
Czechoslovak Mathematical Journal

Pavel Hrnčiar; Alfonz Haviar; Gabriela Monoszová
Some characteristics of the edge distance between graphs

Czechoslovak Mathematical Journal, Vol. 46 (1996), No. 4, 665–675

Persistent URL: http://dml.cz/dmlcz/127326

Terms of use:
© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127326
http://dml.cz


Czechoslovak Mathemat ica l Journal , 46 (121) 1996, P raha 

SOME CHARACTERISTICS OF THE EDGE DISTANCE 

BETWEEN GRAPHS 

PAVEL HRNCIAR, ALFONZ HAVIAR, GABRIELA MONOSZOVA, Banska Bystrica 

(Received June 8, 1994) 

1. PRELIMINARIES 

A graph G = (V,E) consists of a non-empty finite vertex set V and an edge set 
E. In this paper we consider undirected graphs without loops and multiple edges. A 
subgraph # of the graph G is a graph obtained from G by deleting some edges and 
vertices; notation: # C G. Every edge x £ E can be written in the form x = uv, 
where u, v £ V are vertices connected by x. By A(G) we denote the maximal degree 
of vertices of the graph G. A graph G is a common subgraph of graphs G\, G2 if 
there exist graphs # 1 , # 2 such that #1 C Gx, H2 C G2 and Hx ^G, H2= G. The 
maximal common subgraph is the common subgraph which contains the maximal 
number of edges. 

A distance of the graphs G\ = (V\,E\) and G2 = (V2,E2) is defined by 

(1) d(Gx,G2) = \E,\ + |F2 | - 2|Ki,2| + ||Vi| - |V2|| 

where \E\\, \E2\, \V\\, \V2\ are the cardinalities of the edge sets and the vertex sets, 
respectively, and |Ba,2| is the number of edges of the maximal common subgraph 
Gi i2 of the graphs G\ and G2 (by [1]). 

If we identify isomorphic graphs then (1) defines a metric on the set of all (finite) 
graphs. 

Throughout this paper, by Fp,q we denote the set of all graphs with p vertices and 
q edges, q ̂  1. Further, diamFp?f7 := max{d(Gi,G2); G\,G2 £ Fp^q}. If diamF7>)<7 = 
d(G,H) and cp,q is the number of edges of the maximal common subgraph of the 
graphs G, H then 

(2) diam Fp,q = 2q - 2cp,q. 
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Obviously, |F i , 2 | ^ c7M7 for any G i , G 2 G Fp,g (<:/v/is the minimal number of edges 

of the maximal common subgraph of two graphs from the class F/V7). 

2 . DlAMFTER OF A FAMILY OF CKAPHS 

L e m m a 1. For any classes FPjq, FP,9+i £12e following inequalities are satisfied: 

Cp,q <z Cp^q+l ^- Cp^q + _. 

P r o o f , a) First we prove c/M7 ^ cP)f-+i. Consider some graphs G i , G2 G F;,,f/+i • 

Deleting an arbitrary edge from each of these graphs we obtain graphs G[, G'> G 

Fp^. Evidently any common subgraph G[ 2 of the graphs G[, G2 is also a common 

subgraph of the graphs G\, G2 . hence 

1-̂ 1,2| ^ 1-̂ 1,21 ^ C/'-y 

Since |__i,2 | ^ cp>r-, for any GUG2 G KP,g+i we get c /M/+L ^ c/M7. 

b) We prove tha t cP5(7+i ^ c/V7 + 2. Let G i , G 2 G F/M/ be graphs such that their 

maximal common subgraph Gi,2 satisfies |F i , 2 | = c /M/. To each of the graphs GA. G2 

add an arbitrary edge. We obtain graphs G[,G2 G F/M/+i with a maximal common 

subgraph G'x 2 . Thus, there is a subgraph H[ of the graph G[ and a subgraph H2 

of the graph G2 such that H{ = G[ 2 = H2. Obviously, there is at most one edge of 

the graph H[ (H2) not belonging to the graph G\ (G2) . Hence we have 

which implies 

\E[.2\^cp,q + 2. 

Cp,q-\-l <^ Cp^q T~ - • 

D 

R e m a r k . Later on we will show that the inequalities in Lemma 1 cannot be 

strengthened. 

