Czechoslovak Mathematical Journal

Pavel Hrnčiar; Alfonz Haviar; Gabriela Monoszová

Some characteristics of the edge distance between graphs

Czechoslovak Mathematical Journal, Vol. 46 (1996), No. 4, 665-675

Persistent URL: http://dml.cz/dmlcz/127326

Terms of use:

© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SOME CHARACTERISTICS OF THE EDGE DISTANCE BETWEEN GRAPHS

Pavel Hrnčiar, Alfonz Haviar, Gabriela Monoszová, Banská Bystrica

(Received June 8, 1994)

1. Preliminaries

A graph $G=(V, E)$ consists of a non-empty finite vertex set V and an edge set E. In this paper we consider undirected graphs without loops and multiple edges. A subgraph H of the graph G is a graph obtained from G by deleting some edges and vertices; notation: $H \subseteq G$. Every edge $x \in E$ can be written in the form $x=u v$, where $u, v \in V$ are vertices connected by x. By $\Delta(G)$ we denote the maximal degree of vertices of the graph G. A graph G is a commen subgraph of graphs G_{1}, G_{2} if there exist graphs H_{1}, H_{2} such that $H_{1} \subseteq G_{1}, H_{2} \subseteq G_{2}$ and $H_{1} \cong G, H_{2} \cong G$. The maximal common subgraph is the common subgraph which contains the maximal number of edges.

A distance of the graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is defined by

$$
\begin{equation*}
d\left(G_{1}, G_{2}\right)=\left|E_{1}\right|+\left|E_{2}\right|-2\left|E_{1,2}\right|+\left|\left|V_{1}\right|-\left|V_{2}\right|\right| \tag{1}
\end{equation*}
$$

where $\left|E_{1}\right|,\left|E_{2}\right|,\left|V_{1}\right|,\left|V_{2}\right|$ are the cardinalities of the edge sets and the vertex sets, respectively, and $\left|E_{1,2}\right|$ is the number of edges of the maximal common subgraph $G_{1,2}$ of the graphs G_{1} and G_{2} (by [1]).

If we identify isomorphic graphs then (1) defines a metric on the set of all (finite) graphs.

Throughout this paper, by $F_{p, q}$ we denote the set of all graphs with p vertices and q edges, $q \geqslant 1$. Further, $\operatorname{diam} F_{p, q}:=\max \left\{d\left(G_{1}, G_{2}\right) ; G_{1}, G_{2} \in F_{p, q}\right\}$. If $\operatorname{diam} F_{p, q}=$ $d(G, H)$ and $c_{p, q}$ is the number of edges of the maximal common subgraph of the graphs G, H then

$$
\begin{equation*}
\operatorname{diam} F_{p, q}=2 q-2 c_{p, q} . \tag{2}
\end{equation*}
$$

Obviously, $\left|E_{1,2}\right| \geqslant c_{p, q}$ for any $G_{1}, G_{2} \in F_{p, q}$ ($c_{p, q}$ is. the minimal number of edges of the maximal common subgraph of two graphs from the class $F_{p, q}$).

2. Diameter of a family of (iraphs

Lemma 1. For any classes $F_{p, q}, F_{p, q+1}$ the following inequalities are satisfied:

$$
r_{p, q} \leqslant c_{p, q+1} \leqslant c_{p, q}+2 .
$$

Proof. a) First we prove ${ }_{p}, q \leqslant c_{p, q+1}$. Consider some graphs $G_{1}, G_{2} \in F_{p, q+1}$. Deleting an arbitrary edge from each of these graphs we obtain graphs $G_{1}^{\prime}, G_{2}^{\prime} \in$ $F_{p, q}$. Evidently any common subgraph $G_{1,2}^{\prime}$ of the graphs $G_{1}^{\prime}, G_{2}^{\prime}$ is also a common subgraph of the graphs G_{1}, G_{2}. hence

$$
\left|E_{1,2}\right| \geqslant\left|E_{1,2}^{\prime}\right| \geqslant c_{p, q}
$$

