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[6, Theorem 33E] tha t 3S0(S) ® &o(T), respectively 3S(S) ® &(T) consists 
of the sets of the form 

(1) G=\JEi xFi, 

where {Ei x Fi]k
i=1 is a finite system of mutually disjoint sets in 3So(S) X 3So(T), 

respectively in &(S) X 0S(T). The symbol 3i0(S) ®a 3S(T), respectively 
3S(S) ®a 0S(T) stands for the sigma ring generated by 0SO(S) ® 3S*(T), re­
spectively 3S(S) ® dS(T). 

Let Z denote a locally convex topological vector space, its topology being 
determined by a system {|. \p}peP of seminorms. Denote by ZJ a completion 
of Z and by Z' the dual space of Z. 

3. Results. If I is an additive function on $o(S) X 3So(T), respectively 
on 0S(S) X BS(T) with values in Z, then on £S0(S) ® @o(T), respectively 
on 3S(S) ® 3S(T) there exists one and only one additive set function n with 
values in Z such tha t n coincides with I on 3So(S) X 3So(T), respectively 
SS(S) X 3S(T). The function n is defined by the equality 

(2) n(G) = | J l(Ei x Fi), 

for every set G in &0(S) ® &o(T), respectively &(S) ® £S(T) of the form (1). 
The proof is similar to the proof in case I is a real valued set function [6, Exer­
cise 8.5]. 

We now proceed axiomatically, assuming the following axiom: 

Axiom A. There exists, for each z' eZ', a positive number K(z') < oo such 
that 

\z'on(G)\ <; K(z'), 

for an arbitrary set G in @0(S) ® SSo(T) or in 0S(S) ® 3S(T). 
We emphasize tha t it is possible to exhibit a counter-example in which H 

is a separable real Hilbert space, S = T = [0, 1], m : 3S[0, 1] -> H is regular 
Borel vector-valued measure, hence bounded on ^ [ 0 , 1] [5, I I I . 4. 5], however 
the function n, corresponding to the function I, defined by means of a scalar 
product (.,.) on H, i.e. l(E x F) = (m(E),m(F)), is not bounded over 
&([®> 1]) ® 3S{[®> !])• I t follows that, in generally, Axiom A is not satisfied. 
The corresponding measure m can be constructed using a result by D. A. 
E d w a r d s , who proved the following [14, Theorem 3]. 

There exists a vector-valued function z defined on [0, 1] and such that 
(i) the range of z spans a separable real Hilbert space H, 

(ii) z is strongly continuous on [0, 1], 
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(hi) z is of Dunford bounded variation on [0, 1], 
(iv) the function u : i?2 -> R1 defined by 

u(t,s) = (z(t),z(s)) 

is of Frechet bounded variation but is not of Vitali bounded ^variation on-
[0, 1] X [0, 1]. 

If we take arbitrary real numbers a and b such t ha t we have 0 ^ a < b ^ 1 
and put 

m((a, b]) = z(b) — z(a), 

then we can obtain a unique extension of m to a vector-valued measure 
m : &([0, 1]) -> H [9, Theorem 5.1]. Since the function u is not of Vitali 
bounded variation on [0, 1] X [0, 1], the set function n obtained from the 
function I, defined by 

l(E xF) = (m(E),m(F)), E,Fe@([0, 1]), 

using the equality (2), can not be bounded over £%([0, 1]) ® &([0, 1]). 
A Borel vector-valued measure m : SS(S) -> Z is said to be regular if, for 

every z' eZ', the complex measure E -> (m(E), z'}, E e 88(S), is regular, i. e. 
its variation is regular in the sense of [6]. I t is known tha t every Baire 
vector-valued measure mo : &o(S) -> Z is regular and can be extended uniquely 
to a regular Borel vector-valued measure m : £8(S) -> Z and every additive 
regular vector-valued set function on the ring £%(S) with values in Z is sigma, 
additive [3, (Ri), Theorem 3], [11]. 

Theorem 1. Let I be a set function defined on 38(S) X &(T) with the following 
properties: 

(i) the values of I are in Z, 
(ii) for every E e £3(S) the function EI is additive and regular, hence sigma 

additive on &(T), 
(iii) for every F e &(T) the function lp is additive and regular, hence sigma 

additive on 33(S). 
Then if Axiom A holds, the function n is regular and hence weakly sigma 

additive on SS(S) (x) &(T). Moreover, there exists a unique extension of n to 
a measure n defined on &(S) 0a &(T) with values in Z" and sigma additive 
for the topology o(Z",Z'). 

Proof . We shall show tha t the function n is regular on 38(S) (x) £%(T). 
Take any z' GZ'. Then the function z' ° n satisfies the assumptions of the 
Corollary 3 proved by K l u v a n e k [8] and hence z' ° n is regular and sigma 
additive on @(S) ® &(T) for every z'. Since n: @(S) ® &(T)-+Z is weakly 
sigma additive and weakly bounded (Axiom A) thus by the result of M e t i v i e r 
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[12], [13] there exists a unique extension of n to a measure n defined on 
38(S) ®G 38(T) with values in Z" and sigma additive for the topology o(Z", Z'). 

