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Czechoslovak Mathemat ical Journal , 46 (121) 1996, P r a h a 

TERNARY STRUCTURES AND PARTIAL SEMIGROUPS 

VITEZSLAV NOVAK, Brno 

(Received November 17, 1993) 

Transitive ternary structures and, especially, cyclically ordered sets can be trans­

formed into other structures: into quasi-ordered sets ([3]), double binary structures 

([4]), F'-systems ([5]) etc. In this paper we describe a relation between transitive 

ternary structures and partial semigroups. 

1. C-SEMIGROUPS 

1.1. Let G T-: 0 be a set, let • be a partial binary operation on G which has the 

following property: 

let x,y,z G G; if one of products (x-y) -z, x- (y -z) or both products x-y, y-z are 
defined then both products (x-y)-z, x-(y-z) are defined and (x-y)-z = x-(y-z). 

Then the structure G = (G, •) is called a partial semigroup. 

1.2. A homomorphism of partial semigroups is defined in the obvious way. Thus, 

if G = (G, •), H = (H, •) are partial semigroups and / : G -> H, then / is a homo­

morphism of G into H if 

x,y G G and x • y is defined => f(x) • f(y) is defined in H and f(x-y) = 

= / (*) • f(y) 
A bijective homomorphism of G onto H such that / _ 1 is a homomorphism of H 

onto G is an isomorphism of G onto H; G and H are isomorphic if there exists an 
isomorphism of G onto H. 

Let us note that a bijective homomorphism / of G onto H is an isomorphism iff 
x, y G G, f(x) • f(y) is defined => x • y is defined. 

1.3. Let G = (G, •) be a partial semigroup, e G G. The element e is a unit in G 
if the following is satisfied: 
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if e • re is defined for some x e G then e • x = x, if y • e is defined for some y G G 

then y • e = y. 

Let us denote by E(G) the set of all units of a partial semigroup G . In the sequel 
we shall deal with partial semigroups G = (G, •) with the following property: 

(*) for any x G G there are units e, e' G F?(G) such that e • ;v is defined and x • e' 

is defined. 

We shall need some trivial and well known properties of partial semigroups; we 

present them with proofs as the proofs are very simple. 

1.4. Lemma. Let G = (G, •) be a partial semigroup satisfying (*). Then for any 
x G G there exists just one unit e G E(G) such that e • x is defined and there exists 
just one unit e' G E(G) such that x • e' is defined. 

P r o o f . Let e\,e-2 G E(G) and e\ • x, e^ • x be defined. Then e2 • x = x so that 
e\ -(e2-x) is defined. Hence (ei -e<i)-x, thus e\ -e<i is defined and then e\ -e2 = e\ = eo-
Similarly the second assertion. D 

1.5. Let G = (G, •) be a partial semigroup satisfying (*) and x G G. We denote 
by CL(X) the unit e G E(G) for which e-x is defined and by eR(x) the unit e' G E(G) 
for which x • e' is defined. eL(x) will be called the /e/i -urn'/; Of x, eR(x) the right wmt 
Of x. 

Thus e^, e# are mappings G -> 5 (G) . 

1.6. Lemma. Let G be a partial semigroup satisfying (*) and e G -5(G). Then 
eL(e) = eR(e) = e. 

P r o o f . We have eL.(e) • e = e = eL(e) and similarly e = eR(e). D 

1.7. Lemma. Let G = (G, •) be a partial semigroup satisfying (*), let x,y G G 
and let x • y be defined. Then CL(X • y) = eL(x), eR(x • y) = eR(y). 

P r o o f . Denote eL(:r • y) = e. As e • (x • y) is defined, (e • x) • y and therefore 

e • x is defined. Then e = eL(x). Similarly for the right unit. D 

1.8. Lemma. Let G = (G, •) be a partial semigroup satisfying (*) and x,y G G. 

Then x • y is defined iff eR(x) = CL(y)-

P r o o f . If x-y is defined then (x-eR(x))-y is defined, thus x- (eR(x) -y) and also 

eR(x) • y is defined which implies eR(x) = eL(y). Conversely, let eR(x) = eL(y) = e. 