Since $\left|E_{1,2}\right| \geqslant c_{p, q}$, for any $G_{1}, G_{2} \in F_{p, q+1}$ we get $c_{p, q+1} \geqslant c_{p, q}$.
b) We prove that $c_{p, q+1} \leqslant c_{p, q}+2$. Let $G_{1}, G_{2} \in F_{p, q}$ be graphs such that their maximal common subgraph $G_{1,2}$ satisfies $\left|E_{1,2}\right|=r_{p, q}$. To each of the graphs $G_{1} . G_{r_{2}}$ add an arbitrary edge. We obtain graphs $G_{1}^{\prime}, G_{2}^{\prime} \in F_{p, q+1}$ with a maximal common subgraph $G_{1,2}^{\prime}$. Thus, there is a subgraph H_{1}^{\prime} of the graph G_{1}^{\prime} and a subgraph H_{2}^{\prime} of the graph G_{2}^{\prime} such that $H_{1}^{\prime} \cong G_{1,2}^{\prime} \cong H_{2}^{\prime}$. Obviously, there is at most one edge of the graph $H_{1}^{\prime}\left(H_{2}^{\prime}\right)$ not belonging to the graph $G_{1}\left(G_{2}\right)$. Hence we have

$$
\left|E_{1,2}^{\prime}\right| \leqslant c_{p, q}+2
$$

which implies

$$
c_{p, q+1} \leqslant c_{p, q}+2
$$

Remark. Later on we will show that the inequalities in Lemma 1 cannot be strengthened.

Let G be an arbitrary graph from $F_{p, q}$ and let $\bar{\eta}$ denote the number of edges of the graph \bar{G} complementary to G. Obviously,

$$
\bar{q}=\frac{p(p-1)}{2}-q .
$$

In this paper we will always denote by \bar{q} the number of edges of the complementary graph of any graph with q edges and p vertices.

Lemma 2. For any $p, q(q \geqslant 1)$,

$$
c_{p, q+1}=c_{p, q}+2 \quad \text { iff } \quad c_{p, \overline{q+1}}=c_{p, \bar{q}} .
$$

Proof. Let $c_{p, q+1}=c_{p, q}+2$. Using (2), Theorem 5 from [4] and again (2), we - get

$$
2 q-2 c_{p, q}=\operatorname{diam} F_{p, q}=\operatorname{diam} F_{p, \bar{q}}=2 \bar{q}-2 c_{p, \bar{q}}
$$

i.e., $q-c_{p, q}=\bar{q}-c_{p, \bar{q}}$. Further, by (2) we have

$$
\begin{gathered}
\operatorname{diam} F_{p, q+1}=2(q+1)-2 c_{p, q+1}=2 q-2 c_{p, q}-2 \\
\operatorname{diam} F_{p, \overline{q+1}}=2(\overline{q+1})-2 c_{p, \overline{q+1}}=2 \bar{q}-2 c_{p, \overline{q+1}}-2
\end{gathered}
$$

Since $\operatorname{diam} F_{p, q+1}=\operatorname{diam} F_{p, \overline{q+1}}$, we get $q-c_{p, q}=\bar{q}-c_{p, \overline{q+1}}$, hence $c_{p, \bar{q}}=c_{p, \overline{q+1}}$. The converse statement is now obvious.

Theorem 3. For any class $F_{p, q}$,

$$
\operatorname{diam} F_{p, q}=2 q-4 \quad \text { iff } \quad \frac{1}{2} p<q \leqslant p-1
$$

Proof. If $\frac{1}{2} p<q \leqslant p-1$ then diam $F_{p, q}=2 q-4$ (by [4, Theorem 3]). To prove the converse statement assume first that $q \geqslant p$. We will show that $\left|E_{1,2}\right| \geqslant 3$ for any graphs $G_{1}, G_{2} \in F_{p, q}, p \geqslant 3$.

We distinguish two cases:
a) If $\Delta\left(G_{1}\right) \geqslant 3$ and $\Delta\left(G_{2}\right) \geqslant 3$ then both G_{1} and G_{2} contain a subgraph isomorphic to the graph in Figure 1 (in the sequel we briefly say that they contain the graph in Figure 1).

Fig. 1

Fig. 2
b) Let $\Delta\left(G_{1}\right)=2$. Then $q=p$ and G_{1} is a regular graph of degree 2. If $p=3$ then $G_{1} \cong G_{2}$; if $p=4$ or $p=5$ then both the graphs contain a path of length three: if $p=6$ then both the graphs G_{1} and G_{2} contain either the graph in Figure 2 or a path of length 3 or K_{3}. If $p \geqslant 7$ then they contain the graph in Figure 2.

It follows that $c_{p, q} \geqslant 3$, thus diam $F_{p, q} \leqslant 2 q-6$. To complete the proof note that if $q \leqslant \frac{1}{2} p$ then by [4; Theorem 2], $\operatorname{diam} F_{p, q}=2 q-2$.