Theorem 2. Let I be a function defined on 3#o(S) X 38o(T) with the following 
properties: 

(i) the values of I are in Z, 
(ii) for every E e 38o(S) the function EI is a Baire vector-valued measure 

on &Q(T). 
(iii) for every F e 38o(T) the function IF is a Baire vector-valued measure 

on &Q{S). 

Then if Axiom A holds, n is regular and hence weakly sigma additive on 
38o(S) ® 38o(T). Moreover, there exists a unique extension of n to a measure 
defined on 38o(S X T) with values in Z" and sigma additive for the topology 
c(Z",Z'\. 

The proof follows from the proof of Theorem 1 and from the fact t ha t 
every vector-valued Baire measure is regular [3], [11]. 

Theorem 3. Let the assumptions (i), (ii), (iii) of Theorem 1 be satisfied. Let 
the function n satisfy Axiom A. Let the space Z be weakly sequentially complete. 

Then on 38(S X T) there exists one and only one regular Borel measure n with 
values in Z such that n(E X F) = n(E X F) = l(E x F) for E x F e 38(S) X 
X 38(T). In particular, I is sigma additive on 38 (S) X 38 (T). 

Proof , a) Since n is bounded on 3%(S) ® 38(T) and Z is weakly sequentially 
complete there exists one and only one measure again denoted by n defined 
on the sigma ring 38(S) ®a 38(T) generated by 38(S) ® 38(T) with values 
in Z [9, Theorem 5.1]. 

b) Now as for each compact set Ci in S, the correspondence 

F -> n(d xF), FG 38(T), 

is the regular vector-valued Borel measure on 38(T) with values in Z, and 
for each compact set C2 in T, the correspondence 

E->n(E x C2), E e 38(S), 

is the regular Borel vector-valued measure on 38(S) with values in Z, thus n 
can be extended to the one and only regular Borel measure n on 08(S X T) 
with values in Z [4, Theorem 3], (cf. also [1]). 

R e m a r k . Note tha t if one of the spaces S or T is such tha t every bounded 
subspace is second countable (equivalently, in view of the Urysohn theorem, 
each bounded subspace of S, resp. T is metrisable), especially if one of the 
spaces S or T is metrisable, then 

a(S XT) = 38(S) ®a 38(T), [7, Theorem 8.1 and Corollary], 
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i. e. the Borel sets in S and T ,,multiply". In this case it suffices to give only 
the part a) of the proof of Theorem 3. 

Let 01 be a ring of sets and m\£%->Z a vector-valued measure. The 
•p-variation of m over E is the set function \m\v defined for every seminorm 
\.\p by the relation 

k 

\m\v(E) = sxxv^\m(Ei)\v, Ee&,peP, 
i=i 

where the supremum is taken for all finite disjoint families {Et} cz <% such 
k 

that (J Et = E. 
i=l 

Theorem 4. Let the assumptions (i), (ii), (hi) of Theorem 1 be satisfied. Let 
the function n have a bounded p-variation for every peP on £%(S) ®&(T). 
Let the space Z be sequentially complete. 

Then on SS(S X T) there exists one and only one regular Borel measure n 
with values in Z such that n(E X F) = l(E x F) for E X F e 3$(S) X &(T) 
and n has a bounded p-variation for every p e P . 

Proof. I t is easy to see that \n\v is a bounded nonnegative measure on 
^(S) ® S8(T) with the property: \n(G)\v ^ \n\v(G) for every G e 38(S) ® @(T). 
Hence by [9, Theorem 4.2] there exists one and only one measure n on 
3S(S) ®a &(T) extending n and we have \n(H)\v ^ \n\v(H) for every He 
e SS(S) ®a &(T). Now we may proceed as in the part b) of the proof of 
Theorem 3. 

Using [9, Theorem 4.2] and [4] we may prove the following. 

Theorem 5. Let the assumptions (i), (ii), (hi) of Theorem 1 be satisfied and 
let Z be sequentially complete. Let there exist for every p e P a bounded non-
negative measure vv on SS(S) ® &(T) such that vv(G) ->0, Ge 3S(S) ® @(T) 
implies \n(G)\v -> 0. 

Then on SS(S X T) there exists one and only one regular Borel measure n 
with values in Z extending n. 

4. The case of Banach spaces. For the rest of the paper suppose that Z is 
a Banach space. In this case we have the following. 

Theorem 6. Let the assumptions (i), (ii), (iii) from Theorem 1 be satisfied. 
Let the set M = {n(G) : G e 88(S) ® 3S(T)} be conditionally weakly compact in Z. 

Then n can be extended to a regular Borel measure on SS(S X T) with values 
in Z, in particular, I is sigma additive on 3S(S) ® &(T). 

Proof. Since M is conditionally weakly compact, M is bounded and there­
fore Axiom A holds. Moreover, by the result of K l u v a n e k [9] the set function n 
can be extended to a measure on the sigma ring 83(S) ®a 38(T) with values 
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in Z and this measure can be extended uniquely to a regular Borel vector-
valued measure on 38(S X T) with values in Z [4]. 

