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MODULI SPACES OF LIE ALGEBROID CONNECTIONS

Libor Křižka

Abstract. We shall prove that the moduli space of irreducible Lie algebroid
connections over a connected compact manifold has a natural structure of a
locally Hausdorff Hilbert manifold. This generalizes some known results for
the moduli space of simple semi-connections on a complex vector bundle over
a compact complex manifold.

Introduction

Moduli spaces have many applications in mathematics and physics. In geo-
metry, they make it possible to construct invariants of manifolds, for example,
Seiberg-Witten invariants, Gromow-Witten invariants and others, they are closely
related to the subject of deformation theory. In particular, they form an indispen-
sable tool in the study of four-manifolds (Donaldson theory, see [2]), Yang-Mills
theory in physics, etc.

A basic motivation for the study of moduli spaces of flat Lie algebroid connections
over a compact manifold is a description of the well known results for some
moduli spaces of this type in a unified treatment. Two cornerstones of this general
construction consist of the moduli space of holomorphic structures on a complex
vector bundle over a compact complex manifold (more about this and the related
Hitchin-Kobayashi correspondence can be found in [12], [11] and [13]) and the
moduli space of Higgs bundles on a compact Riemann surface, see [9].

More recent examples of this phenomenon involve the moduli space of complex
B-branes and the moduli space of symplectic A-branes, based on generalized
complex geometry. They play a very important role in mirror symmetry and
geometric Langlands program, see [10], [8].

In the paper, we study the space of Lie algebroid connections on a vector bundle
on a compact manifold M and the action of the gauge group on this space. The
purpose of the paper is to demonstrate that certain moduli spaces of Lie algebroid
connections on real or complex vector bundles over compact manifolds carry natural
structure of a locally Hausdorff Hilbert manifold.

Let L be a real or complex transitive Lie algebroid over a compact manifold M
and E be a real or complex vector bundle over M . Let Â(E,L) denote the space of
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irreducible L-connections and Gau(E), resp. Gau(E)r, the gauge group, resp. the
reduced gauge group with natural left or right (according to conventions) action on
Â(E,L). If we consider Sobolev completions Â(E,L)`, Gau(E)`+1 and Gau(E)r

`+1
of the corresponding spaces for ` > 1

2 dimM , we show that

B̂(E,L)` = Â(E,L)`
/
Gau(E)`+1

is a locally Hausdorff Hilbert manifold and p̂ : Â(E,L)` → B̂(E,L)` a principal
Gau(E)r

`+1-bundle. It is a generalization of results in [12], [13] and [11] to the case
of L-connections for a transitive Lie algebroid.

1. Lie algebroids and L-connections

In this section, we introduce notation for Lie algebroids and Lie algebroid
connections. More about Lie algebroids and related generalized complex structures
can be found in [7], [6].

Remark. We will use notation K for the field R of real or the field C of complex
numbers.

Definition 1. A real (complex) Lie algebroid (L p−→M, [·, ·], a) is a real (complex)
vector bundle p : L→M together with a Lie bracket [·, ·] on the space of sections
Γ(M,L) and a homomorphism of vector bundles a : L→ TM (a : L→ TMC) called
the anchor map making the diagrams

M MidM
//

L

M

p

��

L TM
a // TM

M
�� resp. M MidM

//

L

M

p

��

L TMC
a // TMC

M
��

commutative. Moreover, the anchor map fulfills
i) a([e1, e2]) = [a(e1), a(e2)] resp. a([e1, e2]) = [a(e1), a(e2)]C,
ii) [e1, fe2] = f [e1, e2] + (a(e1)f)e2

for all e1, e2 ∈ Γ(M,L) and f ∈ C∞(M,K).

Example.
(1) Every Lie algebra is a Lie algebroid over a point, M = {pt}.
(2) The tangent bundle TM of a manifold M is a Lie algebroid for the Lie

bracket of vector fields and the identity of TM as an anchor map.
(3) Every integrable subbundle of the tangent bundle – that is one whose

sections are closed under the Lie bracket – also defines a Lie algebroid.
(4) Every bundle of Lie algebras over a manifold defines a Lie algebroid, where

the Lie bracket is defined pointwise and the anchor map is equal to zero.
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The space of sections Γ(M,Λ•L∗) =
⊕

k Γ(M,ΛkL∗) has a structure of a graded
commutative algebra with respect to the exterior product

(1) (ϕ ∧ ψ)(ξ1, . . . , ξk+`)

= 1
k! `!

∑
σ

sign σ · ϕ(ξσ(1), . . . , ξσ(k))ψ(ξσ(k+1), . . . , ξσ(k+`))

for ϕ ∈ Γ(M,ΛkL∗), ψ ∈ Γ(M,Λ`L∗) and ξ1, . . . , ξk+` ∈ Γ(M,L). It is possible to
define a graded derivation dL of degree 1 on Γ(M,Λ•L∗), which is a generalization
of the de Rham differential on ordinary forms,

(2) (dLϕ)(ξ0, . . . , ξk) =
k∑
i=0

(−1)ia(ξi)ϕ(ξ0, . . . , ξ̂i, . . . , ξk)

+
∑
i<j

(−1)i+jϕ([ξi, ξj ], ξ0, . . . , ξ̂i, . . . , ξ̂j , . . . , ξk) ,

where ϕ ∈ Γ(M,ΛkL∗) and ξ0, . . . , ξk ∈ Γ(M,L). One can easily verify that d2
L = 0.

By an analogy with ordinary differential forms, we can introduce the insertion
operator and the Lie derivative for a Lie algebroid. The Lie derivative is given by

(3) (LLξ ϕ)(ξ1, . . . , ξk) = a(ξ)ϕ(ξ1, . . . , ξk)−
k∑
i=1

ϕ(ξ1, . . . , [ξ, ξi], . . . , ξk) ,

where ϕ ∈ Γ(M,ΛkL∗), ξ, ξ1, . . . , ξk ∈ Γ(M,L), and the insertion operator for a
section ξ ∈ Γ(M,L) is defined by
(4) (iLξ ϕ)(ξ1, . . . , ξk−1) = ϕ(ξ, ξ1, . . . , ξk−1) ,

where ϕ ∈ Γ(M,ΛkL∗) and ξ1, . . . , ξk−1 ∈ Γ(M,L). Note that iLξ , resp. LLξ , is a
graded derivation of Γ(M,Λ•L∗) of degree −1, resp. 0.