Then 
both x • e and e • y are defined, thus (a • e) • y = z • y is defined. D 
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We shall study partial semigroups G = (G, •) satisfying (*) with the further prop­
erty: 

(**) the pair of mappings {eL,eR} distinguishes elements of G, i.e. 

x,y € G, eL(x) = eL(y), eR(x) = eR(y) = > x = y. 

Partial semigroups in which (*), (**) hold will be called c-semigroups. 

2. TERNARY STRUCTURES 

2.1 . Let G 7-= 0 be a set, let t be a ternary relation on G. The pair G = (G, t) will 
be called a ternary structure. A ternary relation t on G (and the structure (G,t)) is 
called transitive if 

x,y,z,u G G, (x,y,z) G t, (z,y,u) G * = > (x,y,u) G *. 

Let (G,c) be a ternary structure and .r G G. We say that x is an isolated element if 
neither (re, y,z) e t nor (y, x, 2) G £ nor (y, z,x) e t for any y,z G G. 

2.2. Let G = (G, l), H = (H,t') be ternary structures and /': G -> H'. f is a 
homomorphism of G into H if 

x,y,* G G, (x,y,z) G * ==> (f(x)J(y),f(z)) G *'. 

A homomorphism / of G into H is strong if it is surjective and 

u,v,w G H, (u,v,w) G t' = > there exist x G f~1(u), y G / - 1(^)> 2 G f~l(w) 

with (x,y,z) G l. 
A bijective strong homomorphism of G onto H is an isomorphism. Ternary struc­

tures G, H are isomorphic if there is an isomorphism of G onto H. 

2.3. Let (G,t) be a ternary structure. We put 

r(t) = {(x,y,x) G G3; there is z G G with (x,y,z) G l or (z,y,x) G l} 

and denote c(£) = f U r(£) 

2.4. Lemma. Let (G,t) be a transitive ternary structure. Then the structure 
(G,c(t)) is transitive, as well. 

P r o o f . Let (x,y,z) G c(t), (z,y,u) G c(t). If (x,y,z) G t, (z,y,u) G l then 
(x, y,u) e t C c(t). If (x, y, z) G c(t) — t then z = a: and thus (T, y, u) G c(l). Similarly 
in the case (z,y,u) G c(t) — t. Hence c(t) is a transitive relation. • 
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2.5. Let (G,t) be a transitive ternary structure. We define a partial binary 

operation • on the set c(t) as follows: 

for mi = (x\,y\,z\) G c(t), m2 = (x2,y2,z2) G c(t) the product mi • m2 is 
defined iff x2 = z\, y2 = y\; in that case mi • m2 = (x\,y\,z2). 

In other words, we put 

(x,y,z) • (z,y,u) = (x,y,u). 

2.6. Theorem. Let (G,t) be a transitive ternary structure. Then G = (c(t), •) 
is a c-semigroup in which E(G) = r(t) and eL(m) = (x,y,x), eR(m) = (z,y,z) for 
any m = (x,y,z) G c(t). 

P r o o f . Let m\,m2,ms G c(t) and suppose that (mi - m2) - m3 is defined. Then 
mi = (x,y,z), m2 = (z,y,u) for suitable x,y,z,u G G and m\ - m2 = (x,y,u). 

Thus 7773 = (u,y,v) for a suitable v G G so that (mi • m2) • 7773 = (x,y,v). We see 
that m2 • 7773 is defined and m2 • 7773 = (z,y,v) so that mi • (?772 • 7773) is defined and 
mi • (m2 -7773) = (x,y,v) = (m\ -m2) -7773. Similarly in the case when mi • (m2 -7773) is 
defined. Let both mi-m2 and 77i2-7773 be defined. Then mi = (x,y,z),m2 = (z,y,u), 

7773 = (u,y,v); thus m\-m2 = (x,y,u) and (mi -m2) -777,3 is defined. Hence (c(t), •) is 
a partial semigroup. If e G r(t) then e = (x,y, x) so that if e • m is defined for some 
m G c(t) then 777 = (x, y, z) and e • m = (x,y,z) = m. Similarly if m • e is defined for 
some m G c(t). Thus e G E(G) and r(t) C F(G). 

