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Matematický časopis 20 (1970), No. 3 

A NOTE ON THE EXTENSION OF MEASURES 
ON LATTICES 

BELOSLAV R1ECAN, Bratislava 

Any measure y defined on a subalgebra R of a a-complete Boolean algebra H 
can be extended to a measure y on the cr-algebra 8 generated by R. I n paper [3] 
wo generalized this theorem for a type of not necessarily distributive lattices 
(cr-continuous, orthocomplemented, modular). I n the present note we prove 
with the help of some results of [3] an extension theorem for another type 
of lattices: a-continuous, complemented, modular and satisfying the following 
condition 1: 

(H) To any x,y,z e H such that x ^ y ^ z and any complements x of x 
and z' of z there is a complement y' of y such t h a t x' ^ y' ^ z'. 

In the second part of the paper we shall try among other facts to extend 
the measure with the help of the known method of the induced outjer measure 
and the measurable elements (see [1]). We shall show that this method cannot 
be used succesfully on certain types of not distributive lattices. 

1 

We start with some notations and definitions. By \/ xt we denote the least 
teT 

upper bound of a system {xt}teT of elements of H. For a sequence {̂ w}̂
)_1 

we write also \/ xn, for a finite sequence {x±, . . . , xjc} also xi U . . . u #A•. 
Similarly we denote the greatest lower bound. 

If {xn} is a non decreasing sequence and x — \Jxn, we write xn / x. 
Analoguously x n \ x. A cr-complete lattice H is said to be cr-continuous if 
xn / x (resp. xn \ x) implies xnC\y / x C\y (resp. xnKj y \ x U y). 

A sublattice R of a complemented lattice II is called a ring (only in this 
paper) if x n y' e R for all x,y e R and all complements y' of y. A cr-ring is 
a a-complete ring in our terminology. A real — valued function y on a ring R 
is said to be a measure if the following properties are satisfied: 

1 The problem is open whether any complemented, modular lattice fulfils (H). 

2 3 9 



(i) If xn / x, xn e B (n = I, 2, . . . ) , xeB, then lim y(xn) = y(x). 
(ii) y(x U y) + y(x n y) = y(x) + y(y) for any x,yeB. 

(iii) y is non — negative, y(0) = 0. 

In [4] we proved (Theorem 4) that the just introduced definition is equivalent 
(e. g. in a a-complete, modular, complemented lattice) to the usual definition 
of a measure as a cr-additive function (see also Part 2). 

Lemma. Let H be a o-continuous, modular, complemented lattice fulfilling 
the condition (H), B be a ring, S(B) the o-ring generated by B and M(B) the 
monotone set generated by B.2 Then S(B) = M(B). 

Proof . Write S = S\R), M = M(B). M c= S, since S is monotone. I n 
order to prove the opposite inclusion it suffices to prove tha t M is a ring. 
Let x e B be an arbitrary but fixed element. Put G = {y e M: x n y' e M for 
each complement y' of y). Evidently G ZD B. We prove that G is monotone. 

Let yne M (n = 1, 2, . . . ) , yn / y, y' be a complement of y. According to 
the condition (H), there is a ncn increasing sequence {yn} of complements 

oo 

of elements yn such that yn, ^ y'. Pu t z = /\yn.zKJy=l, since z ^ y'. 

Op the other hand z n yn ^ yn n yn = 0. Further zC\y = zn\/yn = 
= V (z n yn) — 0 since M is o*-continuous. Since M is modular, we get 

oo 

z = y', hence y' = /\ yn . Since x n yne M (n = I, 2, ...) and {x n yn} 
n=l 

is a non increasing sequence, we have xny' = xr\/\yn= /\ x n yn e M. 
Hence we proved that for each complement y' of y we have x n y' e M i. e. 
y eG. In a similar way it can be proved that G is closed under the limits 
of non increasing sequences. 

Since G is monotcne and G ZD B, we get G ZD M i. e. x n y' e M for any 
x e B and y e M and any complement ?/' of ?/. Take y e M and put F1 = 
= {xe M : x C\y' eM for each complement ?/' of ?/}. By the preceding we 
have F ZD B. I t can be easily proved that F is monotone, therefore F ZD M. 
Hence for each x, y e M and each complement y' of y we have x C\ y' e M. 
Similar arguments show that M is closed under the lattice operations. 

Theorem. Let H be a o-continuous, complemented, modular lattice satisfying 
the condition (H). Let B <=• H be a ring, y be a o-finite measure on B, S be the 
o-ring generated by B. Then there is a o-finite measure y on S that is an extension 
of y. The measure y is determined uniquely. 