Let G be an arbitrary graph from F/M7 and let </ denote the number of edges of 

the graph G complementary to G. Obviously, 

_ P(P-I) 
q = - Y - - q . 

In this paper we will always denote by q the number of edges of the complementary 

graph of any graph with q edges and p vertices. 
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L e m m a 2. For any p, q (q ^ 1), 

Cp,q+l — Cp,q + 2 111 Cp,q+l ~ CP,<1' 

P r o o f . Let Op,7+i = cp,q + 2. Using (2), Theorem 5 from [4] and again (2), 

get 

2O — 2c7V/ = diam Fpw = diam FPjq = 2q — 2cp^, 

i.e., q — c / v / = q — cp^. Further, by (2) we have 

diamFp ) ( / + i = 2(q + 1) - 2cPj<7+i = 2ry - 2cp,f/ - 2, 

d i a m ^ v 7 + T = % + 1) ~ 2c7v7+T = 2r1 " 2 c
P , ^H " 2-

Since d i a m F / v + i = diam Fp^rrr, we get q - cp,7 = q - cp---, hence cP;7 = C
/ V / +T-

Tlie converse statement is now obvious. • 

T h e o r e m 3. For any class F/VJ, 

diam Fpj] = 2q — 4 iff -p < q ^ p — 1. 

P r o o f . If | p < O <: p - 1 then diamFPit7 = 2a - 4 (by [4, Theorem 3]). To 

prove the converse statement assume first tha t q ^ p. We will show tha t |F i , 2 | j£ 3 

for any graphs G i , G 2 G FPiq, p ^ 3. 

We distinguish two cases: 

a) If A ( G i ) ^ 3 and A(G 2 ) ^ 3 then both Gi and G2 contain a subgraph iso­

morphic to the graph in Figure 1 (in the sequel we briefly say that they contain the 

graph in Figure 1). 

Fig. 1 Fig. 2 
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b) Let A(Gi) = 2. Then q = p and G\ is a regular graph of degree 2. If p = 3 

then Gi = G 2 ; if p — 4 or p = 5 then both the graphs contain a path of length three; 

if p = 6 then both the graphs G\ and G2 contain either the graph in Figure 2 or a 

path of length 3 or K$. If p ^ 7 then they contain the graph in Figure 2. 

It follows that Cp^q ^ 3, thus diamFp,g ^ 2O — 6. To complete the proof note that 

if q ^ \p then by [4; Theorem 2], diamFp?(7 =2q- 2. • 

Corollary 4. If 3 ^ p ^ a then diamFp,q ^ 2a - 6. 

Theorem 5. diam Fp,p = 2p — 6 for any p ^ 3. 

P r o o f . By Corollary 4 it suffices to find two graphs from the class Fp,p whose 

maximal common subgraph has only 3 edges. Such graphs are depicted in Figure 3 

(G\ is a circle). • 

Ci G,: 

P - Г • 
Fig. 3 

Lemma 6. Let q ^ p and p € {6,7,8}. If G e Fp,g and A(G) ^ 4 then G 

contains the subgraph in Figure 4. 

Ғig. 4 
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P r o o f . Let v be a vertex of G of degree A(G) = k, let v\,...,Vk be vertices 

adjacent to v and w\,..., wv-k-\ the other vertices of G (if they exist). If G contains 

no graph isomorphic to the graph in Figure 4 then it contains neither an edge of type 

viVj nor an edge of type V{Wj. Therefore the number of all edges of G is at most 

(3) s = k + -(p-k-l)(p-k-2). 

For the values from the hypothesis we get s < p. D 

T h e o r e m 7. If 5 ^ p < 9, then d iamF p , p+i = 2p — 6. 

P r o o f . 1) Case p = 5. By [4; Theorem 4] and Theorem 3 we have 

diamF5 ,6 = diamF5 ,4 = 2.4 - 4 = 2.5 - 6. 

In the remaining cases we first show that |F i ,2 | ^ 4 for any graphs G\,G2 G FP,P+i 

(i.e., diamFP ,P+i ^ 2p — 6). 

2) Case p = 6. If a graph G G F6,7 does not contain the graph in Fig. 4 then 

by Lemma 6, A(G) = 3. Let its vertex v have degree 3, let v\, v2, v^ be vertices 

adjacent to v and let W\,w2 be the remaining vertices. Since G contains no edge of 

type V{Wj, G is isomorphic to the graph in Fig. 5. 