Remark. For the sake of simplicity and to follow an analogy with ordinary
differential forms, the space of sections Γ(M,ΛkL∗) will be denoted by ΩkL(M) and
the graded commutative algebra Γ(M,Λ•L∗) by Ω•L(M). Furthermore, the space
of sections Γ(M,L) will be denoted by XL(M).

Definition 2. Let L a−→ TM (L a−→ TMC) be a real (complex) Lie algebroid and E
a real (complex) vector bundle. We denote the space of sections Γ(M,ΛkL∗⊗E) by
ΩkL(M,E). Their sections will be called Lie algebroid k-forms, or simply k-forms,
with values in E. A linear L-connection on E is a K-linear map

∇ : Ω0
L(M,E)→ Ω1

L(M,E)(5)

satisfying Leibniz rule: ∇(fs) = dLf ⊗ s + f∇s for any f ∈ C∞(M,K) and
s ∈ Ω0

L(M,E). Such ∇ is called a generalized connection or Lie algebroid connection.

Remark. For any ξ ∈ XL(M), we have the covariant derivative ∇ξs = iLξ (∇s) ∈
Ω0
L(M,E) of s in the direction ξ and with the following property

(6) ∇ξ(fs) = (LLξ f)s+ f∇ξs .
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The map ∇ξ : Ω0
L(M,E)→ Ω0

L(M,E) is K-linear for any ξ ∈ XL(M).

Lemma 1. Any L-connection ∇ on E has a natural extension to an operator

(7) d∇ : Ω•L(M,E)→ Ω•L(M,E)

uniquely determined by:
(1) d∇

(
ΩkL(M,E)

)
⊂ Ωk+1

L (M,E),
(2) d∇|Ω0

L
(M,E) = ∇,

(3) the graded Leibniz rule: d∇(α ∧ ω) = dLα ∧ ω + (−1)kα ∧ d∇ω for all
α ∈ ΩkL(M) and ω ∈ Ω`L(M,E).

The operator d∇ (called the covariant exterior derivative) is given by the following
formula

(d∇ω)(ξ0, ξ1, . . . , ξk) =
k∑
i=0

(−1)i∇ξiω(ξ0, . . . , ξ̂i, . . . , ξk)

+
k∑
i<j

(−1)i+jω([ξi, ξj ], ξ0, . . . , ξ̂i, . . . , ξ̂j , . . . , ξk)
(8)

for ξ0, . . . , ξk ∈ XL(M).

Proof. The proof goes along the same line as the proof of Lemma 1 for an affine
connection. �

Lemma 2. Denote by A(E,L) the set of all L-connections on a vector bundle E.
Then A(E,L) is an affine space modeled on the vector space Ω1

L

(
M,End(E)

)
.

Proof. We first prove that A(E,L) is non-empty. To see this, consider a vector
bundle atlas (Uα, ψα)α∈A and take a smooth partition of unity (gα)α∈A subordinate
to (Uα)α∈A.1 If ∇̂ denotes the trivial L-connection on the trivial vector bundle
VM = M×V , where V is the standard fiber of E, given by ∇̂s = ∇̂(f⊗v) = dLf⊗v,
where f ∈ C∞(M,K), v ∈ V and s = f ⊗ v ∈ Γ(M,VM ).

Furthermore, observe that for every α ∈ A and s ∈ Ω0
L(M,E) the section gαs

has its support in Uα, hence ψα
(
(gαs)|Uα

)
∈ Γ(Uα, VM ) has the support in Uα,

as well. If we extend ψα
(
(gαs)|Uα

)
by 0 outside Uα, we obtain smooth section

ψα
(
(gαs)|Uα

)
∈ Γ(M,VM ). Using locality of the operator ∇̂, i.e. supp ∇̂u ⊂ suppu

for all u ∈ Γ(M,VM ), we have

supp
(
idL∗|Uα ⊗ ψ

−1
α

)
◦
(
∇̂
(
ψα
(
(gαs)|Uα

)))
|Uα
⊂ Uα .

Therefore we can extend this section to a global section of L∗ ⊗ E. A natural
definition

∇s =
∑
α∈A

(
idL∗|Uα ⊗ ψ

−1
α

)
◦
(
∇̂
(
ψα
(
(gαs)|Uα

)))
|Uα

,

1We do not require compact support of gα, hence we can find a smooth partition of unity
subordinated to (Uα)α∈A.
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yields an L-connection on E, because for given f ∈ C∞(M,K), we get

∇(fs) =
∑
α∈A

(
idL∗|Uα ⊗ ψ

−1
α

)
◦
(
∇̂
(
ψα
(
(gαfs)|Uα

)))
|Uα

=
∑
α∈A

(
idL∗|Uα ⊗ ψ

−1
α

)
◦
(
∇̂
(
fψα

(
(gαs)|Uα

)))
|Uα

=
∑
α∈A

(
idL∗|Uα ⊗ ψ

−1
α

)
◦
(
dLf ⊗ ψα

(
(gαs)|Uα

)
+ f∇̂

(
ψα
(
(gαs)|Uα

)))
|Uα

=
∑
α∈A

dLf ⊗ gαs+ f
(
idL∗|Uα ⊗ ψ

−1
α

)
◦
(
∇̂
(
ψα
(
(gαfs)|Uα

)))
|Uα

= dLf ⊗ s+ f∇s.