Corollary 4. If $3 \leqslant p \leqslant q$ then $\operatorname{diam} F_{p, q} \leqslant 2 q-6$.

Theorem 5. $\operatorname{diam} F_{p, p}=2 p-6$ for any $p \geqslant 3$.
Proof. By Corollary 4 it suffices to find two graphs from the class $F_{p, p}$ whose maximal common subgraph has only 3 edges. Such graphs are depicted in Figure 3 (G_{1} is a circle).

Fig. 3

Lemma 6. Let $q \geqslant p$ and $p \in\{6,7,8\}$. If $G \in F_{p, q}$ and $\Delta(G) \geqslant 4$ then G contains the subgraph in Figure 4.

Fig. 4

Proof. Let v be a vertex of G of degree $\Delta(G)=k$, let v_{1}, \ldots, v_{k} be vertices adjacent to v and w_{1}, \ldots, w_{p-k-1} the other vertices of G (if they exist). If G contains no graph isomorphic to the graph in Figure 4 then it contains neither an edge of type $v_{i} v_{j}$ nor an edge of type $v_{i} w_{j}$. Therefore the number of all edges of G is at most

$$
\begin{equation*}
s=k+\frac{1}{2}(p-k-1)(p-k-2) . \tag{3}
\end{equation*}
$$

For the values from the hypothesis we get $s<p$.
Theorem 7. If $5 \leqslant p \leqslant 9$, then diam $F_{p, p+1}=2 p-6$.
Proof. 1) Case $p=5$. By [4; Theorem 4] and Theorem 3 we have

$$
\operatorname{diam} F_{5,6}=\operatorname{diam} F_{5,4}=2.4-4=2.5-6
$$

In the remaining cases we first show that $\left|E_{1,2}\right| \geqslant 4$ for any graphs $G_{1}, G_{2} \in F_{p, p+1}$ (i.e., $\operatorname{diam} F_{p, p+1} \leqslant 2 p-6$).
2) Case $p=6$. If a graph $G \in F_{6,7}$ does not contain the graph in Fig. 4 then by Lemma $6, \Delta(G)=3$. Let its vertex v have degree 3 , let v_{1}, v_{2}, v_{3} be vertices adjacent to v and let w_{1}, w_{2} be the remaining vertices. Since G contains no edge of type $v_{i} w_{j}, G$ is isomorphic to the graph in Fig. 5.

Let $G_{1}, G_{2} \in F_{6,7}$. If both the graphs contain the graph in Fig. 4 or are isomorphic to the graph in Fig. 5, then $\left|E_{1,2}\right| \geqslant 4$. Let G_{1} contain the graph in Fig. 4 and let G_{2} be isomorphic to the graph in Fig. 5. The graph G_{1} contains three other edges and one can check that G_{1} contains at least one of the graphs in Figs. 6, 7, 8. Hence again $\left|E_{1,2}\right| \geqslant 4$.

Fig. 5

Fig. 7

Fig. 6

Fig. 8

Fig. 9

Fig. 10
3) Case $p=7$. Similarly as in the previous case one can show that if a graph $G \in F_{7,8}$ does not contain the graph in Fig. 4 then G is isomorphic either to the graph in Fig. 9 or to the graph in Fig. 10.
If G_{1} is the graph in Fig. 9 and G_{2} is the graph in Fig 10 then evidently $\left|E_{1,2}\right| \geqslant 4$. Let G_{1} be one of the graphs in Figs. 9, 10 and let G_{2} contain the graph in Fig. 4. Since G_{2} contains other four elges, G_{2} again contains at least one of the graphs in Figs. 6, 7, 8. This yields $\left|E_{1,2}\right| \geqslant 4$.
4) Case $p=8$. Let $G \in F_{8,9} . \partial(G) \geqslant 4$. Obviously, G contains the graph in Fig. 6 or the graph in Fig. 7. By Lemma 6, G contains a subgraph isomorphic to the graph in Fig. 4, too.
Let $G \in F_{8,9}$ and $\Delta(G)=3$. Let v be a vertex of degree 3 , let v_{1}, v_{2}, v_{3} be vertices adjacent to v and let the remaining vertices be $w_{1}, w_{2}, w_{3}, w_{4}$. If G does not contain the graph in Fig. 4 then at least two of the remaining six edges are of type $r_{i} r^{\prime} ;$ or at least five of them are of type $w_{i} w_{j}$. In both cases G contains the graphs in Figures 7 and 8. It is obvious that G contains also the graph in Fig. 6. If the graph G contains the graph in Fig. 4 then it contains other five edges and one can verify that it contains at least one of the graphs in Figs. 6, 7. 8.