Let G\,G2 G F6,7- If both the graphs contain the graph in Fig. 4 or are isomorphic 

to the graph in Fig. 5, then |F i ,2 | ^ 4. Let G\ contain the graph in Fig. 4 and let 

G2 be isomorphic to the graph in Fig. 5. The graph G\ contains three other edges 

and one can check tha t G\ contains at least one of the graphs in Figs. 6, 7, 8. Hence 

again |F i , 2 | ^ 4. 

Fig. 5 Fig. 6 

Fig. 7 

* * 

Fig. 8 
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1 

Fig. 9 Fig. 10 

3) Case p = 7. Similarly as in the previous case one can show tha t if a graph 

G G F7,8 does not contain the graph in Fig. 4 then G is isomorphic either to tlie 

graph in Fig. 9 or to the graph in Fig. 10. 

If Gi is the graph in Fig. 9 and G2 is the graph in Fig 10 then evidently |F i ,2 | ^ 4. 

Let Gi be one of the graphs in Figs. 9, 10 and let G2 contain the graph in Fig. 4. 

Since G2 contains other four edges, G2 again contains at least one of the graphs in 

Figs. 6, 7, 8. This yields |A1 ,2 | ^ 4. 

4) Case p = 8. Let G G F8,o« A(G) ^ 4. Obviously, G contains the graph in Fig. G 

or the graph in Fig. 7. By Lemma G, G contains a subgraph isomorphic to the graph 

in Fig. 4, too. 

Let G G F8,9 and A(G) = 3. Let v be a vertex of degree 3, let Ui, U2, v% be vertices 

adjacent to v and let the remaining vertices be mi, z/>2, //>;,, W4. If G does not contain 

the graph in Fig. 4 then at least two of the remaining six edges are of type o,r ; 

or at least five of them are of type W{Wj. In both oases G contains the graphs in 

Figures 7 and 8. It is obvious that G contains also the graph in Fig. G. If the graph 

G contains the graph in Fig. 4 then it contains other five edges and one can verify 

that it contains at least one of the graphs in Figs. G, 7. 8. 

Let G i , G 2 G F8,9; it follows from the previous part that G\ and G2 contain at 

least one of the graphs in Figs. 4, 6, 7, 8. Therefore \E\:2\ ^ 4. 

5) Case p = 9. Let A(G) ^ 4 and let v be a vertex of degree greater than 3. Let 

the vertices adjacent to v be vi,. . . , vj.. If G does not contain the graph in Fig. G 

then k = 4 and the graph induced by the vertices v. r{, r2 . v;i, 04 is isomorphic to A>,. 

Let A(G) = 3 and let the vertex v have the adjacent vortices vi, v2, v*. We denote 

the remaining vertices by W[ m5. Note that if the graph G did not contain the 

graph in Fig. 6 then it would contain at most nine edges (as oL, 02^3 have degree at 

most 3). So every graph G G Fuo with A(G) = 3 contains the graph in Fig. G. 

Let G i , G 2 G F9,io- If A(Gi ) > 4 and A(G 2 ) ^ 4 or if A(Gi ) = A(G 2 ) = 3 then 

obviously |F i ,2 | ^ 4. 
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Let A(Gi ) ^ 4 and A(G 2 ) = 3 and let G\ not contain the graph in Fig. 6. Tlien G'i 

consists of Iv5 and four isolated vertices. Since G2 contains ten edges, G2 evidently 

contains a subgraph witli five vortices and at least four edges. Hence again IF1/2I ^ 4. 

Finally, it suffices to show that in each of the cases p 6 {G,7,8,9}, the equality 

|F1 21 — 4 is possible. This is the case of the following graphs: • 

P = 6 

G-2 

p = I 

p = 

G, 

G, 

G-2 

• • •-

Go 

p = 9 

G, Go 

T h e o r e m 8. If p ^ 1G thai chain F;,,7>+i = 2p - 8. 

P r o o f . Let G e FP,P+i and let v be a vertex of degree A(G) . Wo denote 

the vertices adjacent to v l)y UL,. . . ,UA- and the remaining vertices (if they exist) by 

M ' l , Wp-k-l. 