The rest of the proof is very simple. We need to verify that if ∇1 and ∇0 are
two L-connections, then ∇1 −∇0 is a tensor. We have (∇1 −∇0)(fs) = dLf ⊗ s+
f∇1s− dLf ⊗ s− f∇0s = f(∇1 −∇0)s, hence ∇1 −∇0 ∈ Ω1

L(M,End(E)). �

Thus, if we fix some ∇0 in A(E,L), we may write

(9) A(E,L) = {∇0 + α; α ∈ Ω1
L(M,End(E))} .

This description will permit us to define various Sobolev completions of A(E,L).
Tensorial operations on vector bundles may be extended naturally to vector

bundles with L-connections. More precisely, if E1 and E2 are two bundles with
L-connections ∇E1 and ∇E2 , then there is a naturally induced connection ∇E1⊗E2

on E1 ⊗ E2 uniquely determined by the formula

(10) ∇E1⊗E2(s1 ⊗ s2) = ∇E1s1 ⊗ s2 + s1 ⊗∇E2s2 .

Consider a vector bundle E with an L-connection ∇E . Then the dual bundle E∗
of E has a natural connection ∇E∗ defined by the identity

(11) LLξ 〈s, t〉 = 〈∇Eξ s, t〉+ 〈s,∇E
∗

ξ t〉

for all ξ ∈ XL(M), s ∈ Ω0
L(M,E) and t ∈ Ω0

L(M,E∗), where 〈·, ·〉 : Ω0
L(M,E) ×

Ω0
L(M,E∗)→ C∞(M,K) is the natural pairing. In particular, any L-connection
∇E on a vector bundle E induces a connection ∇End(E) on End(E) ∼= E∗ ⊗ E by
the rule

(12) (∇End(E)T )s = ∇E(Ts)− T (∇Es) = [∇E , T ]s

for all T ∈ Ω0
L(M,End(E)) and s ∈ Ω0

L(M,E).

The graded vector spaces Ω•L(M,End(E)) has a natural structure of a graded
associative algebra via

(13) (ω ∧ τ)(ξ1, . . . , ξp+q)

= 1
p! q!

∑
σ

sign(σ) · ω(ξσ(1), . . . , ξσ(p)) τ(ξσ(p+1), . . . , ξσ(p+q))
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and a natural structure of a graded Lie algebra via

(14) [ω, τ ](ξ1, . . . , ξp+q)

= 1
p! q!

∑
σ

sign(σ) ·
[
ω(ξσ(1), . . . , ξσ(p)), τ(ξσ(p+1), . . . , ξσ(p+q))

]
,

where ω ∈ Ωp
L(M,End(E)), τ ∈ Ωq

L(M,End(E)) and ξ1, . . . , ξp+q ∈ XL(M). In
fact, the graded vector space Ω•L(M,End(E)) is a differential graded Lie algebra2

with the bracket [·, ·] and with the differential d∇End(E) , since

(15) d∇
End(E)

[ω, τ ] =
[
d∇

End(E)
ω, τ ] + (−1)deg(ω)[ω, d∇

End(E)
τ
]
.

2. Geometry of L-connections

Consider a real or complex vector bundle E
p−→ M . Then a vector bundle

endomorphism of E is a vector bundle morphism ϕ : E → E, i.e. a smooth mapping
ϕ : E → E such that there exists a (smooth) mapping ϕ : M →M , the diagram

M Mϕ
//

E

M

p

��

E E
ϕ // E

M

p

��

commutes and for each x ∈ M the mapping ϕx = ϕ|Ex : Ex → Eϕ(x) is K-linear.
In fact, the vector bundle endomorphism can be written as a pair (ϕ,ϕ). We say
that ϕ covers ϕ.

A composition of vector bundle endomorphisms is defined in the obvious manner
and a vector bundle endomorphism with an inverse vector bundle endomorphism is
called a vector bundle automorphism. The set of all vector bundle automorphisms of
E forms a group with a multiplication given by (ϕ1, ϕ1) ·(ϕ2, ϕ2) = (ϕ1◦ϕ2, ϕ1◦ϕ2)
denoted by Aut(E). The subgroup Gau(E) of all vector bundle automorphisms
of E covering identity on M is called gauge group, its elements are called gauge
transformations.

Denote by Diff(M) the group of all diffeomorphisms of M (a multiplication in
the group is given by f1 · f2 = f1 ◦ f2), then we obtain an exact sequence

(16) {e} → Gau(E) i−→ Aut(E) p−→ Diff(M)
of groups, where i : Gau(E)→ Aut(E) is an inclusion map only and p : Aut(E)→
Diff(M) is a projection map, i.e. p((ϕ,ϕ)) = ϕ.

Consider now the natural left action of the gauge group Gau(E) on the space
A(E,L) of L-connections defined by

(ϕ,∇) 7→ ϕ · ∇ ≡ ∇ϕ = (idL∗ ⊗ ϕ) ◦ ∇ ◦ ϕ−1,(17)

2Sometimes, in different contexts, it is called a differential graded Lie superalgebra. The
notation is not unified.



MODULI SPACES OF LIE ALGEBROID CONNECTIONS 409

or equivalently

(ϕ,∇ξ) 7→ (ϕ · ∇)ξ ≡ (∇ϕ)ξ = ϕ ◦ ∇ξ ◦ ϕ−1(18)

for the covariant derivative, where ξ ∈ XL(M). Obviously, ∇ϕ : Ω0
L(M,E) →

Ω1
L(M,E) is a K-linear and satisfies

∇ϕ(fs) = (idL∗ ⊗ ϕ) ◦ ∇
(
ϕ−1(fs)

)
= (idL∗ ⊗ ϕ) ◦ ∇

(
fϕ−1(s)

)
= (idL∗ ⊗ ϕ) ◦

(
dLf ⊗ ϕ−1(s) + f∇ϕ−1(s)

)
= dLf ⊗ s+ f(idL∗ ⊗ ϕ) ◦ ∇ϕ−1(s)
= dLf ⊗ s+ f∇ϕs

for every f ∈ C∞(M,K) and s ∈ Ω0
L(M,E), hence it is an L-connection.

