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CONSTRUCTION OF ALL HOMOMORPHISMS 

O F MONO-?i-ARY ALGEBRAS 

MlROSLAV NOVOTNY, B r n o 

(Received December 16, 1994) 

In [3] a construction of all homomorphisms of a groupoid into another one is 

described. In the present paper we present a generalization of this result, i.e., a 

construction of all homomorphisms of an algebra witli one 7i-ary operation into an

other algebra of the same type. The proofs are omitted because they may be easily 

obtained from the proofs of [3]. Our generalized construction is needed, e.g., if con

structing all strong homomorphisms of a structure with one n + 1-ary relation into 

another structure of the same type as described in Corollary 2 of [2], 

Let 71 be an integer such tha t n ^ 2. If A is an arbitrary set, we denote by An the 

Cartesian product X {Ai; 1 ^ i ^ n} where A? = A for any i with 1 ^ i ^ n. 

Suppose that A, A' are sets and n ^ 2 an integer. A mapping / of An into 

(A')n is said to be n-decomposable if there exists a mapping h of A into A' such tha t 

f(xi,. . ., xn) = (h(xx),. . . , /i(a:7l)) for any ( m , . . . , xn) e An. Then we write / = hn. 

Let 7i ^ 1 be an integer. We denote by (A,o) an algebraic structure where o 

is an 7i-ary operation on the set A. This structure will be called a mono-n-ary 

algebra. Furthermore, we denote by ALGn the category whose objects are mono-

7i-ary algebras and whose morphisms are homomorphisms of these algebras. (The 

symbol ALGn in [2] has a different meaning!) 

Let A be a set, n ^ 2 an integer. A unary operation w on the set An is said to 

be binding if for any (xi,. . . ,xn) G An the condition w(x\,. . . ,xn) = ( j / l r . , ,yn) 

implies tha t xi = g;_i for any / with 2 ^ i ^ n. An algebra (An,w) with a binding 

unary operation w will be called a binding unary n-algebra. 

We now define a category M A P / i . Its objects are binding unary /^-algebras, its 

morphisms are /i-deeomposable homomorphisms of these n-algebras. 

We now present a functor F of the category A L G n into MAP71 by presenting 

the object mapping FO and the morphism mapping Fin. 
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If (A,o) is an object in the category ALG/i, we define un[o]( i i , . . . ,xn) = 
(rr2 , . . . , - rn ,o(xi , . . .1a;n)) for any (xi,...,xn) G An. Clearly, (An,un[O]) is an 
object in the category MAP// , We put 

FO(A,O) = (An,un[O]). 

Let (A, o), (A', o') be objects in ALG?i, h a homomorphism of (A, o) into (A', o'). 
It is easy to see that h11 is a morphism of FO(A,O) into FO(A',O') in the category 
MAPn. We put 

F?n(li) = tV\ 

Similarly as Theorem 5 in [3] we obtain 

Theorem. Let n ^ 2 be an integer. The functor F is an isomorphism of the 

category ALG?i onto the category MAPn. 

A generalization of Corollary 3 in [3] reads as follows. 

Corollary. Let n ^ 2 be an integer, (A,o), (A',of) mono-n-ary algebras. 

(i) For any homomorphism h of (A, o) into (A', o') there exists an n-decomposable 

homomorphism f of(An,un[o\) into ((A')n, un[O']) such that f — hn. 

(ii) If f is an n-decomposable homomorphism of (An, un[O]) into ((A')n,un[o'}), 

then f = hn and h is a homomorphism of (A,o) into (A',o'). 

Construction from [3] may be generalized as follows. 

Construction. Let n ^ 2 be an integer, let mono-n-ary algebras (^4,O), (A',o') 

be given. 

Construct the mono-unary algebras (An,un[O]) and ((A ' ) ' \ un[O']). 

Construct all homomorphisms of (An,un[o]) into ((A')n, un[O']) using the con

struction described in [1]. 

Test the constructed homomorphisms and reject all of them that are not n-

decomposable. 
For any n-decomposable homomorphism / of (An,un[O]) into ((A')n, un[O']) con

struct the mapping h such that / = hn. 

By Corollary, we obtain that any constructed mapping // is a homomorphism 
of (A,o) into (A',o') and that any homomorphism of (A,o) into (A',o') can be 
constructed in this way. 
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Applicat ion. Let n ^ 1 be an integer, A, A' sets, t a relation of arity n -h 1 
on A, £' a relation of the same arity on ,4'. In Corollary 2 of [2] a construction 
of all strong homomorphisms of the structure (A,t) into {A',t') is described: We 
construct mono-?vary algebras (P(A),R[£]) and (P(^l'),R[t']) where P(A) = {Ar; 
X C A}, R[ l ] (X i , . . . ,X n ) = {x £ A; (T i , . . . , x n ,T) G Uxi £ Xi,...,Tn G Xn} 
for any X\,..., Kn in P(-4); P{A'), H[t'] are defined in a similar way. Furthermore, 
we construct all homomorphisms of the first algebra into the other using [1] or the 
presented Construction. Then we choose all of them that are totally additive and 
atom-preserving in the sense of [2]. Any of them defines a strong homomorphism 
of (A,t) into (A',tf) and any strong homomorphism of (A,t) into (A',t') can be 
obtained in this way. 

It is easy to see that the above constructed isomorphism F of the category ALG?i 
onto MAP?i is not the only possible isomorphism of ALGn onto a category of mono-
unary algebras. The other isomorphisms define a relationship between mono-n-ary 
algebras and mono-unary algebras that is different from the relationship that has 
been presented here. 
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