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1. PRELIMINARIES

A graph G = (V, E) consists of a non-empty finite vertex set V and an edge set
E. In this paper we consider undirected graphs without loops and multiple edges. A
subgraph H of the graph G is a graph obtained from G by deleting some edges and
vertices; notation: H C G. Every edge * € E can be written in the form z = wuw,
where u,v € V are vertices ccnnected by . By A(G) we denote the maximal degree
of vertices of the graph G. A graph G is a commeon subgraph of graphs G, G, if
there exist graphs H;, H» such that H; C Gy, H, C G, and Hy 2 G, Hy = G. The
maximal common subgraph is the common subgraph which contains the maximal
number of edges.

A distance of the graphs G| = (V1, Ey) and G, = (V4, Es) is defined by

(1) d(G1,Gz) = |Er| + |Ea| = 2|E1 | + V1] — [Val]

where |E1|, |E2|, |[Vi|, |V2| are the cardinalities of the edge sets and the vertex sets,
respectively, and |E) 2| is the number of edges of the maximal common subgraph
G o of the graphs G| and G; (by [1]).

If we identify isomorphic graphs then (1) defines a metric on the set of all (finite)
graphs.

Throughout this paper, by F), ; we denote the set of all graphs with p vertices and
q edges, ¢ > 1. Further, diam F}, ; := max{d(G1,G2):G1,G;2 € F, 4}. If diam F, , =
d(G,H) and ¢, 4 is the number of edges of the maximal common subgraph of the
graphs G, H then

(2) diam Fj, g = 2 — 2¢p 4.
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Obviously, |E; 2| 2 ¢, 4 for any Gy,G3 € F, 4 (¢, ,is the minimal number of edges
of the maximal common subgraph of two graphs from the class F), ).

2. DIAMETER OF A FAMILY OF (iRAPHS
Lemma 1. For any classes F, 4, F}, o1 the following inequalities are satisfied:

Cpg S Cpg4l S Cpg + 2.

Proof. a) First we prove ¢, ; < ¢pq+1. Consider some graphs Gi,Gy € F, j41.
Deleting an arbitrary edge from each of these graphs we obtain graphs G|.G), €
F, 4. Evidently any common subgraph G , of the graphs G'. G is also a common
subgraph of the graphs G|, G'». hence

|Eval > |E 2| 2 ¢y

Since |Ey 2| 2 ¢p,q, for any G|, G2 € F, 41 We get ¢, 41 2 Cpg.

b) We prove that ¢, 441 < ¢pq + 2. Let G1,G2 € [, be graphs such that their
maximal common subgraph G, » satisfies |Ej 2| = ¢,,. To each of the graphs G;. G-
add an arbitrary edge. We obtain graphs G}, G} € F), .41 with a maximal common
subgraph G ,. Thus, there is a subgraph Hj of the graph G and a subgraph H)
of the graph G4 such that H) = G| , = Hj. Obviously. there is at most one edge of
the graph H| (H}) not belonging to the graph G, (G»). Hence we have

! 9
|E1 2] < cpg +2.
which implies
Cpa+1 S Cpg+ 2.
O

Remark. Later on we will show that the inequalities in Lemmma 1 cannot be
strengthened.

Let G be an arbitrary graph from F,, and let ¢ denote the number of edges of
the graph G complementary to G. Obviously,

_prlp-1)
= — —q.
2

=

In this paper we will always denote by ¢ the number of edges of the complementary
graph of any graph with ¢ edges and p vertices.
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Lemma 2. For any p, q¢ (¢ > 1),

Cpg+1 = Cpq +2 iff Cpar1 = Cpa

Proof. Let ¢pqt1 = Cpq + 2. Using (2), Theorem 5 from [4] and again (2), we
. get.

2q — 2¢p,q = diam F, , = diam F}, 3 = 27 — 2¢, 3,

1.e.. ¢ — Cpq = G — Cpg- Further, by (2) we have

diam Fy, 41 = 2(g + 1) — 2¢p q41 = 2¢ — 2¢p 4 — 2,

diam frp,q-H =2(q+1) - QCMT =27 — 2Cp,m - 2.

Since diam F), 41 = diam F), -, we get ¢ — ¢, g = ¢ — ¢, 57, hence ¢, 7 = ¢, 7.
The converse statement is now obvious. ad

Theorem 3. For any class F), 4,

. 1
diam F, ; = 2¢ — 4 iff 51) <g<p-1

Proof. If ip < ¢ < p—1 then diamF,, = 2¢ — 4 (by [4, Theorem 3]). To
prove the converse statement assume first that ¢ > p. We will show that |E 2| > 3
for any graphs G1,Gy € Fp, 4, p > 3.

We distinguish two cases:

a) If A(Gy) > 3 and A(G,) > 3 then both Gy and G2 contain a subgraph iso-
morphic to the graph in Figure 1 (in the sequel we briefly say that they contain the

< YV

Fig. 1 Fig. 2

graph in Figure 1).
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b) Let A(G;) = 2. Then ¢ = p and G, is a regular graph of degree 2. If p = 3
then G; = Gy; if p =4 or p = 5 then both the graphs contain a path of length three;
if p = 6 then both the graphs G; and G contain either the graph in Figure 2 or a
path of length 3 or K’5. If p > 7 then they contain the graph in Figure 2.