Now we take up the question of reducible connections. Given an L-connection
∇ ∈ A(E,L), we shall consider the isotropy subgroup
(19) Gau(E)∇ = {ϕ ∈ Gau(E); ϕ · ∇ = ∇}
of ∇. Every such subgroup contains the subgroup K∗ · idE of Gau(E).

Definition 3. An L-connection ∇ is called irreducible or simple, if Gau(E)∇ =
K∗ · idE , otherwise ∇ is called reducible. We will denote the set of all irreducible
L-connections by Â(E,L).
Lemma 3. Let ∇ be an L-connection on a vector bundle E over a compact manifold
M . Then the following are equivalent:

(1) Gau(E)∇ = K∗ · idE,
(2) ker∇End(E) = K · idE.

Proof. Consider ϕ ∈ Gau(E). Then the relation ϕ ·∇ = ∇ means that (idL∗⊗ϕ)◦
∇◦ϕ−1 = ∇, and this is equivalent to (idL∗⊗ϕ)◦∇ = ∇◦ϕ, or even ∇End(E)ϕ = 0.
Therefore ϕ ∈ Gau(E)∇ if and only if ∇End(E)ϕ = 0 and ϕ ∈ Gau(E).

Suppose that ϕ ∈ Gau(E)∇. Then∇End(E)ϕ = 0 and, provided that ker∇End(E)=
K · idE , we get ϕ = c · idE for some c ∈ K∗. Hence we obtain Gau(E)∇ ⊂ K∗ · idE
and because the converse inclusion is trivial, we have proved (2) ⇒ (1).

To prove the opposite implication, we use the compactness of the manifold M .
Suppose that ϕ ∈ ker∇End(E). Because M is compact, there exists c ∈ K (with |c|
sufficiently large) so that c · idE +ϕ ∈ Gau(E). Moreover, ∇End(E)(c · idE +ϕ) = 0
and from the previous considerations, it follows that c · idE+ϕ ∈ Gau(E)∇. Besides,
if we suppose Gau(E)∇ = K∗ · idE , we obtain ker∇End(E) ⊂ K · idE . The converse
is trivial so the proof is finished. �

Remark. A trivial observation Gau(E)∇ϕ = ϕ ·Gau(E)∇ ·ϕ−1 for all ϕ ∈ Gau(E)
and ∇ ∈ A(E,L) implies immediately that Â(E,L) is invariant under the action
of the gauge group Gau(E).

With these preliminaries, we can introduce the object of real interest for us. The
moduli space
(20) B(E,L) = A(E,L)/Gau(E)
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of L-connections on E is the set of all gauge equivalence classes of elements of
A(E,L) modulo the action of Gau(E). Similarly, the orbit space of Â(E,L) under
the action Gau(E) is the moduli space

(21) B̂(E,L) = Â(E,L)/Gau(E)
of irreducible L-connections on E.

Given ϕ ∈ Gau(E), the transformed L-connection ∇ϕ can be clearly written as

(22) ∇ϕ = ∇+ (idL∗ ⊗ ϕ) ◦ ∇End(E)ϕ−1 = ∇−∇End(E)ϕ ◦ ϕ−1 ,

where the last equality follows by differentiating the identity ϕ ◦ ϕ−1 = idE .
Similarly, for the covariant derivative we get

(23) (∇ϕ)ξ = ∇ξ + ϕ ◦ ∇End(E)
ξ ϕ−1 = ∇ξ −∇End(E)

ξ ϕ ◦ ϕ−1 ,

where ξ ∈ XL(M). More generally, if we fix some L-connection ∇0 and express
another L-connection ∇ as ∇ = ∇0 + α, then

(24) ∇ϕ = ∇0 + (idL∗ ⊗ ϕ) ◦ ∇End(E)
0 ϕ−1 + (idL∗ ⊗ ϕ) ◦ α ◦ ϕ−1 ,

hence, writing ∇ϕ = ∇0 + αϕ, we have

(25) αϕ = (idL∗ ⊗ ϕ) ◦ ∇End(E)
0 ϕ−1 + (idL∗ ⊗ ϕ) ◦ α ◦ ϕ−1 .

Remark. If we define the reduced gauge group Gau(E)r by

(26) Gau(E)r = Gau(E)/K∗ · idE ,
then the left action of Gau(E) on A(E,L) factors trough an action of the reduced
gauge group Gau(E)r, since K∗ · idE acts trivially on A(E,L). The set Â(E,L) of
all irreducible L-connections is the maximal subset of A(E,L) with the property
that the reduced gauge group Gau(E)r acts on it freely. Moreover, we can write

(27) B(E,L) = A(E,L)/Gau(E)r

for the moduli space of L-connections and

(28) B̂(E,L) = Â(E,L)/Gau(E)r

for the moduli space of irreducible L-connections.

3. Moduli spaces

The moduli spaces B(E,L) and B̂(E,L) introduced in the previous section were
only sets of gauge equivalence classes of L-connections. We would like to define the
structure of a smooth manifold on these sets.

From now on, we will assume that M is a connected compact manifold. To
construct the space of gauge equivalence classes of L-connections it is the most
convenient, and standard practice, to work within the framework of Sobolev spaces.

Let E be a real or complex vector bundle over a compact manifold M , L a real or
complex Lie algebroid over M , g a Riemannian metric on M and hE , respectively
hL, an Euclidean, or a Hermitian metric, on E, respectively L. These metrics
induce metrics on E∗, End(E) ∼= E∗⊗E and furthermore on ΛkL∗⊗End(E). The
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metric g on M defines the density vol(g) of the Riemannian metric and the density
vol(g) even induces a (regular) Borel measure µg on M .

Then for each nonnegative integer `, we denote by L2
`(M,E) the vector space of

equivalence classes of Borel measurable sections (a section ψ is Borel measurable, if
ψ−1(U) is Borel measurable for any open subset U ⊂ E) whose weak derivatives of
order ≤ ` are square integrable. Thus, L2

`(M,E) are the Hilbert space completions
of Γ(M,E) with respect to the scalar product

(29) 〈ψ,ϕ〉` =
∑̀
j=0
〈∇jψ,∇jϕ〉 ,

where 〈∇jψ,∇jϕ〉 is computed using the scalar product on T ∗M⊗j⊗E. The Hilbert
space L2

`(M,ΛkL∗ ⊗ End(E)) will be denoted by ΩkL
(
M,End(E)

)
`
.