Let 777 = (x,y,z) G c(£). Then e = (x,y,x) G r(£), thus e G F"(G) and e • m = 
(x,y,x) • (a;,2/,2) = (x,y,z) = m. We see that e = eL(m); similarly e' = (z,y,z) = 

efi(m). Thus the partial semigroup G = (c(t),-) satisfies (*) and eL(m) = (x,y,x), 

eR(m) = (z,y,z) for any 777 = (x,y,z) G c(t). 

We show E(G) = r(t). If e G F'(G) then eL(e) = e by 1.6 so that e • e is defined 
and e • e = e. If e = (x,y,z) then necessarily e = (z,y,u) so that z = x and 
e = (x,y,x) G r(tj). Thus E(G) C r(t), which implies E(G) = r(t). 

Let mi = (x\,y\,z\) G c(t), m2 = (x2,y2,z2) G c(t) and eL(m\) = eL(m2), 

eR(m\) = eR(m2). Then (x\,y\,x\) = (a;2,2/2,^2) so that ;Ti = x2, y\ = y2 and 
(-1,2/1,^1) = (^2,2/2, ^2) so that z\ = z2. Hence mx = 7772 and the pair of mappings 
{eL,eR} distinguishes elements of c(t), i.e. (c(t), •) is a c-semigroup. • 
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3. MAPPINGS S AND T 

3.1. Let G = (G,t) be a transitive ternary structure. Denote by S(G) = (c(t), •) 
the c-semigroup constructed in 2.5. If T is the class of all ternary structures and C 
is the class of all c-semigroups then 5 is a mapping of T into C: 

S:T-^C. 

3.2. Let M = (M, •) be a c-semigroup. Let us define a binary relation g(M) on 
the set E(M) as follows: 

(e,e') G O(M) <£> there is m G M with e = ez,(m), e' — e^(m). 

3.3. Lemma. Let M = (M, •) be a c-semigroup. Then the relation O(M) on 

E(M) is reflexive and transitive. 

P r o o f . If e G E(M) then eL(e) = eR(e) = e by 1.6 and (e,e) G O(M) by 
definition. Let e i ,e 2 ,e 3 G F(M), (ei,e2) G O(M), (e2,e3) G O(M). Then there exist 
77i,7i G M with ei = eL(m), e2 = e^(m), e2 = e ^ n ) , e3 = eR(n). By 1.8 the product 
77i • ri is defined and by 1.7 e^(m • TI) = ei(m) — e\, eR(m • TI) = CR(U) — e3. Thus 
(ei,e3) GO(M), D 

3.4. The relation O(M) on .E(M) need not be symmetric so that it is not an 
equivalence relation in general. Let 0 (M) be the equivalence relation on E(M) 
generated by O(M). Thus (e,e;) G 0(M) iff there exist a positive integer 71 and 
elements e\,... , e n G E(M) such that ei = e, en = e' and (ei,ei+i) G O(M)UO(M)_1 

for all i = 1 , . . . , 71 — 1. 

3.5. Let M = (M, •) be a c-semigroup, O(M) the binary relation on E(M) defined 
in 3.2 and 0(M) the equivalence relation on E(M) generated by O(M). Put 

G = £ ( M ) U £ ( M ) | Q ( M ) 

and define a ternary relation t on G: 

(x,y,z) et&x,z£ E(M),y e E(M)\Q^My(x,z) G O(M) and 

x,z G y. 

We denote by F(M) the ternary structure (G,t). 

