Jiří Vanžura Holonomy Groups of a Fully Parallelizable Manifold

Matematický časopis, Vol. 20 (1970), No. 3, 153--165

Persistent URL: http://dml.cz/dmlcz/127080

## Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.



This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

# HOLONOMY GROUPS OF A FULLY PARALLELIZABLE MANIFOLD

## JIŘÍ VANŽURA, Praha

#### §1. CURVES IN A METRIC SPACE.

Let  $(P, \varrho)$  be a metric space. We shall use the concept of an oriented rectifiable curve in the geometric sense as defined in [2] Chap. 1, § 5. Let us denote by C the set of all such curves in  $(P, \varrho)$ . For  $c \in C$  let A(c), B(c),  $\lambda(c)$  denote the starting point, the end point and the length of c, respectively. C can be provided with a natural algebraic structure:  $c_1 + c_2$  is defined if and only if  $B(c_1) = A(c_2)$ . For any  $\xi \in P$  we define

$$C_{\xi} = \{ c \in C; A(c) = B(c) = \xi \}$$

The restriction of the algebraic structure of C to  $C_{\xi}$  gives a structure of a semigroup with the neutral element on  $C_{\xi}$ .

Now we shall provide C with the structure of a metric space. For  $c \in C$  let  $x(\sigma)$ ,  $\sigma \in \langle 0, \lambda(c) \rangle$  be the standard representation of c ( $\sigma$  is the arc length). Let us set  $\varphi(t) = \lambda(c) \cdot t$ . The representation  $\hat{x}(t) = x(\varphi(t)), t \in \langle 0, 1 \rangle$  will be called the normal representation of c. For  $c_1, c_2 \in C$  let  $\hat{x}_1(t), \hat{x}_2(t)$  be their normal representations. We set

$$R(c_1, c_2) = \max_{t \in (0,1)} \varrho(\hat{x}_1(t), \hat{x}_2(t)).$$

Let M be a fully parallelizable manifold and let  $\Gamma$  be a connection on M. The set of all closed curves starting from a fixed point  $x \in M$  is provided with such a metric that the mapping assigning to a curve the corresponding element of the holonomy group at x is continuous.

### **Proposition 1.** R is a metric on C.

The proof is obvious.

Remark. It can be easily seen that  $\lambda(c)$  is not in general a continuous function on (C, R). Neither  $C_{\xi}$  provided with the induced metric is in general a topological semigroup.

#### §2. CURVES IN A FULLY PARALLELIZABLE MANIFOLD.

Let M be a fully parallelizable paracompact manifold of class  $C^{\infty}$ , dim M = n, let g be a positive definite metric tensor on M, let  $\varrho$  be a metric on M induced by this tensor, and let  $\Gamma$  be a linear connection on M (not necessarily Riemannian). Let  $\omega_1, \ldots, \omega_n$  be  $C^{\infty}$  -differentiable 1-forms on M (throughout this paper differentiable =  $C^{\infty}$  -differentiable), linearly independent at every point of M. The existence of such  $\omega_1, \ldots, \omega_n$  follows from the parallelizability of M.

**Definition 1.** Let  $c \in C$ . c is said to be piecewise differentiable if there is a piecewise differentiable curve  $x(\tau)$ ,  $\tau \in \langle a, b \rangle$  which is a representation of c.

It is well known that if  $c \in C$  is piecewise differentiable then its standard representation is a piecewise differentiable curve. Hence it follows that its normal representation is also a piecewise differentiable curve. Let us denote  $D = \{c \in C; c \text{ is piecewise differentiable}\},$ 

 $\{0 \in 0, 0 \text{ is preceived unterentiable}\}$ 

$$D_{\xi} = D \cap C_{\xi}.$$

Therefore  $D \subset C$  and  $D_{\xi} \subset C_{\xi}$  is a subsemigroup of the semigroup  $C_{\xi}$ . By the restriction of R to D and  $D_{\xi}$  induced metrics we shall also denote by R. Now we introduce one more metric on D. For  $d_1$ ,  $d_2 \in D$  let  $x_1(t)$ ,  $x_2(t)$  be their normal representations. Let us denote by  $\dot{x}_1(t)$  and  $\dot{x}_2(t)$  a tangent vector to the curves  $x_1(t)$  and  $x_2(t)$  at the point t respectively (at a singular point let us take the lefthand tangent vector). Further let  $\alpha > 0$  be a real number, and let  $m_{d_1}$  and  $m_{d_2}$  be the number of singular points of the curves  $x_1(t)$  and  $x_2(t)$  respectively. Let us set

$$egin{aligned} S(d_1,\,d_2) &= R(d_1,\,d_2) + \max_i \sup_{t \,\in\, \langle 0,1 
angle} \mid \omega_i(\dot{x}_1(t)) \ &- \omega_i(\dot{x}_2(t)) \mid + lpha \mid m_{d_1} - m_{d_2} \mid. \end{aligned}$$

**Proposition 2.** S is a metric on D.

The proof follows easily using Proposition 1. For any  $d_1, d_2 \in D$  there is  $R(d_1, d_2) \leq D(d_1, d_2)$ .

**Definition 2**.Let  $(U, \varphi)$  be a chart on M.  $(U, \varphi)$  is said to be symmetric with the center at a point  $p \in M$  if there is  $\eta > 0$  such that  $U = \{q \in M; \varrho(p,q) < \eta\}$ .