The space Ω0
L

(
M,End(E)

)
can be endowed with a scalar product given by

(30) (f1, f2) =
∫
M

tr(f1 ◦ f∗2 ) dµg

for all f1, f2 ∈ Ω0
L

(
M,End(E)

)
, where ∗ denotes the adjoint with respect to hE . If

we define the space Ω0
L

(
M,End(E)

)0 of traceless endomorphisms by

(31) Ω0
L

(
M,End(E)

)0 =
{
f ∈ Ω0

L

(
M,End(E)

)
;
∫
M

tr(f) dµg = 0
}
,

then obviously

(32) Ω0
L

(
M,End(E)

)
= Ω0

L

(
M,End(E)

)0 ⊕K · idE
and the decomposition is L2-orthogonal with respect to the scalar product (30).
The orthogonal projection pr of Ω0

L

(
M,End(E)

)
onto Ω0

L

(
M,End(E)

)0 is defined
by the following formula

(33) pr(f) = f − 1
n · vol(M)

(∫
M

tr(f) dµg
)
· idE ,

where n = rkE and vol(M) is the volume of the manifold M .
For a fixed L-connection ∇0 in A(E,L), we define Sobolev completions of the

space of L-connections, using (9), as
(34) A(E,L)` =

{
∇0 + α; α ∈ Ω1

L

(
M,End(E)

)
`

}
for ` ∈ N0. Thus A(E,L)` is an affine Hilbert space and therefore a Hilbert manifold
whose tangent space at ∇ is
(35) T∇A(E,L)` = Ω1

L

(
M,End(E)

)
`
.

Sobolev completions of the gauge group Gau(E) take a bit more work since it can not
be identified with the space of sections of a vector bundle, nevertheless Gau(E) ⊂
Ω0
L

(
M,End(E)

)
. For ` > 1

2 dimM , the Sobolev space Ω0
L

(
M,End(E)

)
`+1 consists

of continuous sections3 and using the Sobolev multiplication theorem, we get that

3Note that this is still true for `+ 1 > 1
2 dimM .
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the product ϕ · ψ = ϕ ◦ ψ in Ω0
L

(
M,End(E)

)
can be extended to a continuous

bilinear map

(36) Ω0
L

(
M,End(E)

)
`+1 × Ω0

L

(
M,End(E)

)
`+1 → Ω0

L

(
M,End(E)

)
`+1

making Ω0
L

(
M,End(E)

)
`+1 into a Banach algebra with unit idE and the subset of

all invertible elements forms an open subset. Accordingly, we define Gau(E)`+1 by

(37) Gau(E)`+1 ={
ϕ ∈ Ω0

L

(
M,End(E)

)
`+1; ∃ψ ∈ Ω0

L

(
M,End(E)

)
`+1, ϕ · ψ = ψ · ϕ = idE

}
.

Because Gau(E)`+1 is an open subset in the Hilbert space, Ω0
L

(
M,End(E)

)
`+1,

Gau(E)`+1 is a Hilbert manifold. In fact, one can show that Gau(E)`+1 is a
Hilbert–Lie group with Lie algebra

(38) gau(E)`+1 = Ω0
L

(
M,End(E)

)
`+1 .

The Lie bracket is given by an extension of the Lie bracket (14) on Ω0
L

(
M,End(E)

)
to a continuous map

(39) Ω0
L

(
M,End(E)

)
`+1 × Ω0

L

(
M,End(E)

)
`+1 → Ω0

L

(
M,End(E)

)
`+1

(with the help of Sobolev multiplication theorem in the range ` > 1
2 dimM).

This Lie bracket agrees with the commutator bracket of the Banach algebra
Ω0
L(M,End(E))`+1.
As it follows from the formula (24), the action of Gau(E) on A(E,L) extends

to an action of Gau(E)`+1 on A(E,L)` via

(40) ϕ · ∇ = ϕ · (∇0 + α) = ∇0 + ϕ ·
(
d∇0ϕ−1)+ ϕ · α · ϕ−1 ,

where α ∈ Ω1
L(M,End(E))`, d∇0 : Ω0

L

(
M,End(E)

)
`+1 → Ω1

L

(
M,End(E)

)
`

is a
continuous extension of the linear operator d∇0 defined on Ω0

L

(
M,End(E)

)
and the

multiplication · is an extension of (13) to a continuous map Ω0
L

(
M,End(E)

)
`+1 ×

Ω1
L

(
M,End(E)

)
`
→ Ω1

L

(
M,End(E)

)
`
, respectively Ω0

L

(
M,End(E)

)
`
×

Ω1
L

(
M,End(E)

)
`+1 → Ω1

L

(
M,End(E)

)
`
, in the range ` > 1

2 dimM . In this range
for `, Ω1

L

(
M,End(E)

)
`

is a topological Ω0
L

(
M,End(E)

)
`+1-bimodule.

It is easy to see that this action is a smooth map of Hilbert manifolds because, if
we expres the action (40) in local charts, we obtain (ϕ, α) 7→ ϕ·(d∇0ϕ−1)+ϕ·α·ϕ−1

and this is a composition of smooth maps (the multiplication · and the mapping
d∇0 are smooth, because they are continuous linear maps). If ∇ ∈ A(E,L)` is fixed,
the map of Gau(E)`+1 to A(E,L)` given by ϕ 7→ ϕ · ∇ has a tangent map at idE
equal to

(41) − d∇ : Ω0
L

(
M,End(E)

)
`+1 → Ω1

L

(
M,End(E)

)
`
,

where d∇ is defined as

(42) d∇γ = d∇0γ + [α, γ]
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and [·, ·] : Ω1
L

(
M,End(E)

)
`
× Ω0

L

(
M,End(E)

)
`+1 → Ω1

L

(
M,End(E)

)
`

is a conti-
nuous extension of (14) by means of Sobolev multiplication theorem in the range
` > 1

2 dimM .
Analogously to the smooth case, we define the notion of irreducibility of

L-connection. A stabilizer Gau(E)∇`+1 of any Sobolev L-connection ∇ contains the
subgroup K∗· idE of Gau(E)`+1. When Gau(E)∇`+1 = K∗· idE , we will say that the
connection ∇ is irreducible; otherwise, ∇ is reducible. We can prove the following
characterization of irreducibility.

