

p @G = u.nG) = [{[ xals, Hdv()}du(s) = [ { J (s, )du(s)}dv(?),
S T

7
for all G € Z,(S X T). We have thus the following.

Theorem 10. Let y be a complex sesquiregular weakly Borel measure on S and
v be @ complex sesquiregular weakly Borel measure on T. Let f be a bounded weakly

Borel function on S X T. Then
(1) s = [ f(s, )dr(@),

7
is a weakly Borel function on S and

(2) | fAdu @ v = [ {] fs, )dv(t)}du(s).
SxT S T
Proof. The assertion of Theorem 10 is valid for characteristic functions of
weakly Borel sets. Since each bounded weakly Borel function on 8 X 7' is
a uniform limit of linear combinations of yg for £ weakly Borel set, the assertion
is valid for all bounded weakly Borel functions.

5. Let now G be a locally compact Hausdorff group; x and » complex sesqui-
regular weakly Borel measures on G'. Their convolution p v is a complex
sesquiregular weakly Borel measure on ¢/ which can be defined in two equivalent
ways [16]. The first definition uses the Riesz representation theorem and
= v is taken to be the unique complex sesquiregular weakly Borel measure

on G such that
cfmcm *9(z ( {1 fistydu(s)yv(t) = [ flst)du O (s, 1),

axaq

for all continuous functions f on G which vanish at infinity. In the second de-
finition, for each weakly Borel subset D of G, u * v (D) is defined to be y ® »(&),
where E = {(s,t):ste D} and yu ®v is the unique complex sesquiregular
weakly Borel measure on G X @ satisfying
[ gd(p ®@») = I { f g(s, H)du(s)}dv(t),
Gx@

for all continuous functions on G X @ vanishing at infinity. The second defi-
nition makes it possible to give u * »(D) explicitly.
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Theorem 11. Let G be a locally compact Hausdorff group; u and v be complex
sesquireqular weakly Borel measures on G. Then, for each weakly Borel subset
D of G,

(1) t— (Dt71), s - (s71D),
are weakly Borel functions on G ond

(2) wx (D) = [ p(DEN)ds(t) = [ »(s71D)dpu(s).
@ e

Remark. The formula (2) is stated, for D weakly Borel, in [16, p. 351] but
no assertion about the measurability of (1) is made and no proof is given. The
proof that (1) is [v|-integrable, resp. |u|-integrable and that of (2) is given in
[11, p. 269]. Our contribution here is the proof of the weak Borel measurability
of (1). For compact spaces this is done in [5].

Proof. Let E be the subset {(s. t) : st € D} of G X G. E is weakly Borel since
the mapping (s, t) > st of ¢ X G mto G is continuous. We have

' ye(s, )du(s) = u(Dt1)
P

and the weak Borel measurability of (1) follows from the first assertion of

Theorem 10 and (2) is a consequence of the second assertion of Theorem 10
and the fact that

(D)= uJvE) = ‘ yedpy @ v = [{f ~E(S, t)duls)}dp(t).
e

G G [
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