Let $G_{1}, G_{2} \in F_{8,9}$; it follows from the previous part that G_{1} and G_{2} contain at least one of the graphs in Figs. $4,6,7,8$. Therefore $\left|E_{1,2}\right| \geqslant 4$.
5) Case $p=9$. Let $\Delta(G) \geqslant 4$ and let v be a vertex of degree greater than 3 . Let the vertices adjacent to v be n_{1}, \ldots, v_{k}. If G does not contain the graph in Fig. 6 then $\mathrm{k}=4$ and the graph induced by the vertices $v_{1}, v_{1}, v_{2}, v_{3}, u_{4}$ is isomorphic to K_{5}.

Let $\Delta(G)=3$ and let the vertex v have the adjacent vertices v_{1}, v_{2}, v_{3}. We denote the remaining vertices by $w_{1} \ldots \ldots w_{5}$. Note that if the graph G did not contain the graph in Fig. 6 then it would contain at most nine edges (as v_{1}, v_{2}, v_{3} have degree at most 3). So every graph $G \in F_{9,10}$ with $\Delta(G)=3$ contains the graph in Fig. 6.

Let $G_{1}, G_{2} \in F_{9,10}$. If $\Delta\left(G_{1}\right) \geqslant 4$ and $\Delta\left(G_{2}\right) \geqslant 4$ or if $\Delta\left(G_{1}\right)=\Delta\left(G_{2}\right)=3$ then obviously $\left|E_{1,2}\right| \geqslant 4$.

Let $\Delta\left(G_{1}\right) \geqslant 4$ and $\Delta\left(G_{2}\right)=3$ and let G_{1} not contain the graph in Fig. 6. Then G_{1} consists of K_{5} and four isolated vertices. Since G_{2} contains ten edges, G_{2} evidently contains a subgraph with five vertices and at least four edges. Hence again $\left|E_{1,2}\right| \geqslant 4$.

Finally, it suffices to show that in each of the cases $p \in\{6,7,8,9\}$, the equality $\left|E_{1.2}\right|=4$ is possible. This is the case of the following graphs:

G_{1}

G_{1}

G_{2}

Theorem 8. If $p \geqslant 16$ then diam $F_{p, p+1}=2 p-8$.
Proof. Let $G \in F_{p, p+1}$ and let v be a vertex of degree $\Delta(G)$. We denote the vertices adjacent to v by v_{1}, \ldots, v_{k} and the remaining vertices (if they exist) by w_{1}, \ldots, w_{p-k-1}.

1. Let $\Delta(G)=3$. Then the subgraph H induced on the set $V-\left\{v, v_{1}, v_{2}, v_{3}\right\}$ has at least $p-8$ edges. If $p-8>\frac{p-4}{2}$, i.e.. $p>12$, then H has a vertex of degree 2 .

Fig. 11

Fig. 12

This yields that G contains the graph in Fig. 11. If $p \geqslant 12$ then the subgraph H has at least four edges, hence G contains also the graph in Fig. 12.
2. a) If $\Delta(G)=4$ and $p \geqslant 16$ then G contains a graph isomorphic to the graph in Fig. 13, since at most 16 edges can be incident with at least one of the vertices v. $v_{1}, v_{2}, v_{3}, v_{4}$. Obviously, the graph G contains also a graph isomorphic to the graph in Fig. 11 or 12.
b) If $\Delta(G)=5$ then the subgraph induced by the set $\left\{v, v_{1}, \ldots, v_{5}\right\}$ contains at most 15 edges. Since G has at least 17 edges $(p \geqslant 16)$ it obviously contains a subgraph isomorphic to the graph in Fig. 11 or 12 and also a subgraph isomorphic to the graph in Fig. 13.
c) If $\Delta(G) \geqslant 6$ then G evidently contains the graph in Fig. 13 and also (if $p \geqslant 9$) the graph in Fig. 11 or 12.