Proof . Suppose first that y is a finite measure on a ring A. The following 
assertion follows from Theorem 1 of [4]. There are a sublattice N of H, N ZD A 

2 A set M is monotone if it contains the limits of all monotone sequences of elements 
from M. 
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and a real function y* on N with the following properties: y* is an extension 
of y, y* is finite, non-negative non decreasing; y*(x) -f- y*(x U y) -f- y*(x n ?/) 
for all x,y e N. Besides if xn e N, xn /f x (resp. xn \ x) and {y*(x-)} is bounded, 
then x e N and y*(x) = lim y*(xw). 

Let F be the least set over A with the following property: 
(a) If xn eF (n = 1,2, . . , ) , xn / x (resp. xn \ x) and {y*(xn)} is bounded, 

then x eF and y*(x) = lim y*(xn). 
Evidently F <= £(.4). Pu t now y(#) = y*(#) for &GF7 and y(#) = oo for 

a; G $(.A) — F. y is non-negative, y(O) = 0, y is an extension of y. Now we 
shall prove the following assertion: 

(*) If x ^ y and y(y) < oo, then y(x) < oo. 

In fact, put P = {z e if(^4) : z n y eF}. I t can be easily found that P is 
monotone and P ^ A, hence P ID M(^4) = S(A). Therefore xeP, hence 
x = x n y eF and y(#) = y*(#) < oo. 

We get from (*) that y is non decreasing. Therefore, if xeS(A), xn / x, 
then y(x) ^ lim y(xn). The equality is evident, if lim y(xn) = oo and it follows 
from the definitions of F and y in the reverse case. Similarly the equality 
y(x U y) + y(x n y) = y(x) -\- y(y) for all x,y e S(A) can be proved. 

The case of a cr-finite measure can be studied as well as in [3]. Let y be 
a a-finite measure on R. Pu t A = {x e R : y(x) < oo}, A is a ring. By the 
preceding we can extend y to a measure y defined on $(A). But S(A) = S(R), 
which follows from the a-finitness of y. (To any xeR there is a sequence {xn} 
of elements of A such tha t xn / x.) The measure y is a-finite, since the set 
P = {d e S : d ^ V an, ane A} is monotone and contains R. 

Finally, let r be any measure on S that is an extension of y. Since the set 
Q = {x e S : r(x) = y(x)} satisfies the property (a) and contains A, we have 
Q ZD F, hence y = r on F. To any x e S there is a sequence {xn} of elements 
of F such that xn / x. Therefore r(x) = lim r(xn) = lim y(xn) = y(x). 

First some remarks on additivity. A measure y is additive if and only if 
n n 

y(V at) = 2 y(ai) ^o r an->7 disjoint sequence {at}. I t is natural to say that 
i=l i=l 

{an} is a disjoint sequence if at n aj = 0 for i ^j. In a distributive lattice 
a nb = O, a n c = 0 implies a n (b U c) = O. In non distributive lattices 
this assertion need not hold. This is a reason why we defined in [3] a disjoint 
sequence as a sequence {at} for which \/ a\ n\J aj = 0 whenever a, p are 

finite disjoint sets of indices. 
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Of course, there is a modular, non distributive lattice S in which 

(1) anb = 0 , anv =0 => a n (6 U c) = 0 , 

(E. g. put flf = {0, 1, a, b, c, d}, where O ^ a: ^ 1 for all x e S, d <; a, b, c <; 1.) 
But this is impossible if moreover S is complemented. 

Proposition 1. Any complemented modular lattice S with (1) is distributive. 
Proof. I t suffices to prove that any xeS has the unique complement 

(see [4]). Let b, c be complements of an element a, hence anb = 0,an~, = 0. 
Then b U c is a complement of a, since a n (b U c) = O. As $ is modular, 
we get b U c = 6. Similarly & U c = c, hence 6 = c. 

In modular lattices we can work very well with a valuation, i. e. with 
a function v, for which 

(2) v(a U b) + ?;(a n 6) = *;(a) + v(b). 

If a n b = O and v(0) = 0, then the additivity follows from (2), but only 
for two elements. The additivity, e. g., for three elements connects with the 
following property: 

(3) v(a U b u c) = v(a) + v(b) + ;̂(c) — v(a n b) — v(a n c) — 
— v(b n c) + >̂(a n 6 n c). 

Proposition 2.3 If S is a distributive lattice and v is a valuation on S, then (3) 
holds for any a,b, c e S. 

Proof . v((a U b) U c) = v(a U &) + t;(c) — v((a U 6) n c) = 
= v(a) + v(b) — v(a nb) + v(c) — v((a9Cc) U (6 n c)) = 
= v(a) + ;̂(&) + v(c) — v(a nb) — ;̂(a f i e ) - v(6 n c ) T 

+ ^ ( a n J n c). 

Proposition 3.4 If S is a lattice, ifv satisfies (3) for any a,b, c and v is a positive 
valuation (i. e. a < b => ^;(a) < ^;(b)), £Aew $ is a distributive lattice. 

Proof . Evidently, v satisfies also (2) (put a = c). Hence, applying (3) and 
then (2) (twice), we get 

v(aKJb\J c) = v(a U b) + v(c) — v((a n c) U (b n c)). 