The following theorem is a generalization of Theorem 3. 

Theorem 7. Let Z be a Banach space containing no subspace isomorphic to CQ 
{e. g. a weakly complete space). Let the assumptions (i), (ii), (iii) of Theorem 1 
be satisfied. 

Then if Axiom A holds there exists a unique vector-valued regular Borel 
measure on £$(S x T) extending I. In particular, I is sigma additive on 33(S) X 
X @(T). 

Proof . The set function z' ° n is sigma additive and of bounded variation 
on &(S) ® &(T) for every z' eZ'. Take any sequence (Ei) of mutually disjoint 
sets in 3$(S) ® 3$(T). Since z' ° n can be extended to a measure z'0n on 

00 

88(S) ®a £%(T), the series 2 z'n(E%) is weakly unconditionally convergent and 
i= i 

hence by the result of B e s s a g a and P e l c z y n s k i [2, Theorem 5] the series 
00 

2 n(Et) is unconditionally convergent, and thus by the result of K l u v a n e k 
i=i 
[10, Theorem] n can be extended to a measure n on SS(S) (x),j £%(T) with values 
in Z. Now we may proceed similarly as in proving the preceding theorem. 

Added in proof. 
The topic of this paper is related to t ha t of the paper of R. M. D u d l e y 

and Lewis P a k u l a , A counter-example on the inner product of measures 
(preprint). They consider the measures m and n with values in a real Hilbert 
space H, and their inner product (m, n). M. D u d l e y and L. P a k u l a say 
t h a t P . M a s a n i asked in September 1970 whether (m,n) necessarily has 
a countably additive extension to the sigma ring £f ®a 2f'. The counter­
example given in our paper shows tha t the answer is in the negative. In the 
paper of D u d l e y and P a k u l a another counter-example is given. Their 
counter-example shows tha t there exist countable additive measures m and n 
with values in a separable real Hilbert space H such tha t both m and n are 
purely atomic with countably many atoms and orthogonal values on disjoint 
sets. The inner product (m, n) is unbounded both above and below, is no t 
countably additive on £f (x) 2T and hence has no countably additive extension 
to the sigma ring £f (x)o £F. The measures m and n are so called "orthogonally 
scat tered" measures, cf. P . M a s a n i , Orthogonally scattered measures, Advances 
in Math. 2 (1967), 61—-117. Orthogonally scattered Hilbert-values measures 
seem to be among the best behaved Banach-valued measures with infinite 
total variation. Thus our example and tha t of D u d l e y and P a k u l a suggest 
t ha t it may be difficult to find any reasonable broad conditions under which 
(m, n) would be countably additive while \m\ (S) = \n\ (T) = +oo . 
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M A T E M A T I C K Ý Č A S O P I S 
R O Č N Í K 21 1971 Č Í S L O 4 

ON VECTOR MEASURES IN CARTESIAN PRODUCTS 

MILOSLAV DUCHOST, Bratislava 

1. Introduction. Let ST and ST be sigma rings of subsets of the sets S, T 
respectively. Let I be a finite nonnegative set function defined on the system 
ST x ST of all sets of the form E x F, E e Sf, F eST. Assume t h a t l(. x F), 
for every fixed F e ST, is sigma additive on Sf as a function of E and, for every 
fixed E e Sf, l(E x .) is sigma additive on ST as a function of F. If S and T 
are locally compact (Hausdorff) spaces, S? and ST sigma rings of Borel sets 
in S, T respectively, and l(. X F) for every fixed F eST, resp. l(E X .) for 
every fixed E e Sf, is regular [6], then 

(1) I is sigma additive on Sf X ST as a function of E X F, and 
(2) I can be extended to a sigma ring of Borel sets in S X T, this extension 

being a regular Borel measure on S X T [8]. 
I n this article we investigate several cases in which analogues of (1) and (2) 

can be obtained for the set function on Sf X ST with values in a locally convex 
topological vector space Z. This is the case, for example, if Axiom A is satisfied 
and Z is wreakly sequentially complete. 

2. Notations and definitions. In the following S and T stand for locally 
compact (Hausdorff) topological spaces. Further @lo(S), respectively £3(S) 

denotes a sigma ring of all Baire, resp. Borel sets in S. Similarly &o(T) and 
@(T) in T, and <%0(S X T) and @(S X T) in S X T. 

Denote 
&o{S) x @o(T) = {E xF:Ee <%0(S), F e @0(T)}, 

@{S) X @{T) ={E xF:Ee 3S(S), F e 3S(T)}. 

If I is a set function on &o(S) X SSo(T), then for any E e @o(S) the symbol 

El denotes the function on @o(T) defined by the equality El(F) = l(E x F). 

Similarly for F e &o(T) we denote lF the function on &o(S) for which lF(E) = 
= l(E x F). We use similar notations for a function I on S8(S) x 36\T) 

[cf. 8]. 
Let us denote by &0(S) ® &o(T), respectively 3S(S) ® &(T) the smallest 

ring containing &0(S) X &o(T), respectively S8(S) X &(T). I t is well known 
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