Now we shall define a "function"  $\xi(p)$  on M in the following way. Let  $\Xi_p$  be the set of all positive real numbers such that for every  $\eta \in \Xi_p$  there exists a symmetric chart  $(U, \varphi)$  with the center at p and the radius  $\eta$ . Let us set  $\xi(p) = \sup \Xi_p$ .

**Lemma 1.** There is either  $\xi(p) = \infty$  for all  $p \in M$  or  $\xi(p)$  is a uniformly continuous function on M.

The proof follows easily from the inequality  $|\xi(p) - \xi(q)| \leq \varrho(p, q)$ .

**Lemma 2.** Let  $c \in C$  with the normal representation x(t). There exists a partition  $0 = t_0 < t_1 \ldots < t_k = 1$  of the interval  $\langle 0, 1 \rangle$ , symetric charts  $(U_i, \varphi_i)$ ,  $i = 1, \ldots, k$  with the centers  $x(t_{i-1})$  and the same radius  $\eta$ , and a number  $\delta > 0$  such that the following assertion holds: if  $c_1 \in C$  is such that  $R(c, c_1) < \delta$  and  $x_1(t)$  is its normal representation, then  $\{x_1(t); t \in \langle t_{i-1}, t_i \rangle\} \subset U_i$ .

Proof: The assertion is clear in the case  $\xi(p) = \infty$ . Thus let us consider the case when  $\xi(p)$  is a real function. We can restrict ourselves to the case  $\lambda(c) > 0$ , for in the case  $\lambda(c) = 0$  the assertion is also clear. There is

$$0 < \xi_0 = \min_{t \in \langle 0,1 \rangle} \xi(x(t)).$$

Let k be a positive integer such that  $\frac{1}{k} \leq \frac{\xi_0}{4\lambda(c)}$  and let us set  $t_i = \frac{i}{k}$  $i = 0, \ldots, k$ ,  $U_i = \{p \in M, \varrho(p, x(t_{i-1})) < \frac{3\xi_0}{4}, i = 1, \ldots, k$ . Obviously there exist functions  $\varphi_i$  defined on  $U_i$  such that  $(U_i, \varphi_i)$  is a symmetric chart. Let us set  $\delta = \frac{\xi_0}{4}$ . We shall show that just chosen  $t_i$ ,  $U_i$ ,  $\delta$  have the required properties.

Let  $c_1 \in C$ ,  $R(c, c_1) < \delta$ . For the sake of simplicity let us denote by  $c^{(i)}$  and  $c_1^{(i)}$  the curves x(t),  $t \in \langle t_{i-1}, t_i \rangle$  and  $x_1(t)$ ,  $t \in \langle t_{i-1}, t_i \rangle$ , respectively. With respect to the fact that  $\varrho$  is a Riemannian metric on M we have for any  $t \in \langle t_{i-1}, t_i \rangle$  an inequality

$$arrho(x_1(t), x(t_{i-1})) \leq arrho(x_1(t), x(t)) + arrho(x(t), x(t_{i-1})) \leq \ \leq rac{\xi_0}{4} + \lambda(c^{(i)}) = rac{\xi_0}{4} + rac{\lambda(c)}{k} \leq rac{\xi_0}{4} + rac{\xi_0}{4} < rac{3\xi_0}{4}$$

This completes the proof.

**Proposition 3.**  $\lambda$  is a continuous function on D.

Proof: Let us keep the notation from the above lemma. Let  $d, d_1 \in D$ and let  $S(d, d_1) < \delta$ . There is

$$|\lambda(d) - \lambda(d_1)| \leq \sum_{i=1}^k |\lambda(d^{(i)}) - \lambda(d_1^{(i)})|$$

and both  $d^{(i)}$ ,  $d_1^{(i)}$  lie in  $U_i$ . Let  $\varphi = \{x^1, \ldots, x^n\}$ , let  $g_{\alpha\beta}$  be the components of the metric tensor with respect to  $\varphi$  and let  $x^{\alpha}(t)$  and  $x_1^{\alpha}(t)$  denote coordi-

nates of points x(t) and  $x_1(t)$ , respectively. Further let us set  $g_{\alpha\beta}(t) = g_{\alpha\beta}(x(t))$ ,  $g_{\alpha\beta}^1(t) = g_{\alpha\beta}(x_1(t))$ . Now we set

$$K_{i} = \max_{\alpha,\beta=1,\dots,n} \max_{\substack{|p| (p,x(d_{i-1})) \leq \frac{3\xi_{i}}{4}}} |g_{\alpha\beta}(p)\rangle |$$
$$L_{i} = \min_{t \in (d_{i-1},d_{i})} g_{\alpha\beta} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t}.$$