It follows that c, 4 > 3, thus diam F}, ; < 2¢ — 6. To complete the proof note that
if ¢ < p then by [4; Theorem 2], diam F, , = 2¢ — 2. a

Corollary 4. If3 < p < ¢ thendiamF, ; < 2¢ - 6.

Theorem 5. diam F}, , = 2p — 6 for any p > 3.

Proof. By Corollary 4 it suffices to find two graphs from the class F} , whose
maximal common subgraph has only 3 edges. Such graphs are depicted in Figure 3
(G, is a circle). O

U W N

G'g .

Fig. 3

Lemma 6. Letq > p andp € {6,7,8}. If G € F,, and A(G) > 4 then G
contains the subgraph in Figure 4.

— e

Fig. 4
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Proof. Let v be a vertex of G of degree A(G) = k, let vy,...,vx be vertices
adjacent to v and wy, ..., wp—k—1 the other vertices of G (if they exist). If G contains
no graph isomorphic to the graph in Figure 4 then it contains neither an edge of type
viv; nor an edge of type v;w;. Therefore the number of all edges of G is at most

) 1
(3) s:Lt+§(p—k—1)(p—k—2).
For the values from the hypothesis we get s < p. O

Theorem 7. If5 < p <9, then diam Fj, 41 =2p — 6.

Proof. 1) Case p=5. By [4; Theorem 4] and Theorem 3 we have
diam Fs ¢ = diam Fs 4 = 24 -4 =2.5—6.

In the remaining cases we first show that |E| 2| > 4 for any graphs G, G2 € Fj, p+1
(i.e., diam Fy, p41 < 2p — 6).

2) Case p = 6. If a graph G € Fg 7 does not contain the graph in Fig. 4 then
by Lemma 6, A(G) = 3. Let its vertex v have degree 3, let vy, vo, vs be vertices
adjacent to v and let w;,w, be the remaining vertices. Since G contains no edge of
type viw;, G is isomorphic to the graph in Fig. 5.

Let G1,G2 € Fg 7. If both the graphs contain the graph in Fig. 4 or are isomorphic
to the graph in Fig. 5, then |E) 2| > 4. Let Gy contain the graph in Fig. 4 and let
G, be isomorphic to the graph in Fig. 5. The graph GG; contains three other edges
and one can check that G; contains at least one of the graphs in Figs. 6, 7, 8. Hence
again |Ey 2| > 4.

Fig. 5 Fig. 6

Fig. 7 Fig. 8
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Fig. 9 Fig. 10

oo o

3) Case p = 7. Similarly as in the previous case one can show that if a graph

G € Fyg does not contain the graph in Fig. 4 then G is isomorphic either to the
graph in Fig. 9 or to the graph in Fig. 10.
If Gy is the graph in Fig. 9 and G is the graph in Fig 10 then evidently |E; »| > 4.
Let GG be one of the graphs in Figs. 9. 10 and let G'» contain the graph in Fig. 1.
Since G2 contains other four edges, G2 again contains at least one of the graphs in
Figs. 6, 7, 8. This yields |E 2| > 4.

4) Case p = 8. Let G € Fyo. A(G) > 4. Obviously, GG contains the graph in Fig. 6

or the graph in Fig. 7. By Lenuna 6, G contains a subgraph isomorphic to the graph
in Fig. 4, too.
Let G € Fgg and A(G) = 3. Let v be a vertex of degree 3, let vy, vy, vz be vertices
adjacent to v and let the remaining vertices be wy, w,, wy, wy. If G does not contain
the graph in Fig. 4 then at lcast two of the remaining six edges are of type v;v;
or at least five of them are of type w;w;. In both cases GG contains the graphs in
Figures 7 and 8. It is obvious that G contains also the graph in Fig. 6. If the graph
G contains the graph in Fig. 4 then it contains other five edges and one can verity
that it contains at least one of the graphs in Figs. 6, 7. 8.

Let G1,Gy € Fyg; it follows from the previous part that 3 and Gy contain at
least one of the graphs in Figs. 4, 6, 7, 8. Therefore |E,| »| > 4.

5) Case p =9. Let A(G) > 4 and let v be a vertex of degree greater than 3. Let
the vertices adjacent to v be ¢y....,vx. If G does not contain the graph in Fig. 6
then k=4 and the graph induced by the vertices v. ¢y, vo. vy, 04 is isomorphic to I\5.

Let A(G) = 3 and let the vertex v have the adjacent vertices oy, vo. vz, We denote
the remaining vertices by wy. .. .. ws. Note that if the graph G did not contain the
graph in Fig. 6 then it would contain at most nine edges (as vy, v2, v3 have degree at
most 3). So every graph G € Fyy o with A(G) = 3 contains the graph in Fig. 6.