Fig. 13
3. It follows from the previous discussion that if $G_{1}, G_{2} \in F_{p, p+1}, p \geqslant 16$, then

$$
\left|E_{1,2}\right| \geqslant 5, \quad \text { i.e., } \quad \operatorname{diam} F_{p, p+1} \leqslant 2 p-8 .
$$

For the graphs in Fig. 14 we have $\left|E_{1,2}\right|=5$, therefore diam $F_{p, p+1}=2 p-8$.

Remark. By Theorem 5, $\operatorname{diam} F_{p, p}=2 p-6$ if $p \geqslant 3$ and by Theorem 8 . $\operatorname{diam} F_{p, p+1}=2 p-8$ if $p \geqslant 16$. Hence the answer to Problem 5 from [4] is negative, i.e.

$$
q_{1} \leqslant q_{2} \leqslant \frac{1}{4} p(p-1) \text { does not imply } \operatorname{diam} F_{p, q_{1}} \leqslant F_{p, q_{2}}
$$

Fig. 14

Theorem 9. $\operatorname{diam} F_{p, p+2}=2 p-6$ if $p \geqslant 16$.
Proof. By Theorem 8 and Lemma 1, it suffices to find two graphs $G_{1}, G_{2} \in$ $F_{p, p+2}$ such that $\left|E_{1,2}\right|=5$. These graphs are depicted in the following figures:

Theorem 10. If $G_{1} \in F_{p_{1}, q_{1}}$ and $G_{2} \in F_{p_{2}, q_{2}}$ then

$$
d\left(G_{1}, G_{2}\right)=q_{1}+q_{2}+\left|p_{1}-p_{2}\right|-2
$$

if and only if the graphs G_{1}, G_{2} satisfy one of the following two conditions:
a) One of the graphs G_{1}, G_{2} is the graph in Fig. 15 and the other graph is arbitrary with at least one edge.
b) One of the graphs G_{1}, G_{2} is the graph in Fig. 16 having at least 2 components K_{2} and the other graph is either the graph in Fig. 17 or the graph in Fig. 18 with at least two edges.

Proof. It is sufficient to take into account that each of the graphs G_{1}, G_{2} must have at least one edge and at least one of the graphs G_{1}, G_{2} cannot contain any vertex of degree at least 2 .

Fig. 15

Fig. 17

Fig. 16

Fig. 18

Remark. Note that Theorem 10 gives the answer to Problems 2 and 6a from [4].

Lemma 11. $\operatorname{diam}\left(F_{5,3} \cup F_{5,7}\right)=\operatorname{diam} F_{5,3}+\operatorname{diam} F_{5,7}$.
Proof. By Theorems 5 and 3 from [4] we get.

$$
\operatorname{diam} F_{5,3}+\operatorname{diam} F_{5,7}=2 \cdot \operatorname{diam} F_{5,3}=2 \cdot(2 \cdot 3-4)=4
$$

Now we show that $\operatorname{diam}\left(F_{5,3} \cup F_{5,7}\right)=4$. This follows from the fact that each graph from $F_{5,3}$ is a subgraph of a graph from $F_{5,7}$, which is a consequence of the following facts. Firstly, the class $F_{5,3}$ contains the following four graphs.

Fig. 19

Secondly, if a graph $G \in F_{5,7}$ has a vertex of degree four then it contains the graph in Fig. 20 and if it has no vertex of degree four then it is easy to show that it is isomorphic to the graph in Fig. 21. The graphs in Fig. 19 are subgraphs of each of the two graphs in Figs. 20, 21.

Remark. Lemma 11 gives a partial answer to Problem 4 in [4].

Fig. 20

Fig. 21

References

[1] V. Baláž, J. Koča, V. Kvasnička, M. Sekanina: Metric for graphs. Cas. Pěst. Mat. 111 (1986), no. 2, 431-433.
[2] V. Baláž, V. Kvasnička, J. Pospíchal: Dual approach for edge distance between graphs. ('as. Pěst. Mat. 114 (1989), no. 2, 155-159.
[3] M. A. Johnson: Relating metrics, lines and variables defined on the space of graphs. Proceedings of the Fifth International Conference on Graph Theory. Eds. Y. Alavi, G. ('hartrand, L. Lesniak and C. Wall. John Wiley. New York (1985), 457-470.
[4] M. Sabo: On a maximal distance between graphs. Czech. Math. J. 41 (1991), $265-268$.
Authors' address: Department of Mathematics, Matej Bel University, Tajovského 40, 97.401 Banská Bystrica, Slovakia, email monosz@fhpv.umb.sk.