We have

$$\begin{split} |\lambda(d^{(t)}) - \lambda(d_1^{(t)})| &= \left| \iint_{t_{t-1}}^{t_t} \left( \sqrt{g_{\alpha\beta}} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} - \sqrt{g_{\alpha\beta}^1} \frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t} \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t} \right) \mathrm{d}t \right| \\ &= \left| \iint_{t_{t-1}}^{t_t} \frac{g_{\alpha\beta}}{\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} - g_{\alpha\beta}^1 \frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t}}{\frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t}} \right| \\ &= \left| \iint_{t_{t-1}}^{t_t} \left| \int_{t_{t-1}}^{t_t} \left( g_{\alpha\beta} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} - g_{\alpha\beta}^1 \frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t} \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t}} \right) \mathrm{d}t \right| \\ &\leq \frac{1}{L_t} \iint_{t_{t-1}}^{t_t} \left| g_{\alpha\beta} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} - g_{\alpha\beta}^1 \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} + g_{\alpha\beta}^1 \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} \right| \\ &\leq \frac{1}{L_t} \iint_{t_{t-1}}^{t_t} \left| g_{\alpha\beta} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} - g_{\alpha\beta}^1 \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} + g_{\alpha\beta}^1 \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} \right| \\ &= g_{\alpha\beta}^1 \frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t} \left| \mathrm{d}t \leq \frac{1}{L_t} \int_{t_{t-1}}^{t_t} \left| g_{\alpha\beta} - g_{\alpha\beta}^1 \right| \cdot \left| \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} \right| \mathrm{d}t \\ &\quad + \frac{1}{L_t} \iint_{t_{t-1}}^{t_t} \left| g_{\alpha\beta}^1 \right| \cdot \left| \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} - \frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t} \right| \mathrm{d}t . \end{split}$$

Components of the metric tensor  $g_{\alpha\beta}$  are uniformly continuous functions on  $\left\{ p \in M ; \ \varrho(p \ x(t_{i-1})) \leq \frac{3\xi_0}{4} \right\}$ . Hence it follows that choosing  $\delta$  sufficiently small, the term  $\frac{1}{L_t} \int_{t_{i-1}}^{t_t} \left| g_{\alpha\beta} - g_{\alpha\beta}^1 \right| \cdot \left| \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} \right| \mathrm{d}t$  can be made arbitrarily small. Now deal we shall with the second term of the above expression. First we shall consider the expression  $\left|\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} - \frac{\mathrm{d}x_{1}^{\alpha}}{\mathrm{d}t}\right|$ . Let us denote by  $\dot{x}(t)$  and  $\dot{x}_{1}(t)$  the tangent vectors to the curves x(t),  $t \in \langle t_{i-1}, t_i \rangle$  and  $x_{1}(t)$ ,  $t \in \langle t_{i-1}, t_i \rangle$  at the points x(t) and  $x_{1}(t)$ , respectively. There is

$$rac{\mathrm{d}x^lpha}{\mathrm{d}t} - rac{\mathrm{d}x_1^lpha}{\mathrm{d}t} = \mathrm{d}x^lpha(\dot{x}(t)) - \mathrm{d}x^lpha(\dot{x}_1(t))\,.$$

Now let us write  $dx^{\alpha} = a_{\gamma}^{\alpha}\omega_{\gamma}$ , where  $a_{\gamma}^{\alpha}$  are differentiable functions. Hence we have

$$\left|\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} - \frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t}\right| \leq |a_l^k(x(t)) - a_l^k(x_1(t))| \cdot |\omega_l(\dot{x}(t))| + |a_l^k(x_1(t))| \cdot |\omega_l(\dot{x}(t)) - \omega_l(\dot{x}(t))| \cdot |\omega_l(\dot{x}(t))| \cdot |\omega_l(\dot{x$$

According to the compactness of the set  $\{p \in M; \varrho(p, x(t_{i-1})) \leq \frac{3\xi_0}{4} \text{ we}$  see again that choosing  $\delta$  sufficiently small we can make the expression arbitrarily small. We have

$$\begin{split} & \int_{t_{i-1}}^{t_i} |g_{\alpha\beta}^1| \cdot \left| \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} - \frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t} \right| \leqslant K_i \int_{t_{i-1}}^{t_i} \left| \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} - \frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t} \right| \mathrm{d}t \\ & = K_i \int_{t_{i-1}}^{t_i} \left| \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} - \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t} + \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t} - \frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t} \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t} \right| \mathrm{d}t \\ & \leqslant K_i \int_{t_{i-1}}^{t_i} \left| \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \right| \cdot \left| \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} - \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t} \right| \mathrm{d}t + K_i \int_{t_{i-1}}^{t_i} \left| \frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t} \right| \cdot \left| \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} - \frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t} \right| \mathrm{d}t \\ & \leqslant K_i \int_{t_{i-1}}^{t_i} \left| \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} \right| \cdot \left| \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} - \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t} \right| \mathrm{d}t + K_i \int_{t_{i-1}}^{t_i} \left| \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} - \frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t} \right| \mathrm{d}t \\ & + K_i \int_{t_{i-1}}^{t_i} \left| \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} - \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t} \right| \mathrm{d}t + K_i \int_{t_{i-1}}^{t_i} \left| \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} - \frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t} \right| \mathrm{d}t \\ & + K_i \int_{t_{i-1}}^{t_i} \left| \frac{\mathrm{d}x^{\beta}}{\mathrm{d}t} - \frac{\mathrm{d}x_1^{\beta}}{\mathrm{d}t} \right| \cdot \left| \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}t} - \frac{\mathrm{d}x_1^{\alpha}}{\mathrm{d}t} \right| \mathrm{d}t . \end{split}$$

And now the assertion follows easily.