Lemma 4. Let ∇ ∈ A(E,L)` be a Sobolev L-connection. Then the following are
equivalent:

(1) Gau(E)∇`+1 = K∗ · idE,
(2) ker d∇ = K · idE.

Proof. The proof goes along the same line as in Lemma 3, so we shall skip it. �

We will denote by Â(E,L)` the subset of A(E,L)` consisting of irreducible
L-connections. It follows from Gau(E)∇ϕ`+1 = ϕ · Gau(E)∇`+1 · ϕ−1 that notion of
irreducibility of a connection is invariant under gauge transformations.

Following an analogy with (20) and (21), we define the moduli space

(43) B(E,L)` = A(E,L)`
/
Gau(E)`+1

of L-connections on E, and similarly the moduli space

(44) B̂(E,L)` = Â(E,L)`
/
Gau(E)`+1

of irreducible L-connections on E. Each of these is assumed to have the quotient
topology and in the following, we shall show that if L is a transitive Lie algebroid
on M , then B̂(E,L)` is open in B(E,L)`.

We use notation
(45) p : A(E,L)` → B(E,L)` resp. p̂ : Â(E,L)` → B̂(E,L)`
for the canonical projections.

Remark. From now on we will assume that L is a transitive Lie algebroid, i.e.
a : L→ TM , resp. a : L→ TMC is surjective.

For α ∈ Ω1
L

(
M,End(E)

)
, the zero order operator ad(α)∗ : Ω1

L

(
M,End(E)

)
→

Ω0
L

(
M,End(E)

)
, defined as a formal adjoint of ad(α) : Ω0

L

(
M,End(E)

)
→

Ω1
L(M,End(E)), ad(α)(ϕ) = [α,ϕ], with respect to the Hermitian metric on

End(E) given by (f1, f2) 7→ tr(f1 ◦ f∗2 ), yields a map m : Ω1
L

(
M,End(E)

)
×

Ω1
L

(
M,End(E)

)
→ Ω0

L

(
M,End(E)

)
, (α,ψ) 7→ ad(α)∗(ψ), which is C∞(M,K)-ses-

quilinear. This mapping can be extended by the Sobolev multiplication theorem to
a continuous sesquilinear-linear map

Ω1
L

(
M,End(E)

)
`
× Ω1(M,End(E)

)
`
→ Ω0

L

(
M,End(E)

)
`

hence the map ad(α)∗ : Ω1
L

(
M,End(E)

)
`
→ Ω0

L

(
M,End(E)

)
`

for every α ∈
Ω1
L

(
M,End(E)

)
`

is continuous.
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Then we may write d∇ = d∇0 + ad(α) ◦ i, where i : Ω0
L

(
M,End(E)

)
`+1 →

Ω0(M,End(E)
)
`

is a compact embedding. Furthermore, we define

(d∇)∗ : Ω1
L

(
M,End(E)

)
`
→ Ω0

L

(
M,End(E)

)
`−1

as (d∇)∗ = (d∇0)∗ + i ◦ ad(α)∗, where i : Ω0
L

(
M,End(E)

)
`
→ Ω0(M,End(E)

)
`−1

is a compact embedding and (d∇0)∗ is a continuous extension of formal adjoint of
d∇0 with respect to the Hermitian metric on End(E).

For any connection ∇ = ∇0 + α, we will denote by dα the covariant derivative
d∇ and d∗α the operator (d∇)∗.

Lemma 5. For any ∇ ∈ A(E,L)`, the operator

(46)
(
d∇
)∗ ◦ d∇ : Ω0

L

(
M,End(E)

)
`+1 → Ω0

L

(
M,End(E)

)
`−1

is a Fredholm operator for all ` > 1
2 dimM .

Proof. For ∇ = ∇0 + α, we may write ∆α = d∗α ◦ dα = (d∗0 + i ◦ ad(α)∗) ◦ (d0 +
ad(α) ◦ i). Because ad(α) ◦ i and i ◦ ad(α)∗ are compact operators, i ◦ ad(α)∗ ◦
d0 + d∗0 ◦ ad(α) ◦ i + i ◦ ad(α)∗ ◦ ad(α) ◦ i is compact operator, as well. So we
need only to show that d∗0 ◦ d0 is a Fredholm operator. It is enough to show that
d∗0 ◦ d0 : Ω0

L(M,End(E)) → Ω0
L

(
M,End(E)

)
is an elliptic operator, i.e. that the

principal symbol σ2(d∗0 ◦ d0)(ξx) : End(E)x → End(E)x is an isomorphism for all
x ∈ M and ξx ∈ T ∗xM \ {0}. Obviously, σ2(d∗0 ◦ d0)(ξx) = σ1(d∗0)(ξx) ◦ σ1(d0)(ξx)
and this is an isomorphism if and only if σ1(d0)(ξx) is an isomorphism. But
σ1(d0)(ξx) = a∗(ξx)⊗, i.e. the symbol is the tensor multiplication by a∗(ξx), hence
it is an isomorphism, if a∗(ξx) 6= 0. Thus σ2(d∗0 ◦ d0) is an isomorphism for all
x ∈M and ξx ∈ T ∗xM \ {0} if a∗ is injective, or equivalently if a is surjective. This
is true because L is a transitive Lie algebroid. �

Lemma 6. For any ∇ ∈ A(E,L)`, we have an L2-orthogonal decomposition

(47) Ω1
L

(
M,End(E)

)
`

= im d∇ ⊕ ker
(
d∇
)∗

for all ` > 1
2 dimM .

