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1. BASIC NOTIONS 

A weakly associative lattice (wa-lattice) is an algebra A = (A, V, A) with two binary 
operations satisfying the identities 

(I) a\/ a = a\ a A a = a. 

(C) a\Jb = b\J a\ a A b = b A a. 

(Abs) a V (a A b) = a; a A (a V b) = a. 

(WA) ((a A c) V (b A c)) V c = c; ((a V c) A (b V c)) A c = 0. 

This notion has been introduced by E. Fried in [3] and by H. L. Skala in [11] and 
[12]. The notion of a ma-lattice is then a generalization of that of a lattice because the 
identities of associativity of the operations V and A are replaced by weaker conditions 
of weak associativity (WA). Nevertheless, similarly as for lattices, we can define also 
for ma-lattices a binary relation ^ on A such that 

Va, b £ A; a ^ b <=>c// a A b = a. 

This relation is reflexive and antisymmetric and every two-element subset {a, b} C A 
has the join sup{a, b} = a V b and the meet inf {a, b} = a A b in A. Moreover (also as 
for lattices), each such binary relation defines on A a structure of a ma-lattice. (So, 
we can equivalently view any ma-lattice as a set with a binary relation.) 

A tournament, i.e. a set A / 0 with a reflexive and antisymmetric binary relation 
^ such that 

Va, b G A; a ^ b or b ^ a, 

is a special case of a ma-lattice. 
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If (G, + ) is a group and (G, V, A) = (G, ^ ) is a ma-lattice and if for any a, b,c,d E A 

(F>v) a-r(bVc)-rd=(a-hb + d)V(a + c + d), 

then the system G = ( G , + , V, A) is called a weakly associative lattice group (wal-

group). (See [8], [9], [10]. In [12] a ma/-group is called a lre//zs-group.) 

It is evident tha t in a ma/-group the conditions 

(DA) a + (b A c) + d = (a + b + d) A (a + c + d), 

(M) a ^ b ==> c+a+d^c+b+d 

are satisfied for any a, b,c,d £ A and tha t every of these conditions is equivalent to 

(I?v). 

If for a ^va/-group G the wa-lattice (G, ^ ) is a tournament, then G is called a 

totally semi-ordered group (a to-group). 

In contrast to the situation for lattice ordered groups (/-groups) and linearly or

dered groups (O-groups) that are torsion free, there are many non-trivial finite wal-

groups and t;O-groups. 

2. T H E LATTICE O F wa/-iDEALS 

The kernels of homomorphisms of wa/-groups (i.e. wa/-homomorphisms) will be 

called wal-ideals. The ma/-ideals are special cases of ma/-subgroups, tha t means of 

such subgroups which are both subgroups and ^^/a-sul la t t ices . 

More precisely: 

P r o p o s i t i o n 1. ([8, Theorems 9 and 11], [10, Lemma 2.1].) For a normal convex 

wal-subgroup H of a wal-group G the following conditions are equivalent: 

(a) H is a wal-ideal of G. 

(b) Va, b, G H, x, y G G (x ^ a, y ^ b ==> 3c G H, x V y <J c). 

(c) Va, b,ce H, x,y <E G; x ^ a, y ^ b -=-=> (a; V y) V ce H. 

Denote by £ ( G ) the set of wa/-ideals of a wal-giou\) G. It is evident tha t £ ( G ) 

ordered by set inclusion forms a, complete lattice with the least element {0} and the 

greatest element G. 

P r o p o s i t i o n 2. If G is a wal-group, then £ (G) is a complete sublattice of the 

lattice of subgroups of the group G. 

P r o o f . It is obvious that the intersection of any system of wal-ideals of G is 

also a wa/-ideal of G. Moreover, wa/-groups are ft-groups in the sense of Kurosch, 
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hence by [6, III.2.4], the wal-ideal generated by a system of iva/-ideals of a wa/-group 
G coincides with the subgroup of the additive group of G generated by these ideals 
as subgroups. • 

Let us show that the lattice £(G) is distributive. For this, we will use known 
properties of varieties of algebras. The class of all wa/-groups is by definition a variety 
of algebras of type (-h,0, — (•), V, A) of signature (2,0,1,2,2). Recall that a variety 
of algebras is called arithmetical if it is congruence distributive and permutable. 
(See [2].) 

Theo rem 3. The variety of all wal-groups is arithmetical. 

P r o o f . By [2, Theorem II. 12.5], the variety V is arithmetical if and only if there 
is a ternary Mal'cev term m{x,y,z) such that 

m(x, y, x) = m{x, H, y) = m(y, y, x) = x 

in V. 