Remark: It can be easily seen that  $D_{\xi}$ , even with the metric S, is not a topological semigroup.

### § 3. MAPPING OF THE SPACE ( $D_{\varepsilon}$ , S) INTO THE HOLONOMY GROUP OF A LINEAR CONNECTION $\Gamma$ ON M.

First of all we shall prove

**Lemma 3.** Let  $a_{ij}$ , i, j = 1, ..., n be continuous functions on an interval  $\langle x_0, x_1 \rangle$ . Let  $y_i$  be a solution of the system

$$\frac{\mathrm{d}y_i}{\mathrm{d}x} + \sum_{j=1}^n a_{ij}y_j = 0, \quad i = 1, \ldots, n$$

in the interval  $\langle x_0, x_1 \rangle$  with the initial conditions  $y_i(x_0) = y_i^{(0)}$ . Then there exist N > 0,  $\delta_0 > 0$  such that if  $0 < \delta < \delta_0$  and if  $b_{ij}$ , i, j = 1, ..., n are continuous functions on  $\langle x_0, x_1 \rangle$  such that max, max  $|a_{ij}(x) - b_{ij}(x)| < \delta$  $i, j \quad x \in \langle x_0, x_1 \rangle$ 

and if  $z_i$  is a solution of the system

$$\frac{\mathrm{d}z_i}{\mathrm{d}x} + \sum_{j=1}^n b_{ij}z_j = 0, \quad i = 1, \ldots, n$$

such that  $\max_{i} |y_i^{(0)} - z_i^{(0)}| < \delta$  then

 $\max \max |y_i(x) - z_i(x)| < N\delta.$ *i*  $x \in \langle x_0, x_1 \rangle$ 

**Proof:** Let us define the following sequences of functions on  $\langle x_0, x_1 \rangle$ :

$$y_i^{(0)} = y_i(x_0), z_i^{(0)} = z_i(x_0)$$
$$y_i^{(k+1)} = y_i^{(0)} - \int_{x_0}^x \sum_{j=1}^n a_{ij} y_j^{(k)} dx$$
$$z_i^{(k+1)} = z_i^{(0)} - \int_{x_0}^x \sum_{j=1}^n a_{ij} y_j^{(k)} dx$$

There is  $y_i = \lim_{k \to \infty} y_i^{(k)}$ , resp.  $z_i = \lim_{k \to \infty} z_i^{(k)}$  uniformly on  $\langle x_0, x_1 \rangle$  (see for instance

[3] Chap. VII, § 2). Let K > 0, L > 0 be such that  $\max_{i, j} \max_{x \in \langle x_0, x_1 \rangle} |a_{ij}| < \frac{1}{2} K$ ,  $\max_{i} \max_{x \in <x_0, x_{i>}} |y_i^{(k)}| < \frac{1}{2} L \text{ for all } k, \delta_0 = \frac{1}{2} \min(K, L) \text{ and let } 0 < \delta < \delta_0,$ 

 $\max_{i,j} \max_{x \in <x_0, x_1>} |a_{ij}(x) - b_{ij}(x)| < \delta, \ \max_{i} |y_i^{(0)} - z_i^{(0)}| < \delta. \ \text{ For } i = 1, \ldots, n \ \text{ we}$ 

have

158

$$|y_i^{(0)} - z_i^{(0)}| < \delta$$
  
 $y_i^{(1)} - z_i^{(1)} = y_i^{(0)} - z_i^{(0)} + \int_{x_0}^x \sum_{j=1}^n (b_{ij} - a_{ij}) y_j^{(0)} dx + \int_{x_0}^x \sum_{j=1}^n b_{ij} (z_j^{(0)} - y_j^{(0)}) dx.$ 

From this we have the estimation

$$|y_i^{(1)} - z_i^{(1)}| \leq \delta \left[1 + \frac{K+L}{K} (nK) (x - x_0)\right]$$

By induction we can easily prove that for every k there is

$$|y_i^{(k)} - z_i^{(k)}| \leq \delta \left[ \sum_{i=0}^{k-1} \frac{(nK)^i (x - x_0)^i}{i!} + \frac{K + L}{K} \sum_{i=1}^k \frac{(nK)^i (x - x_0)^i}{i!} \right] \cdot \frac{(nK)^i (x - x_0)^i}{i!} = \frac{1}{2} \sum_{i=0}^{k-1} \frac{(nK)^i (x - x_0)^i}{i!} + \frac{(nK)^i (x - x_0)^i$$

Now it is sufficient to set

$$W = \left(1 + \frac{K+L}{K}\right) \exp\left[nK(x_1 - x_0)\right].$$

**Definition 3.** A function f(x) defined on  $\langle x_0, x_1 \rangle$  is said to be piecewise continuous on  $\langle x_0, x_1 \rangle$  with the index of discontinuity m if there is a partition

$$x_0 = t_0 < t_1 < \ldots < t_m = x_1$$

of the interval  $\langle x_0, x_1 \rangle$  such that

- (i) f(x) is continuous on  $\langle t_{i-1}, t_i \rangle$ ,  $i = 1, \ldots, m-1$  and on  $\langle t_{m-1}, t_m \rangle$ ,
- (ii) there exists the finite limit  $\lim_{x \to t_{i-}} f(x) \quad i = 1, \dots, m,$
- (iii) the points  $t_i$ , i = 1, ..., m 1 are the points of discontinuity of the function f(x).