3.6. Theorem. Let M = (M, •) be a c-semigroup. Then T(M) = (G,t) is a 

transitive ternary structure in which t = c(t). 
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P r o o f . Let x,y,z,u G G, (x,y,z) G t, (z,y,u) G t. Then x,z,u G F(M), 

V € S ( M ) l e ( M ) ' ( x ' z ) G £ ( M ) ' ^ z G 2/ a n d C M O G £>(M)> *.u G y. By 3.3 
(z,ix) G O(M) and x,u £ y. Thus (x,y,u) G l and l is transitive. Let x,H,^ G G. 
(x,y,z) G f so that x,z G F(M), ?/ G F(M)|0^M), (x,z) G O(M), x, z G g. By 3.3 
(x,x) G O(M) and thus (x,y,x) G l; similarly (£,g,^) G l. Hence c(l) = t. • 

3.6 implies that F is a mapping of C into T, i.e. 

T : C - > T . 

3.7. Theorem. Let M = (M, •) be a c-semigroup. Then M is isomorphic to 
(SoT)(M). 

P r o o f . Denote T(M) = (G,l) where G = F(M) U £ ( M ) | 0 / M ) and (S o 
F)(M) = S(G,t) = (c(l),-). By 3.6 we have c(l) = l. Let us define a mapping / : 
M -> c(l): m G A4 = > / (m) = (eL(m),y,eR(m)) where H G F^M)^/^ is such 
an element that eL(m) G y1 eR(m) G y. By the definition of the relation t we have 
f(m) G l = c(£) so that / is really a mapping of M into c(t). Let (x,y,z) G c(f). 
Then a;,z G -E(M), H G - ^ ( M ) | Q / M \ , x,z e y and (rr, z) G O(M), which means that 
there exists m G M with x = eL(m), z = eR(m). Then by definition (x.y,~) = f(m) 

and the mapping / is surjective. 

Let m,n G M and /(?n) = /(??). Then (eL(m),y,eR(m)) = (eL(n), c, eR{n)) 

where eL(m) G H, eL(n) G z, thus eL(m) = eL(?i), eR(m) = eR(n). Hence m = n, 
M being a c-semigroup. Thus / : M -» c(£) is injective and also bijective. 

Let m,n G M and let m • ?̂  be defined. By definition f(m) — (eL(m),y,eR(m)) 

where eL(m),eR(m) G H and f(n) = (eL(n),2,c^(n)) where e L ^ ) , eR(n) G c. As 
??i • n is defined, by 1.8 we have eR(m) = eL(n). This implies H = z so that /(//) = 
(eR(m),y,eR(n)). Hence the product /(??i) • f(n) is defined in (c(t),-) and /(///) • 
/(?i) = (eL(m),y,eR(n)). By 1.7 we have eL(??i • ??) = eL(m), eR(m • n) = eR(n) 

and further eL(m • n) = eL(m) G u, e#(?7i • ?i) = e # ^ ) G ~ = .//. Thus / (m • //) = 
(eL(m'ii),y,eR(m-n)) = (eL(m),y,eR(;n)) — f(m)-f(n) and / is a homomorphism 
of M onto (5oF ) (M) . 

Let m,n G M and let the product f(m) • f(n) be defined in (5oF)(M) = (c(t), •). 
As / (m) = (eL(m),y,eR(m)) with eL(m),eH(m) G y, f(n) = (eL(n).z, eH(n)) with 
eL(n),eR(n) G z, we necessarily have y — z, eR(m) — eL(n). By 1.8 we see that ///•// 
is defined in M and thus f: M -> c(t) is an isomorphism of M onto (S o F)(M). 

• 
3.8. Theorem. Let G = (G, t) be a transitive ternary structure without isolated 

elements and such that c(t) = t. Then there exists a strong homomorphism of the 

structure (T o S)(G) onto the structure G. 
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P r o o f . By definition we have 5(G) = (c(t),-) = (t,-); let us denote by M 

this c-semigroup. Then (T o S)(G) = T(M) = (E(M) U E(M)\Q,Myt') where 

(u,v,w) G t' & u,iv G E(M), v G E(M)\Q^^\, u,w £ v and there exists met with 

u = cL(m), w = eR(m). If m = (x,y,z) then by 2.6 we have eL(m) = u = (x,y,x), 

eR(m) = w = (z,y,z). Let us define a mapping / : E(M) U E(M)\Q/-^\ -> G: 

if u G E(M), u = (x, y, x) then f(u) = x 

if u G F'(M)|0/M\ and if (x,y,x) G H for some (x,y,x) G F'(M) 

then /(H) = y. 