Proof. Since ∆α is a Fredholm operator, dim ker ∆α < +∞ and im ∆α is a
closed subspace in Ω0

L

(
M,End(E)

)
`−1. Therefore Ω0

L

(
M,End(E)

)
`+1 = ker ∆α ⊕

(ker ∆α)⊥ is an L2-orthogonal (not L2
`+1) decomposition into closed subspaces in

Ω0
L

(
M,End(E)

)
`+1. Moreover, im ∆α is a closed subspace, thus ∆α|(ker ∆α)⊥ :

(ker ∆α)⊥ → im ∆α is a bijective continuous linear operator between Banach
spaces and, using the Banach’s Open Mapping Theorem, it follows that Gα =
(∆α|(ker ∆α)⊥)−1 is a continuous linear operator. Further, if X ⊂ Ω1

L

(
M,End(E)

)
`

denotes the closed subspace given by X = (d∗α)−1(im ∆α), then idX − dαGαd∗α|X
is a continuous linear operator and moreover im dα = ker(idX − dαGαd∗α|X). Hence
im dα is a closed subspace in Ω1

L

(
M,End(E)

)
`
.

For that reason we can write Ω1
L

(
M,End(E)

)
`

= im dα ⊕ (im dα)⊥ and this
decomposition is L2-orthogonal. On the other hand, for ϕ ∈ Ω0

L

(
M,End(E)

)
`+1
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and ψ ∈ Ω1
L

(
M,End(E)

)
`
, we have (dαϕ,ψ) = (ϕ, d∗αψ), and it follows that

(im dα)⊥ = ker d∗α. �

Lemma 7. Â(E,L)` is an open subset in A(E,L)` for all ` > 1
2 dimM .

Proof. It follows from Lemma 5 that ∆α is a Fredholm operator. Moreover, the
map

A(E,L)` → F
(
Ω0
L(M,End(E))`+1,Ω0

L(M,End(E))`−1
)
,

∇0 + α 7→ ∆α ,

where F
(
Ω0
L(M,End(E))`+1,Ω0

L(M,End(E))`−1
)

denotes the set of all Fredholm
operators between corresponding Hilbert spaces, is a continuous family of Fredholm
operators. Hence the map

∇0 + α 7→ dim ker ∆α

is an upper semicontinuous from A(E,L)` to R, see [1]. Because ker dα = ker ∆α

and dim ker dα ≥ 1, the upper semicontinuity implies that Â(E,L)` is an open
subset. �

Remark. We have just proved that Â(E,L)` is an open subset in A(E,L)`. Because
B(E,L)` is assumed to have the quotient topology and p−1(B̂(E,L)`) = Â(E,L)`,
we get that B̂(E,L)` is open.

Now, for each ∇ ∈ A(E,L)` and for each ε > 0, let us consider the Hilbert
submanifold

(48) O∇,ε =
{
∇+ α; α ∈ Ω1

L

(
M,End(E)

)
`
, (d∇)∗α = 0, ‖α‖` < ε

}
of the Hilbert manifold A(E,L)`. It clearly satisfies

(49) T∇(O∇,ε) = ker(d∇)∗.

First note that if ∇ ∈ Â(E,L)`, we may take ε small enough to ensure O∇,ε ⊂
Â(E,L)`, because Â(E,L)` is open in A(E,L)`. Next, we define the reduced gauge
group Gau(E)r

`+1 by

(50) Gau(E)r
`+1 = Gau(E)`+1

/
K∗ · idE .

Because K∗· idE is a normal Hilbert–Lie subgroup of Gau(E)`+1, Theorem 1 below
implies that the reduced gauge group is a Hilbert–Lie group with Lie algebra

(51) gau(E)r
`+1 = Ω0

L

(
M,End(E)

)0
`+1 ,

where the Lie bracket descends from the one on gau(E)`+1. Moreover, if

(52) q : Gau(E)`+1 → Gau(E)r
`+1 = Gau(E)`+1

/
K∗ · idE

denotes the canonical projection, then q is a smooth Gau(E)`+1-equivariant map
and any map f : Gau(E)r

`+1 → X is smooth if and only if f ◦ q : Gau(E)`+1 → X
is smooth, where X is a smooth Banach manifold.
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Theorem 1. Let G be a Banach–Lie group over K with Lie algebra g and suppose
that N is a normal Banach–Lie subgroup over K of G with Lie algebra n. Then
G/N is a Banach–Lie group with Lie algebra g/n in a unique way such that the
quotient map q : G→ G/N is a smooth map. Moreover, for any Banach manifold
X a map f : G/N → X is smooth if and only if f ◦ q is smooth.

Proof. See [5], [4] and [3]. �

Theorem 2. B̂(E,L)` is a locally Hausdorff Hilbert manifold and p̂ : Â(E,L)` →
B̂(E,L)` is a principal Gau(E)r

`+1-bundle for ` > 1
2 dimM .

Proof. Consider the smooth map of Hilbert manifolds

Ψ∇ : Gau(E)r
`+1 ×O∇,ε → Â(E,L)` ,(53)

Ψ∇(ϕ,∇+ α) = ϕ · (∇+ α) ,(54)

then the tangent map at (idE ,∇) equals to

T(idE ,∇)Ψ∇ : Ω0
L

(
M,End(E)

)0
`+1 ⊕ ker(d∇)∗ → Ω1

L

(
M,End(E)

)
`
,(55) (

T(idE ,∇)Ψ∇
)
(γ, β) = −d∇γ + β .(56)

It follows from the Lemma 6 that T(idE ,∇)Ψ∇ is surjective. Moreover, because ∇ is
assumed to be irreducible, T(idE ,∇)Ψ∇ is injective. Hence by the Banach’s Open
Mapping Theorem T(idE ,∇)Ψ∇ is an isomorphism. Therefore the inverse function
theorem for Banach manifolds implies that Ψ∇ is a local diffeomorphism near
(idE ,∇). Consequently, there is an open neighborhood U∇ of ∇ in Â(E,L)` and
an open neighborhood NidE of idE in Gau(E)r

`+1 such that
(57) Ψ∇ : NidE ×O∇,ε → U∇
is a diffeomorphism for sufficiently small ε > 0.