**Definition 4.** Let  $a_{ij}$ ; i, j = 1, ..., n be piecewise continuous functions on  $\langle x_0, x_1 \rangle$ . Let

$$x_0 = u_0 < u_1 < \ldots < u_r = x_1$$

be a partition of the interval  $\langle x_0, x_1 \rangle$  such that

- (i) any interval  $(u_{k-1}, u_k)$  does not contain a point of discontinuity of any function  $a_{ij}$ ,
- (ii) every point  $u_k$ , k = 1, ..., r 1 is a poin of discontinuity of at least one of the functions  $a_{ij}$ .
- Let us define the functions  $a_{ij}^{(k)}$  on  $\langle u_{k-1}, u_k \rangle$ ,  $k = 1, \ldots, r$  by

$$+a_{ij}^{(k)} \land a_{ij} \text{ for } x \in \langle u_{k-1}, u_k \rangle$$
$$\lim_{x \to u_k^-} a_{ij} \text{ for } x = u_k.$$

We say that functions the  $y_i$  defined on  $\langle x_0, x_1 \rangle$  are a solution of the generalized system

$$\frac{\mathrm{d}y_i}{\mathrm{d}x} + \sum_{j=1}^n a_{ij} y_j = 0$$

if (i)  $y_i$  are continuous on  $\langle x_0, x_1 \rangle$ ,

(ii)  $y_i$  are on  $\langle u_{k-1}, u_k \rangle$  a solution of the system

$$\frac{\mathrm{d}y_i}{\mathrm{d}x} + \sum_{j=1}^n + a_{ij}^{(k)} y_j = 0$$

for all  $k = 1, \ldots, r$ The generalization of lemma 3 is

**Lemma 4.** Let  $a_{ij}$ ; i, j = 1, ..., n be piecewise continuous functions on the interval  $\langle x_0, x_1 \rangle$ . Let  $y_i$  be the solution of the generalized system

$$\frac{\mathrm{d}y_i}{\mathrm{d}x} + \sum_{j=1}^n a_{ij} y_i = 0, \quad i = 1, \ldots, n$$

on the interval  $\langle x_0, x_1 \rangle$  with the initial conditions  $y_i(x_0) = y_i^{(0)}$ . Let P be a nonnegative integer. Then for any  $\varepsilon > 0$  there exists  $\delta > 0$  such that if  $b_{ij}$ ; i, j == 1, ..., n are piecewise continuous functions on  $\langle x_0, x_1 \rangle$  such that the index of discontinuity of each of them is  $\leq P$  and max max  $|a_{ij}(x) - b_{ij}(x)| < \delta$  $i,j \quad x \in < x_0, x_1 >$ 

and if  $z_i$  is a solution of the generalized system

$$rac{\mathrm{d} z_i}{\mathrm{d} x}+\sum\limits_{j=1}^n b_{ij}\, z_j=0, \hspace{0.2cm} i=1,\,\ldots,\,n$$

such that  $\max |y_i^{(0)} - z_i(x_0)| < \delta$ , then there is

$$\max_{i} \max_{x \in \langle x_0, x_1 \rangle} |y_i(x) - z_i(x)| < \varepsilon$$

The proof follows easily from  $L \in mma 3$ .

Now let us denote respectively by T(M) and  $T_p(M)$  the tangent bundle and the tangent space at the point  $p \in M$  of a fully parallelizable Riemannian manifold M. Let  $X_1, \ldots, X_n$  ( $n = \dim M$ ) be differentiable vector fields, linearly independent at every point of M. Now we shall define on T(M) a pseudometric  $\sigma$  in the following way. Let  $Y_p$ ,  $Y_q \in T(M)$ ,  $Y_p =$ 

$$=\sum_{i=1}^{n} \xi^{i}(X_{i})_{p}, \ Y_{q} = \sum_{i=1}^{n} \eta^{i}(X_{i})_{q}. \text{ We set}$$
$$\sigma(Y_{p}, Y_{q}) = \max_{i} |\xi^{i} - \eta^{i}|.$$

It can be easily seen that the restriction of  $\sigma$  to  $T_p(M)$  is a metric.

**Proposition 4.** Let  $(U, \varphi), \varphi = \{x^1, \ldots, x^n\}$  be a chart on M. Let  $d \in D$ , x(t) be its normal representation. Let us suppose  $\{x(t); t \in \langle 0, 1 \rangle\} \subset U$ . Finally let  $W(0) \in T_{x(0)}(M)$  and  $W(t) \in T_{x(t)}(M)$  be the vector obtained by the parallel displacement of W(0) along the curve x(t) with respect to  $\Gamma$ . Then for any  $\varepsilon > 0$  there exists  $\delta > 0$  such that if  $d_1 \in D$  with the normal representation  $x_1(t)$  such that  $S(d, d_1) < \delta$  and if  $V(0) \in T_{x_1(0)}(M)$  such that  $\sigma(W(0), V(0)) < \delta$ , then