We must show that the definition of / is correct, i.e. the following implication holds: 

if u G £ ( M ) | e ( M ) ' O^S/i.^i) Gu, (^2,2/2,^2) G H then 2/1 = 2/2. 

Assume (#i,2/i,#i) € u, (x2,y2,x2) G H. Then either (xi,yi,xi) = (x2,y2,x2) which 

implies 2/1 = 2/2 or there exists a finite sequence (px, qx, px), (p2, q2, p2),..., (pn, qn, pn) 

of elements in E(M) such that (pi,qi,Pi) = (2,1,2/1,^1), (pn,qn,Pn) = (x2,y2,x2) 

and ((pi,qi,Pi), (pi+i,qi+i,pi+i)) G D(M)UD(M)_1 for i = 1 , . . . , n - 1. It suffices to 

show that in this case qi = qi+l for i = 1 , . . . , n - l . If ((p^, qi,Pi), (pi+i,qi+i,pi+\)) G 

O(M) then there exists m = (p,q,r) G ̂  with (pi,qi,Pi) = eL(m), (p l + i ,O i + i ,p l + 1) = 

Ci?(77i). Then by 2.6 (pi,qi,Pi) = (p,q,p), (pi+i,qi+i,pi+i) = (r,O,r) and q{ = q = 

Qi+\ • 

If ((pi,qi,Pi)),(pi+i,qi+i,Pi+i)) G O(M)-1 then ((pi+i- ^i+i,Pi+i)- (Pi, 9i,Pi)) £ 
D(M) and O;2+i = Of as well. Thus Oi = . . . = gn, i.e. 2/1 = H2-

Let x e G. As G has no isolated elements there are y,z G G such that (x,y,z) G l 

or (;:, 2/, .v) G t or (u, x, 2) G L In the first and second cases we have (x, y, x) G r(t) C t 

and by 2.6 (x,y,x) G F(M). Then by definition f(x,y,x) = x. In the third case 

(y,x,y) G r(t) C l and (y,x,y) G F(M). If H G -^(M)|0(M) 1S s u c n a n e l e m e n t that 

(y,x,y) G H then/(H) = x by the definition of / . T h u s / : E (M)UF (M) | 0 / M N -> G 

is surjective. 

Let u,v,w G £ (M) U _ E ( M ) | 0 / M \ , (H,U,H;) G lr. Then H,iv G -E(M), TJ G 

F(M)|0(M), u,w G D and there exists m = (x,y,z) G t such that H = eL(m), 

w = eR(m). Thus H = (:v,2/,x), H; = (z,y,z) and /(H) = x, f(w) = z, f(v) = y by 

definition of / . Hence (/(H), f(v), f(w)) G t and / is a surjective homomorphism of 

(To5) (G) onto G. 

Let x,y,z G G, (x,y,z) G i. Then (x,y,x) G 6, (z,y,z) G ̂  and (x,y,x) G -E'(M), 

(z,y,z) G -E'(M). If we denote (x,y,z) = m, (x,y,x) = u, (z,y,z) = w and if 

v G ^ ( M ) | 0 f M ) ^s s u c n a n element that H G U then H = eL(m), w = eR(m) and 

(H, HO G O(M), H,uj G D. Then (u,v,w) G l7 by the definition of t' and at the same 
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t ime f(u) = x, f(v) = y, f(w) = z. Hence the homomorphism / of (T o 5 ) ( G ) onto 

G is strong. D 

4. E X A M P L E S 

4 .1 Let G = {a;,y,2,ix}, * = {(x,y,z),(z,y,u),(x,y,u),(x,y,x),(z,y,z),(n,y,u)}, 

G = (G, t). We construct (F o 5 ) ( G ) . 