1. Lot A(G) = 3. Tlien the subgraph I I induced on the set V — {O,Ui, v2,vj} lias 

at least p - 8 edges. If p - 8 > £z;^, i.e., /; > 12, then H has a vertex of degree 2. 
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This yields that G contains the graph in Fig. 11. If p ^ 12 then the subgraph H has 
at least four edges, hence G contains also the graph in Fig. 12. 

2. a) If A(G) = 4 and p ^ 16 then G contains a graph isomorphic to the graph 
in Fig. 13, since at most 16 edges can be incident with at least one of the vertices v, 
'*>i, v2, ^3, ̂ 4- Obviously, the graph G contains also a graph isomorphic to the graph 
in Fig. 11 or 12. 

b) If A(G) = 5 then the subgraph induced by the set { w , ^ , . . . , ^ } contains 
at most 15 edges. Since G has at least 17 edges (/; > 16) it obviously contains a 
subgraph isomorphic to the graph in Fig. 11 or 12 and also a subgraph isomorphic 
to the graph in Fig. 13. 

c) If A(G) ^ 6 then G evidently contains the graph in Fig. 13 and also (if p ^ 9) 
the graph in Fig. 11 or 12. 

Fig. 13 

3. It follows from the previous discussion that if Gi,G2 G FP,P+i, p ^ 16, then 

I-El,21 ^ 5, fc'-e., diamFP)P+i ^ 2p - 8. 

For the graphs in Fig. 14 we have |Fi,2| = 5, therefore diamFP)P+i = 2p — 8. • 

Remark. By Theorem 5, diamFP)P = 2p — 6 if p ^ 3 and by Theorem 8, 
diamFP)P+i = 2p — 8 if p ^ 16. Hence the answer to Problem 5 from [4] is negative, 
i.e. 

qi ^ <?2 ̂  -p(p - 1) does not imply diamFP)(?1 ^ Fp,q2-
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oi: 

P - I 

Go: 

Fig. 14 

Theorem 9. diamFPjP+2 = 2p — 6 Lfp ^ 16. 

P r o o f . By Theorem 8 and Lemma 1, it suffices to find two graphs Gi ,G 2 G 

FP,P+2 such that |Fa,2| = 5. These graphs are depicted in the following figures: • 

Ci 

Theorem 10. If Gi E FPll<71 and G2 G FP2,g2 then 

d(Gi .G 2 )=t f i+t f2 + |pi - P 2 I - 2 

if and only if the graphs G\, G2 satisfy one of the following two conditions: 
a) One of the graphs G\,G2 is the graph in Fig. 15 and the other graph is arbitrary 

with at least one edge. 
b) One of the graphs G\, G2 is the graph in Fig. 16 having at least 2 components 

K2 and the other graph is either the graph in Fig. 17 or the graph in Fig. 18 with 
at least two edges. 

P r o o f . It is sufficient to take into account that each of the graphs Gi, G2 must 
have at least one edge and at least one of the graphs Gi, G2 cannot contain any 
vertex of degree at least 2. • 
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• • • • • • 

Fig. 15 Fig. 16 

Fig. ľi 

• • • • • • 

Fig. 18 

R e m a r k . Note that Theorem 10 gives the answer to Problems 2 and 6a from [4]. 

L e m m a 1 1 . diam(F5,3 U F5.7) = d i a m F 5 ) 3 + d i a i n F 5 j . 

P r o o f . By Theorems 5 and 3 from [4] we get 

diam F5,3 + diam F5 7 = 2 • diam F5,; ( 2 - 3 - 4 ) = 4. 

Now we show t h a t diam(F553 U F5.7) = 4. This follows from the fact t h a t each graph 
from F553 is a subgraph of a graph from F5.7, which is a consequence of the following 
facts. Firstly, the class F5)3 contains the following four graphs. 

: C <i 
Ғig. 19 

Secondly, if a graph G G F5.7 has a vertex of degree lour then it contains the graph 

in Fig. 20 and if it has no vertex of degree four then it is easy to show that it is 

isomorphic to the graph in Fig. 21. The graphs in Fig. 19 are subgraphs of each of 

the two graphs in Figs. 20, 21. • 

R e m a r k . Lemma 11 gives a partial answer to Problem 4 in [4]. 
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Fig. 20 Fig. 21 
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