- (i)  $\{x_1(t); t \in \langle 0, 1 \rangle\} \subset U;$
- (ii) if  $V(t) \in T_{x_1(t)}(M)$  denotes the vector obtained by the parallel displacement of V(0) along  $x_1(t)$ , then

$$\sigma(W(1), V(1)) < \varepsilon.$$

Proof: (i) is obvious. As to (ii) we shall first prove the following lemma: Let  $\delta_1 > 0$ ,  $p \in U$ ,  $Y_p \in T_p(M)$ . Then there exists  $\delta > 0$  such that if  $q \in U$ ,  $Y_q \in T_q(M)$  are such that  $\varrho(p, q) < \delta$ ,  $\sigma(Y_p, Y_q) < \delta$ , then writing  $Y_p =$  $= \sum_{i=1}^{n} \xi^i \left(\frac{\partial}{\partial x^i}\right)_p, \quad Y_q = \sum_{i=1}^{n} \eta^i \left(\frac{\partial}{\partial x^i}\right)_q \text{ we have}$ 

 $\max_i |\xi^i - \eta^i| < \delta_1. \text{ Let us write therefore}$ 

$$Y_{p} = \sum_{i=1}^{n} \xi^{i}(X_{i})_{p}, \quad Y_{q} = \sum_{i=1}^{n} \bar{\eta}^{i}(X_{i})_{q} \quad (X_{i})_{r} = \sum_{j=1}^{n} A_{i}^{j}(r) \left(\frac{\partial}{\partial x^{j}}\right)_{r}; \quad A_{i}^{j}(r) \quad i, j = 1, \dots, n$$

are differentiable functions on U. From these relations we obtain

$$\xi^i = \sum_{j=1}^n A^i_j(p) \, \check{\xi}^j, \; \eta^i = \sum_{j=1}^n A^i_j(q) \bar{\eta}^j$$

and therefore

$$\begin{split} \xi^{i} &- \eta^{i} = \sum_{j=1}^{n} \left( A_{j}^{i}(p) \, \xi^{j} - A_{j}^{i}(q) \, \bar{\eta}^{j} \right) = \\ &= \sum_{j=1}^{n} \left[ \left( A_{j}^{i}\left(p\right) - A_{j}^{i}(q) \right) \, \xi^{j} + A_{j}^{i}(q) \, (\xi^{j} - \bar{\eta}^{j}) \right] \end{split}$$

161

$$|\xi^{i} - \eta^{i}| \leq \sum_{j=1}^{n} [|A_{j}^{i}(p) - A_{j}^{i}(q)| . |\xi^{j}| + |A_{j}^{i}(q)| . |\xi^{j} - \eta^{j}|].$$

From the last inequality our lemma follows easily.

Now let us write 
$$W(t) = \sum_{i=1}^{n} w^{i}(t) \left(\frac{\partial}{\partial x^{i}}\right)_{x(t)}, \quad V(t) = \sum_{i=1}^{n} v^{i}(t) \left(\frac{\partial}{\partial x^{i}}\right)_{x_{i}(t)}$$
 and

let us denote by  $\Gamma_{jk}^i$  the components of  $\Gamma$  with respect to the coordinate system  $\{x^1, \ldots, x_n\}$ . The functions  $w^i(t)$  and  $v^i(t)$  are on  $\langle 0, 1 \rangle$  solutions of the generalized systems

$$\frac{\mathrm{d}w^i}{\mathrm{d}t} + \sum_{j,k=1}^n \Gamma^i_{jk}(x(t)) \frac{\mathrm{d}x^k}{\mathrm{d}t} w^j = 0$$

and

$$\frac{\mathrm{d}v^i}{\mathrm{d}t} + \sum_{j,k=1}^n \Gamma^i_{jk} \left( x_1(t) \right) \frac{\mathrm{d}x_1^k}{\mathrm{d}t} v^j = 0,$$

respectively (see [1], chap. III, § 7).

Hence let us have  $\varepsilon > 0$ . According to Lemma 4 there exists  $\delta_1 > 0$  such that if

$$egin{aligned} &\max_{i,j} \max_{t \, \epsilon < 0, 1 >} \left| \sum_{k=1}^n \Biggl( \Gamma^i_{jk}(x(t)) \, rac{\mathrm{d} x^k}{\mathrm{d} t} - \Gamma^i_{jk}(x_1(t)) rac{\mathrm{d} x^k_1}{\mathrm{d} t} \Biggr) 
ight| < \delta_1 \ &\max_i \left| w^i(0) - v^i(0) 
ight| < \delta_1, \end{aligned}$$

then  $\max_{i} |w^{i}(1) - v^{i}(1)| < \varepsilon$ . From the equality

$$\sum_{k=1}^{n} \left( \Gamma_{jk}^{i}(x(t)) \frac{\mathrm{d}x^{k}}{\mathrm{d}t} - \Gamma_{ik}^{j}(x_{1}(t)) \frac{\mathrm{d}x_{1}^{k}}{\mathrm{d}t} \right) =$$
$$= \sum_{k=1}^{n} \left[ \left( \Gamma_{jk}^{i}(x(t)) - \Gamma_{jk}^{i}(x_{1}(t))\right) \frac{\mathrm{d}x^{k}}{\mathrm{d}t} + \Gamma_{jk}^{i}(x_{1}(t)) \left( \frac{\mathrm{d}x^{k}}{\mathrm{d}t} - \frac{\mathrm{d}x_{1}^{k}}{\mathrm{d}t} \right) \right]$$

we have the estimation

162

.