For the variety of ^va/-groups we can use the term 

m{x, y, z) = x - {{{x V y) A {x V z)) A {y V z)) + z, 

which is in the case of /-groups equivalent to the term used in [4, p. 231]. • 

We get, as a direct corollary, the following theorem. 

Theorem 4. The lattice of wal-ideals of any wal-group is distributive. 

3. T H E L A T T I C E O F VARIETIES O F iva/-GROUPS 

It is well known (see e.g. [4], [5], [7]) that the varieties of /-groups (considered 
in the language £ = (+,0, —(•), V, A)) form a complete dually Brouwerian lattice L 
in which the variety of abelian /-groups Jib/ is the least non-zero element. The 
variety of representable /-groups % is another important element of L because it 
is the variety generated by all linearly ordered groups. (The elements of Jii are 
precisely all subdirect sums of O-groups.) Recall that % is characterized by any of 
the following identities: 

(1) ( . r A ( - u - * + ;</)) V0 = 0, 

(2) 2{xAy) = 2xA2y. 
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It is clear that the varieties of wa/-groups considered also in the language £ form 

a complete lattice WAL, too. 

Theorem 5. The lattice WAL is distributive and contains the lattice L as a 
complete A-subsemilattice. 

P r o o f . In general, if V is an arbitrary variety of algebras, X is an infinite 
countable set, and Fx is the free algebra on X in the variety V, then the lattice of 
subvarieties of V is anti-isomorphic to the lattice FI(Fx) of fully invariant congru
ences on Fx- Since, by Theorem 3, the lattice Con(Fv) of all congruences on Fx 

is distributive and since the fully invariant congruences form a (complete) sublattice 
of Con(Fx), the lattice WAL is distributive. 

Further, by [9, Proposition 1.10] a wa/-group G is an /-group if and only if the 
identity 

(L) xA(yWz) = (xAy)V(xAz) 

is satisfied in G, therefore L C WAL. • 

Denote by Abwai the variety of abelian wa/-groups and by 3lwai the class of rep-
resentable wa/-groups (i.e. the class of ^va/-groups that are subdirect sums of to-

groups). Recall that in the case of /-groups the representable /-groups form the 
variety % and that Abi C #/. Hence there are questions what are the relations be
tween the classes Abwai and RLU(li and whether Rwai forms a variety of wa/-groups. 

To answer the first question, we will recall some notions and results of [9]. A convex 
?Ba/-subgroup H of a wal-gvoup G is called solid if it satisfies the condition (c) from 
Proposition 1. If H is a convex ^lja/-subgroup, then we can define the structure of a 
wa-lattice on the set G/iH of left cosets of G by H by 

x + H ^y + H ^=>df 3 a e H- x + a ^y. 

A solid subgroup H is called straightening, if it satisfies the following mutually equiv
alent conditions: 

(a) x, y G G, 0 ^ x A y G H => x G H or y G H. 

(b) x,y e G, x Ay = 0 => xeH or y G H. 

(c) G/iH is a tournament. 

Note that for wa/-groups, the notion of a straightening subgroup is not equivalent, 
in contrast to /-groups, to the notion of a prime subgroup, i.e. finitely irreducible 
element of the lattice of solid subgroups of G. (See [9, Remark 2.2].) 

By ([9, Theorem 2.6]) we have that a wa/-group is representable if and only if the 
intersection of all its straightening wa/-ideals is equal to {0}. 
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T h e o r e m 6. The classes Abwai and %wai are non-comparable. 

P r o o f . It is obvious tha t if G is an /-group, then G G %i if and only if G G %luai, 

hence %wai £ Abwai. 

Conversely, consider the abelian u;a/-group G = (Z, + , ^ ) , with the positive cone 

G+ = {x G G; 0 ^ ;r} = {0 ,1 , 2 , 4 , . . . , 2 n , . . . } . Since G has no straightening subroup 

different from G, we have by [9, Theorem 2.6] tha t G $%wai, thus Abwai 2 %wah 

• 
However, neither of the identities (1) and (2) characterizing %i in L gives an answer 

to the question whether %wai is a variety of u;a/-groups. 

For instance, let G = (Z3 , + , ^ ) , where G+ = {0,1}. Then 

(2 A - 2 ) V0 = 1 ^ 0 , 

2(1 A 2) = 2 7- 1 = 2- 1 A 2 - 2 , 

hence G satisfies neither (1) nor (2). But G is a lO-group, therefore G G %wai-

Nevertheless, we have 

P r o p o s i t i o n 7. The class %wai is a variety of wal-groups. 