On the other hand 

v(a U b U c) = v(a U 6) + ?;(c) — v((a U &) n c). 

Erom these two relations we have 

v((a n c) U (b n c)) = ^;((a U 6) n c). 

3 Of course, foraiula (3) can be easily generalised for any finite number of elements. 
4 See also [4]. 

242 



Since (a n c) U (b n c) ^ (a U b) n c and v is positive, there is (a U b) n c = 
= (a n c) U (b n c) for any a,b,c e S. 

We have just been studying two examples in which the distributive law 
plays a central role. I t seems tha t a similar situation exists also in our main 
problem. 

We start with a lattice S and a map x -> x* of 8 into 8. We present two 
formulations of measurability. Let y be an arbitrary real — valued function 
on S. By Mi denote the set of all elements a such that 

(4) y(e) = y(e n a) + y(e n a*) 

for any ee 8. By ilf 2 denote the set of all elements a with the following 
property: 

(5) y(p U q) = y(p) + y(g) 

as soon as p, q e S, p ^ a, q <; a*. First we compare these two concepts. 

Proposition 4. If S is a modular lattice with the least element 0 and a n a* = O 
/or a^?/ a e £, £ftew ilf i c: M2. / / £ is an arbitrary lattice in which 

(6) e = (e n a) U (e n a*) /or any e,ae S, 

then Mz c= M\. 
Proof . In the first case take a e Mi, p ^ a, q ^ a*. Then (p U g) n a = 

= -p U (q n a) ^ p U (a* n a) = p. Similarly (p u q) n a* = g. If we put 
e = p \j q into (4) we obtain (5). In the second case it suffices to put p = e C\a, 
q = e n a* into (5) and to notice tha t e = *p U q. 

Proposition 5. Le£ S be a lattice with a map x -> x* having the following pro-
perties: (6), 

(7) an (a Kb)* ^ &*, 

(8) a ^ b => a* ^ 6*. 

TAew ikI2 is a sublattice of 8. 

Proof . Notice first tha t for any a,b e S we have by (6) 

(9) (a U b) n b* ^ (a U b) n (a u 6*) = a. 

Take a, b e M* and j o ^ a U b , g g ( a U &)*. By (6) we obtain p U g = 
= (p n 6) U [(p n 6*) U q\. Since p n b ^ b, (p n 6*) U q g 6* U q ^ 
^ 6* U (a U b* ^ 6)* U 6* = 6* (by (8)) and # n 6* ^ a (by (9)) q ^ a* 
(by (8)), we have 

y(p u g ) = y(p n 6) + y((p n 6*) U q) = y(p n 6) + y(p n 6*) + y(g) = 
= y((2>nb)U(pn&*)) +y(g), 

hence a U b e M2 • 
Take now any r ^ a nb, s <; (a n 6)*. Hence r U s = [r U (s n a)] U 
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KJ (s n a*). As r U (s n a) ^ a, s na* ^ a*, s n a ^ a n (a nb)* ^ b* 

(by (7)) and r ^ b, we have 

y(r U 5) = y(r) + y(s n a) + y(s n a*) = y(r) + y(«), 

hence also a nb e M<i. 

Unfortunatsly, we cannot cont :nue in our considerations, because we do 

not know any example of a non distributive lattice satisfying all the assump

tions of Proposition 5. E. g., if S is a modular, orthocomplemented lattice, 

and x* = xT (the orthocomplement, see [2]) then the conditions (7) and (8) 

are satisfied. But any modular, orthocomplemented lattice in which (6) holds, 

is distributive ([2], p. 227, Note 1,1). 

The purpose of this theory is to obtain an additive function y on measurable 

elements. The following two properties are interesting in this connection. 

Although in Part 1 and in [3] we obtained some extension theorems in com-

plem( n t : d , resp. orthocomplemented lattices, the following propositions show 

that the corresponding results cannot be obtained by extending y to the 

induced outer measure y and then by restricting y to the measurable elements. 

Proposition 6. Let S be a modular, orthocomplemented lattice. Let Mi be 

a sublattice and a,b e Mi => a nb1- e M\. Let y be additive and increasing 

on Mi. Then M\ is a distributive lattice. 

Proof . As a, b e Mi, we have y(a) = y(a nb) + y(a n b^). By the addi-

tivity of y we get y(a) = y((a n b) U (a n b^)), hence a = (a n b) U (a n b1-). 

Also b-L e Mi, since (b1-)L =b. The distributivity follows now from the known 

results ([2]). 

Proposition 7. Let S be a modular, complemented lattice. Let M% = 
= {b e S : y(a) = y(a n b) + y(a n b') for all complements b' of b}. Let M$ 
be a sublattice of S and b e M% => b' e M% for all complements b' of b. Let y be 
additive and increasing on Ms. Then Ms is a distributive lattice. 
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