$$\left|\sum_{k=1}^{n} \left( \Gamma_{jk}^{i}(x(t)) \frac{\mathrm{d}x^{k}}{\mathrm{d}t} - \Gamma_{jk}^{i}(x_{1}(t)) \frac{\mathrm{d}x_{1}^{k}}{\mathrm{d}t} \right) \right| \leq \\ \leq \sum_{k=1}^{n} \left[ |\Gamma_{jk}^{i}(x(t)) - \Gamma_{jk}^{i}(x_{1}(t))| \cdot \left| \frac{\mathrm{d}x^{k}}{\mathrm{d}t} \right| + |\Gamma_{jk}^{i}(x_{1}(t))| \cdot \left| \frac{\mathrm{d}x^{k}}{\mathrm{d}t} - \frac{\mathrm{d}x_{1}^{k}}{\mathrm{d}t} \right| \right].$$

Writing similarly as in the proof of proposition 3

$$rac{\mathrm{d}x^k}{\mathrm{d}t} = \mathrm{d}x^k(\dot{x}(t)), \, rac{\mathrm{d}x_1^k}{\mathrm{d}t} = \mathrm{d}x^k(\dot{x}_1(t)), \, \mathrm{d}x^k = \sum_{l=1}^n a_l^k \, \omega_l \, ,$$

n

we get

$$\frac{\mathrm{d}x^{k}}{\mathrm{d}t} - \frac{\mathrm{d}x_{1}^{k}}{\mathrm{d}t} = \sum_{l=1}^{n} \left[ a_{l}^{k}(x(t)) \,\omega_{l}(\dot{x}(t)) - a_{l}^{k}(x_{1}(t)) \,\omega_{l}(\dot{x}_{1}(t)) \right] =$$
$$= \sum_{l=1}^{n} \left[ \left( a_{l}^{k}(x(t)) - a_{l}^{\kappa}(x_{1}(t)) \right) \,\omega_{l}(\dot{x}(t)) + a_{l}^{k}(x_{1}(t)) \,(\omega_{l}(\dot{x}(t)) - \omega_{l}(\dot{x}_{1}(t))) \right]$$

and from this equality we have the estimation

$$\left|\frac{\mathrm{d}x^{k}}{\mathrm{d}t} - \frac{\mathrm{d}x_{1}^{k}}{\mathrm{d}t}\right| \leq \sum_{l=1}^{n} \left[ |a_{l}^{k}(x(t)) - a_{l}^{k}(x_{1}(t))| \cdot |\omega_{l}(\dot{x}(t))| + |a_{l}^{k}(x_{1}(t))| \cdot |\omega_{l}(\dot{x}(t)) - \omega_{l}(\dot{x}_{1}(t))| \right].$$

Now it can be easily seen that there exists  $\delta_2 > 0$  such that if  $S(d_1, d) < \delta_2$ , then

$$\max_{i,j} \max_{t \in \langle 0,1 \rangle} \left| \sum_{k=1}^n \left( \Gamma^i_{jk}(x(t)) \frac{\mathrm{d}x^k}{\mathrm{d}t} - \Gamma^i_{jk}(x_1(t)) \frac{\mathrm{d}x_1^k}{\mathrm{d}t} \right) \right| < \delta_1$$

Choosing  $\delta_2$  sufficiently small then according to our lemma at the beginning of the proof  $\sigma(W(0), V(0)) < \delta_2$  implies  $\max_i |w^i(0) - v^i(0)| < \delta_1$ . Setting  $\delta = \delta_2$ , then according to Lemma 4  $S(d_1, d) < \delta$ ,  $\sigma(W(0), V(0)) < \delta$  imply

$$\max_{i} | w^{i}(1) - v^{i}(1) | < \varepsilon'.$$

Now it is easy to show that for sufficiently small  $\delta$ ,  $\varepsilon'$  there is

 $\sigma(W(1), V(1)) < \varepsilon$ 

and this completes the proof of the proposition.

**Proposition 5.** Let  $d \in D$ , x(t) be its normal representation. Let  $W(0) \in T_{x(0)}(M)$ and let  $W(t) \in T_{x(t)}(M)$  be the vector obtained by the parallel displacement of W(0) along the curve x(t) with respect to  $\Gamma$ . Then for any  $\varepsilon > 0$  there exists  $\delta > 0$ such that if  $d_1 \in D$  with the normal representation  $x_1(t)$  such that  $S(d, d_1) < \delta$ and  $V(0) \in T_{x1(0)}(M)$  such that  $\sigma(W(0), V(0)) < \delta$ , then

$$\sigma(W(1), V(1)) < \varepsilon,$$

where  $V(t) \in T_{x1(t)}(M)$  denotes again the vector obtained by the parallel displacement of V(0) along  $x_1(t)$ .