Let G1,Gy € Fy10. If A(G)) >4 and A(G2) > 1 orif AG)) = A(G2) =3 then
obviously |E) 2| > 4.
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Let A(Gy) > 4 and A(G-,) = 3 and let G; not contain the graph in Fig. 6. Then &
consists of s and four isolated vertices. Since G contains ten edges, Gy evidently
contains a subgraph with five vertices and at least four edges. Hence again |E| »| > 4.

Finally, it suffices to show that in each of the cases p € {6,7,8,9}, the equality

|E\ 2| =4 is possible. This is the case of the following graphs: O
p=20 @
G1 G'Z
p="T @ .
G| G‘.Z
L]
p=2_8 ° o o
[ ]
Gl Gz
L]
L]
p=9 ° *—o—o
L]
G[ Gy

Theorem 8. Ifp > 16 then diam F, 0y = 2p — 8.

Proof. Let G € F, 41 and let v he a vertex of degree A(G). We denote
the vertices adjacent to v by vy, ...,vx and the remaining vertices (if they exist) hy
Wy, ... Wp—f—1.

1. Let A(G) = 3. Then the subgraph H induced on the set 17— {v. vy, v2,v3} has
at least p — 8 edges. If p— 8 > P;—4, ie.. p > 12, then H has a vertex of degree 2.

671



U3 U3

/
" U2 o V2 I I

U1 U1

Fig. 11 Fig. 12

This yields that G contains the graph in Fig. 11. If p > 12 then the subgraph H has
at least four edges, hence G contains also the graph in Fig. 12.

2. a) If A(G) = 4 and p > 16 then G contains a graph isomorphic to the graph
in Fig. 13, since at most 16 edges can be incident with at least one of the vertices v.
v1, V2, U3, V4. Obviously, the graph G contains also a graph isomorphic to the graph
in Fig. 11 or 12.

b) If A(G) = 5 then the subgraph induced by the set {v,v1,...,vs} contains
at most 15 edges. Since G has at least 17 edges (p > 16) it obviously contains a
subgraph isomorphic to the graph in Fig. 11 or 12 and also a subgraph isomorphic
to the graph in Fig. 13.

c) If A(G) > 6 then G evidently contains the graph in Fig. 13 and also (if p > 9)
the graph in Fig. 11 or 12.

Y

Fig. 13

3. It follows from the previous discussion that if G|,Gy € Fp pt1, p 2> 16, then
|Ev2| 25, ie., diamFp, 41 <2p—8.
For the graphs in Fig. 14 we have |E; 2| = 5, therefore diam F}, ,41 = 2p — 8. ]

Remark. By Theorem 5. diam F,, = 2p — 6 if p > 3 and by Theorem 8.
diam F, ,41 = 2p — 8 if p > 16. Hence the answer to Problem 5 from [4] is negative,
ie.

@1 <q2 < ip(p —1) does not imply diam F, 4, < Fpq,-
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Fig. 14

Theorem 9. diam F, 49 =2p—6 if p > 16.

Proof. By Theorem 8 and Lemma 1, it suffices to find two graphs G;,G> €
F, p+2 such that |E; 5| = 5. These graphs are depicted in the following figures: 0O

S

Gl G2

Theorem 10. IfG; € F,, 4, and Gy € F,, 4, then
d(G1,G2) =q1 + q2 + |[p1 — p2| — 2

if and only if the graphs Gy, G, satisfy one of the following two conditions:

a) One of the graphs G, G4 is the graph in Fig. 15 and the other graph is arbitrary
with at least one edge.

b) One of the graphs Gy, G is the graph in Fig. 16 having at least 2 components
K, and the other graph is either the graph in Fig. 17 or the graph in Fig. 18 with
at least two edges.

Proof. It is sufficient to take into account that each of the graphs G;, G2 must
have at least one edge and at least one of the graphs G;, G, cannot contain any
vertex of degree at least 2. m]
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Fig. 15 Fig. 16

/N,

Fig. 17 Fig. 18

Remark. Note that Theorem 10 gives the answer to Problems 2 and 6a from [4].

Lemma 11. diam(F53U F57) = diam F5 3 + diam F5 7.

Proof. By Theorems 5 and 3 from [4] we get
diam F5 3 + diam F5 7 =2 -diam Fy 3 =2-(2-3 - 4) = 4.

Now we show that diam(F5 35U F5 7) = 4. This follows from the fact that each graph
from F5 3 is a subgraph of a graph from Fj5 7, which is a consequence of the following
facts. Firstly, the class F5 3 contains the following four graphs.

<0 < <<

Fig. 19

Secondly, if a graph G € Fy 7 has a vertex of degree four then it contains the graph
in Fig. 20 and if it has no vertex of degree four then it is casy to show that it is
isomorphic to the graph in Fig. 21. The graphs in Fig. 19 arc subgraphs of each of
the two graphs in Figs. 20, 21. O0

Remark. Lemma 11 gives a partial answer to Problem 4 in [4].
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Fig. 20 Fig. 21
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