Clearly c(£) = £ and G contains no isolated elements. Let us denote mi = (x, y, z), 

m 2 = (z,y,u), m 3 = (x,y,u), ex = (x,y,x), e2 = (z,y,z), e3 = (u,y,u). By 2.5 and 

2.6 in the c-semigroup S(G) = M we have: 

m i • m 2 = m 3 , 

ei -= e L ( m i ) = e L (m 3 ) , 

e2 = eR(mi) = eL (m 2 ) , 

e3 = e^(m 2 ) = eR(m3). 

Thus £ ( M ) = { e i , e 2 , e 3 } and by 3.2 (e i ,e 2 ) G O(M), (e 2 , e 3 ) G O(M), (e i , e 3 ) G 

O(M) so tha t 0 ( M ) = F(M)2, # ( M ) | 0 ( M ) = {{e i , e 2 , e 3 }} and (T o S)(G) = 

( { e i , e 2 , e 3 , { e i , e 2 , e 3 } } , r ' ) , w h e r e hy 3 - 5 

( e i , { e i , e 2 , e 3 } , e 2 ) G £', 

( e 2 , { e i , e 2 , e 3 } , e 3 ) G £', 

( e i , { e i , e 2 , e 3 } , e 3 ) G t', 

( e i , { e i , e 2 , e 3 } , e i ) G £', 

( e 2 , { e i , e 2 , e 3 } , e 2 ) G £', 

( e 3 , { e i , e 2 , e 3 } , e 3 ) G £'. 

The mapping / : E(M) U£(M) |@(]yi ) ~> G constructed in the proof of Theorem 3.8 

is 

/ ( e i ) = x, f(e2) = *, / ( e 3 ) = u, / ( { e i , e 2 , e 3 } ) = H 

and it is an isomorphism of (T ° S)(G) onto G. 

4 . 2 . Let G = {x,y,z}, t = {(x,y,z),(y,z,x),(z,x,y),(x,y,x),(z,y,z),(y, z,y), 

(x,z,x),(z,x,z),(y,x,y)},G^(G,t);weznd(ToS)(G). 

As in 4.1, we have c(t) = t an<^ G contains no isolated elements. Pu t ?7ii = 

(x,y,z), m2 = (y,z,x), m 3 = (z,x>y), ex = (x,y,x), e2 = ( z , y , z ) , e3 = (y,z,y), 

e4 = (x,z,x), e5 = (z,a:,2;), e6 = (V^x^y)-

118 



In the c-semigroup 5(G) = M we have 

. e i = e L ( m i ) , e2=eR(m1), e 3 = e L ( m 2 ) , e4 = eR(m2), e5 = eL(m3), e6 = eR(m3) 

and the product in M is defined only with the corresponding units. Further we have 

(ei,e2) G O(M), (e3,e4) G O(M), (e5,e6) G O(M) 

so that 

£ : ( M ) | 0 ( M ) = {{ e i^2},{e3 ,e4},{e5 ,e6}} 

and 

(To5) (G) = T(M) = ({ei,e2 ,e3 ,e4 ,e5 ,e6 ,{ei ,e2},{e3 ,e4},{e5 ,e6}},t /) 

where 

(ei,{ei,e2},e2) G t', 

(e3,{e3,e4},e4) G t', 

(e5,{e5,e6},e6) G t', 

(ei,{ei,e2},ei) G t'', 

(e2 ,{ei,e2},e2) G t', 

(e3,{e3,e4},e3) G t', 

(e4,{e3,e4},e4) G t1, 

(e5,{e5,e6},e5) G t', 

(e6,{e5,e6},e6) G t'. 

As G has three elements and the carrier of the structure (To5)(G) has nine elements, 
the structures G and (T o 5)(G) cannot be isomorphic. The strong homomorphism 
/ of (T o 5)(G) onto G constructed in the proof of Theorem 3,8 has the form 

/(ei) = x, /(e2) = z, /(e3) = y, /(e4) = x, /(e5) = z, /(e6) = y, 

/({ei,e2}) = y, /({e3 ,e4}) = z, /({e5 ,e6}) = x. 

4 .3. Problem. Find necessary and sufficient conditions for a transitive ternary 
structure G = (G, t) to be isomorphic to (T o 5)(G). 
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