P r o o f . We will use BirkhofFs characterization of varieties as classes of algebras 

of a given type closed under products, subalgebras and homomorphic images. For 

this, if H is a subgroup of a wa/-group G, then H ^ G will mean tha t H is a 

?Da/-subgroup of G, and H < G will mean tha t H is a normal u;a/-subgroup of G. 

a) Obviously, the product (i.e. the cardinal sum) of representable u;a/-groups is a 

represent able u;a/-group, too. 

b) Let G be a subdirect sum of lO-groups G;, i G / , and let H ^ G. Let us 

consider any straightening u;a/-ideal Sj of G and denote Hj = H D Sj. It is evident 

that Hj < H. Let a, b G Hj, x G H, a ^ x, x ^ b (in short: a ^ x ^ b, although 

a ^ b need not be t rue) . Because a,b G Sj, we have x G 5 j D H = Hj. Hence Hj is 

convex. 

Let a, b, c G Hj, x, u G H, ;r ^ a, ?/ < b. Then (;r V u) V c G 5 j D H = Hj, and thus 

Hj satisfies condition (c) of Proposition 1. Tha t means Hj is a wa/-ideal of H. 

Let x,y G H, ;r A y = 0. Then x G Sj or y G S j , hence x G Hj or u G Hj. 

Therefore Hj is straightening. 

Now, let (Sj ; j G J) be the system of all straightening wa/-ideals of G. Then 

and so, by [9, Theorem 2.6], H is a representable L/ja/-group. 
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c) Let / be a wa/-homomorphism of a wal-group G onto a wal-group G', let Hi be 

a straightening uja/-ideal of G, and let H[ = f(H{). Since iva/-groups are ft-groups, 

H[ is, by [6, III.2.12], a waZ-ideal of G'. 

Consider x' + H[, y' + H[ G G'/H[. Let x,y G G, f(x) = x\ f(y) = y'. We can 

suppose tha t x + H.^ y + H?:. Then there is a G H2 such that x + a ^ ty, and 

hence x' + / ( a ) ^ y'. Because f(a) G H-, we have x' + Ht' ^ y' + H^, therefore H-

is straightening . 

Suppose tha t G is representable and tha t (H ; , i G I) is the system of all straight

ening wal-ide&h of G . If there is j G I such that / ( H i ) = {0'}, then {0'} is a 

straightening wal-ideal of G', hence G' is a lO-group. Let H[ = / (H 2 ) / {0'} for 

each i G I. Because / induces a bijection of the set of ^Ba/-ideals of G which are 

not contained in Xer f onto the set of all ^/ja/-ideals of G', and because the ^ua-

lattices G/Hi and G ' / / ( H , ) are isomorphic, / induces also a bijection of the set 

of straightening iva/-ideals of G onto the set of straightening wa/-ideals of G'. If 

H' = f| H[ ^ {0 '}, then H = f~l(H') is a wa/-ideal of G which is contained in 
iei 

all straightening wal-ideals of G, and thus H = {0}, a contradiction . Therefore 

H' = {0}, which means G' is representable . • 

Let us return to the identities (1) and (2) which characterize the variety of repre

sentable /-groups in L . We have proved that there are representable wal-gvoups not 

satisfying these conditions. Therefore, there is a natural question whether, in the 

class of representable ^/ja/-groups, /-groups are the only ones tha t satisfy both (1) 

and (2). However, the answer to this question is negative. 

For instance, consider the ival-group G = ( Z , + , ^ ) , where G + = {2k \ k ^ 0} U 

- ( Z + \ {2k- k ^ 0}) = { 0 , 1 , 2 , - 3 , 4 , - 5 , - 6 , - 7 , 8 , - 9 , - 1 0 , . . . , - 1 5 , 1 6 , - 1 7 , . . . } . 

Evidently G is a £O-group, hence it is representable. Moreover, G is not an o-group. 

Let 0 ^ k G Z. Then 

2k - (-2k) = 2 f c + 1 G G + , 

hence —2k ^ 2k and we have -2k ^ 0. 

Let k ^ 1. Then 

- ( 2 k + 1) - (2k + 1) = - 2 ( 2 k + 1) G G + , 

hence 2k + 1 < - ( 2 k + 1), and 2k + 1 < 0. 