Proof: Let us have  $\varepsilon > 0$ . Let  $\bar{\delta} > 0$  and let

$$0 = t_0 < t_1 < \ldots < t_k = 1$$

be the partition of the interval  $\langle 0, 1 \rangle$  with the properties described in Lemma 2. We shall keep the notation of Lemma 2, only instead of  $c^{(i)}$  we shall write  $d^{(i)}$ . According to the inclusion  $\{x(t), t \in \langle t_{i-1}, t_i \rangle\} \subset U_i$  and according to the fact that  $\hat{x}(t') = x((t_i - t_{i-1})t' + t_{i-1}), t' \in \langle 0, 1 \rangle$  is the normal representation of  $d^{(i)}$ , it follows from proposition 4 that there exists  $\delta_k > 0$  such that if  $\overline{d}^{(k)} \in D$  is such that  $S(d^{(k)}, \overline{d}^{(k)}) < \delta_k$  and if  $V^{(k)} \in T_{A(\overline{d}^{(k)})}(M)$  is such that  $\sigma(W(t_{k-1}), V^{(k)}) < \delta_k$  and if we denote by  $\overline{V}^{(k)} \in T_{B(\overline{d}^{(k)})}(M)$  the vector obtained by the parallel displacement of  $V^{(k)}$  along  $\overline{d}^{(k)}$ , then  $\sigma(W(t_k), \overline{V}^{(k)}) < \varepsilon$ . Successively we can find  $\delta_i > 0$ ,  $i = 1, \ldots, k$  such that if  $\overline{d}^{(i)} \in D$  is such that  $S(d^{(i)}, \overline{d}^{(i)}) < \delta_i$  and if  $V^{(i)} \in T_{A(\overline{d}^{(i)})}(M)$  is such that  $\sigma(W(t_{i-1}), V^{(i)}) < \delta_i$  and if  $\overline{V}^{(i)} \in T_{B(\overline{d}^{(i)})}(M)$  is such that  $\sigma(W(t_{i-1}), V^{(i)}) < \delta_i$  and if  $\overline{V}^{(i)} \in T_{B(\overline{d}^{(i)})}(M)$  is the vector obtained by the parallel displacement of  $V_{A(i)} = 0$ .

Now let us choose  $\delta < \min(\delta, \delta_1, \ldots, \delta_k)$  so small that  $S(d, d_1) < \delta$  will imply  $S(d^{(i)}, d_1^{(i)}) < \delta_i$ . Thus if  $W(0) \in T_{x(0)}(M)$ ,  $V(0) \in T_{x_1(0)}(M)$  are two vectors such that  $\sigma(W(0), V(0)) < \delta$ , we can easily see that  $\sigma(W(1), V(1) < \varepsilon$ and this proves the proposition.

Now let  $\xi \in M$  and let  $E_1, \ldots, E_n \in T_{\xi}(M)$  be an orthonormal frame. Let  $\Phi(\xi) \subseteq GL(n, \mathbf{R})$  be the holonomy group of  $\Gamma$  with the reference point  $\xi$ . We define the mapping  $H: (D_{\xi}, S) \to \Phi(\xi)$  in the following way: let  $d \in D_{\xi}$  and let  $E'_1, \ldots, E'_n \in T_{\xi}(M)$  be the vectors obtained by the parallel displacement of the vectors  $E_1, \ldots, E_n$  along the curve d. Let  $a_{ij}$ ;  $i, j = 1, \ldots, n$  be such that  $E_i = \sum_{j=1}^n a_{ij}E_j$  and let  $A = (a_{ij})$ . We set H(d) = A. If we take  $\Phi(\xi)$  with the topology induced from  $GL(n, \mathbf{R})$ , we have

**Proposition 6.** The mapping  $H: (D_{\xi}, S) \to \Phi(\xi)$  is continuous.

Proof: Let us have  $\varepsilon > 0$ ,  $d \in D_{\xi}$ . We denote by  $\| \ldots \|$  the norm on  $T_{\xi}(M)$  arising from the metric tensor g. It is clear that there are  $k_1, k_2 > 0$  such that for any  $X \in T_{\xi}(M)$  we have  $k_1\sigma(X, 0) \leq \|X\| \leq k_2\sigma(X, 0)$ . According to this fact and proposition 5 it is obvious that there exists  $\delta > 0$  such that if  $d_1 \in D_{\xi}$  is such that  $S(d, d_1) < \delta$ , then

$$|F_i - F_i^{(1)}|| < \varepsilon, \quad i = 1, \ldots, n,$$

where  $F_i$  and  $F_i^{(1)}$  are the vectors from  $T_{\xi}(M)$  obtained by the parallel displacement of the vector  $E_i$  along the curves d and  $d_1$ , respectively. Let us write

$$F_i = \sum_{j=1}^n a_{ij} E_j, \quad F_i^{(1)} = \sum_{j=1}^n a_{ij}^{(1)} E_j.$$

From this we have

$$F_i - F_i^{(1)} = \sum_{j=1}^n (a_{ij} - a_{ij}^{(1)}) E_j$$

and after the scalar multiplication

$$\sum_{j=1}^{n} (a_{ij} - a_{ij}^{(1)})^2 = \|F_i - F_i^{(1)}\|^2 < \varepsilon^2.$$

This implies the inquality  $\max_{i,j} |a_{ij} - a_{ij}^{(1)}| < \epsilon$ . The proposition is therefore proved.

#### REFERENCES

- [1] Kobayashi S., Nomizu K., Foundations of differential geometry, New York-London 1963.
- [2] Busemann H., The geometry of geodesics, New York 1955.
- [3] Stěpanov V. V., Kurs diferenciálních rovnic, Praha 1950. Received September 22, 1967.

Katedra geometrie matematicko-fyzikální fakulty Karlovy university, Praha