Next we show that, for ε small enough, the map p∇,ε = p|O∇,ε : O∇,ε → B̂(E,L)`
is injective. We have to show that if for two elements ∇+ α1,∇+ α2 ∈ O∇,ε there
exists a gauge transformation ϕ ∈ Gau(E)`+1 such that
(58) ϕ · (∇+ α1) = ∇+ α2 ,

then α1 = α2. First observe that (58) is equivalent to

(59) d∇ϕ = ϕ · α1 − α2 · ϕ .

Next, because Ω0
L

(
M,End(E)

)
`+1 = ker d∇ ⊕ (ker d∇)⊥ is an L2-orthogonal de-

composition, we can write ϕ = c · idE + ϕ0, where c ∈ K and ϕ0 ∈ (ker d∇)⊥.
Furthermore, im d∇ is a closed subspace in Ω1

L

(
M,End(E)

)
`
, hence we get by the

Banach’s Open Mapping Theorem that
(60) d∇ : (ker d∇)⊥ → im d∇

is an isomorphism of Hilbert spaces. It means that it is a lower bounded operator,
i.e. there exists a positive constant c1 such that
(61) ‖d∇ψ‖` ≥ c1‖ψ‖`+1
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for all ψ ∈ (ker d∇)⊥. Thus we may write

(62) c1‖ϕ0‖`+1 ≤ ‖d∇ϕ0‖` =
‖d∇ϕ‖` = ‖ϕ · α1 − α2 · ϕ‖` ≤ 2 c̃ · ε · (|c| · ‖idE‖`+1 + ‖ϕ0‖`+1) ,

where we used the fact ‖ψ · α‖`+1 ≤ c̃ · ‖ψ‖`+1‖α‖`, respectively |‖α · ψ‖`+1 ≤
c̃ ·‖α‖`‖ψ‖`+1, for all ψ ∈ Ω0

L

(
M,End(E)

)
`+1 and α ∈ Ω1

L

(
M,End(E)

)
`
. It implies

that

(63) ‖ϕ0‖`+1 ≤
2 c̃ · |c| · ε
c1 − 2 c̃ · ε ‖idE‖`+1

for ε < c1
2c̃ . If c = 0, then we obtain immediately ‖ϕ0‖`+1 = 0, thus ϕ = 0 and this

is a contradiction. Because c 6= 0, we get

(64) ‖c−1 · ϕ− idE‖`+1 = 1
|c|
‖ϕ0‖`+1 ≤

2 c̃ · ε
c1 − 2 c̃ · ε ‖idE‖`+1 ,

hence for ε small enough is ϕ near idE in Gau(E)r
`+1, i.e. ϕ ∈ NidE . And if we use

that Ψ∇ is injective, we obtain α1 = α2.

Let U∇,ε = p∇,ε(O∇,ε), then U∇,ε is open in B̂(E,L)`. It is easy to see that
p−1(U∇,ε) = λ(Gau(E)`+1 ×O∇,ε), where λ : Gau(E)`+1 × Â(E,L)` → Â(E,L)`
is the left action, is an open subset in Â(E,L)`. The map

Ψ∇ : Gau(E)r
`+1 ×O∇,ε → p−1

∇,ε(U∇,ε) ,(65)

Ψ∇(ϕ,∇+ α) = ϕ · (∇+ α)(66)

is surjective because p−1(U∇,ε) = λ(Gau(E)`+1 × O∇,ε), the injectivity follows
from the previous considerations and from the fact that the action of Gau(E)r

`+1
on Â(E,L)` is free. We will show that it is in fact a diffeomorphism of Hilbert
manifolds.

For any ϕ ∈ Gau(E)r
`+1, we find an open neighborhood W of ϕ such that

Ψ∇|Lϕ−1 (W)×O∇,ε is a diffeomorphism, where Lϕ−1 is the left translation by ϕ−1

in Gau(E)r
`+1. In particular, we can take W = Lϕ(NidE ). Further, if λ̃ϕ denotes

the left multiplication by ϕ in Â(E,L)`, then we have

(67) Ψ∇|W×O∇,ε = λ̃ϕ ◦Ψ∇|NidE×O∇,ε ◦ (Lϕ−1 × idÂ(E,L)`)|W×O∇,ε ,

which is a diffeomorphism.

Now to show that p̂ : Â(E,L)` → B̂(E,L)` is a principal Gau(E)r
`+1-bundle over

a Hilbert manifold, we only need to glue together the local charts σ∇ : U∇,ε → O∇,ε,
σ∇ = p−1

∇,ε. Consider the smooth map

(68) g∇ = pr ◦Ψ−1
∇ : p−1

∇,ε(U∇,ε)→ Gau(E)r
`+1 ,

where pr: Gau(E)r
`+1 ×O∇,ε → Gau(E)r

`+1 is the projection. Then for any ∇′ ∈
Â(E,L)` with p(∇′) ∈ U∇,ε we have

(69) σ∇
(
p(∇′)

)
=
(
g∇(∇′)

)−1 · ∇′ .
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Hence it is easy to see that we obtain

(70) σ∇ ◦ σ−1
∇′ (∇

′ + α) = σ∇
(
p(∇′ + α)

)
=
(
g∇(∇′ + α)

)−1 · (∇′ + α)
over σ∇′(U∇′,ε′ ∩ U∇,ε), and this is clearly smooth in α. �

In this paper we have considered the spaces of irreducible Lie algebroid connec-
tions for a transitive Lie algebroid over a connected compact manifold. The next
step would be to investigate the moduli spaces of flat L-connections in the sub-
sequent work. These moduli spaces are more interesting from the viewpoint of
applications in physics, especially in mirror symmetry, as was already mentioned
in the introduction.
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