Let k> 3, k/2z, V/ ^ 0. Then 

- 2 k - 2k = - 4 k # - 2 m , Vm J> 0, 

hence 2k < - 2 k , and 2k < 0. 
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Therefore 

V.r G G; (x A -x) V 0 = 0, 

and so the identity (1) is satisfied. 
Now, let x,y G G. Since x, y are comparable, we can suppose e.g. x ^ y, hence 

2(x Ay) = 2x. 
Let y-x = 2k, k^O. Then 

2y-2x = 2(x + 2*) - 2x = 2k+1 G G+, 

hence 2x ^ 2H, i.e. 2x A 2y = 2x. 
Lety-x = -(2k + 1), k ^ 1. Then 2y-2x = -2(2k + l) G G+, so2:rA2?/ = 2x. 
Finally, let u - x = -2k, k ^ 3, k ^ 2Z, V/ ^ 0. Then 

2?/ - 2x = -2(2k) ^ 2m , V?n ^ 0, 

hence 2x A 2y = 2x. 

Therefore G satisfies also the condition (2), and thus the variety of representable 
u>a/-groups satisfying both (1) and (2) is larger than the variety %. 

Now, let us consider the identity 

(3) (xV0)A((-y-x + y)V0) = 0, 

which is in the case of /-groups equivalent to the identity (1). 

Let G be a £O-group, x G G. If x ^ 0, then 

(x V 0) A ((-y -x + y)V0) = xA0 = 0. 

If x < 0, then 

(xV0)A ((-y - x + y) V 0) = 0 A (-y - x + y) = 0. 

Hence G satisfies (3), and therefore, in contrast to the condition (1), every repre
sentable ma/-group also satisfies (3). But not even the condition (3) is sufficient to the 
characterization of the variety Rwai, because any abelian ma/-group also satisfies (3). 

Therefore, let us consider the identity 

(4) (2x A ((y + x)A (2y A (x + y)))) A (2y A ((x + y) A (2x A (y + x)))) = 2x A 2y, 

which is in the case of /-groups equivalent to (2). 
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Let G be a fo-group, x,y G G. Let x ^ y. Then 

2x A ((y + x) A (2H A (x + H))) = 2x A ((u + T) A 2ij) = 2x A 2H, 

2H A ((x + y) A (2.1. A (T/ + x))) = 2y A ((x + y) A (H + a;)), 

and if x + u -$ y + a:, then 

2i/ A ((x + y) A (y + x)) = 2y A (* + g) = 2y. 

Similarly for y + x ^ T + y. 

Hence we have 

(2x A ((y + a:) A (2y A (a: + u)))) A (2y A ((;r + y) A (2:r A (H + ;r)))) 

= (2;v A 2y) A 2y = 2a: A 2;//. 

Since x and u on both sides of (4) appear symmetrically, the same result is valid also 

for the case x < y. 

Thus G satisfies (4), and therefore every representable wa/-group satisfies (4), too. 

At the same time, there are abehan t/ja/-groups not satisfying the property (4). 

For instance, let G = (Z, + ) , where G+ = {0, V 2, 4, 6 , . . . , 2n,...}. Let us consider 

x — 3, y = 8. Then 

(2 • 3 A ((8 + 3) A (2 • 8 A (3 + 8)))) A (2 • 8 A ((3 + 8) A (2 • 3 A (8 + 3)))) 

= (6 A (11 A (16 A 11))) A (16 A (11 A (6 A 11))) 

= (6 A (11 A 10)) A (16 A (11 A 5)) 

= (6 A 10) A (16 A 5) = 6 A 4 = 4, 

but 

2 - 3 A 2 - 8 = 6 A l 6 = 6. 

Hence the identity (4) separates the varieties Jibu,n/ and fRwa{. The following question 

remains open. 

Q u e s t i o n . Does the identity (4) characterize the variety RW(li ? 

Now, we can draw a fragment of the lattice W A L . It is clear that the variety Jib/ 

is still an atom of W A L . Indeed, let V be a variety of wa/-groups such tha t .4b/ 2 V 

and let V contain a non-trivial /-group G. Then 

Jib/ C Vari(G) C Varwal(G) C V, 
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a contradiction. Therefore V contains no non-trivial /-group. 

But Jib/ is not the least non-trivial variety of WAL because it is non-comparable, 

for example, with the variety T3 of iUa/-groups satisfying the identity 

(rз Зx = 0. 

Let X{ denote the variety of ma/-groups satisfying the identity (i), i = 1,2,3,4, and 

T ; l the variety of wa/-groups satisfying the identity 

(Tn nx = 0, 

where n > 1, n odd, Qwai the variety of all wa/-groups, 9/ the variety of all /-

Sw..: 

groups, and 0 the trivial variety Then the connections among these varieties are 

demonstrated in Figure 1. 
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