Czechoslovak Mathematical Journal

Ivan Chajda; Ivo Rosenberg
 Ideals and congruence kernels of algebras

Czechoslovak Mathematical Journal, Vol. 46 (1996), No. 4, 733-744

Persistent URL: http://dml.cz/dmlcz/127330

Terms of use:

© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

IDEALS AND CONGRUENCE KERNELS OF ALGEBRAS
 I. Chajda, Olomouc, and I. G. Rosenberg, Montreal ${ }^{1}$

(Received December 29, 1994)

§ 1. introduction

The concepts of a normal subgroup, a ring ideal and a lattice ideal were extended by A. Ursini in 1972 to the notion of an ideal in universal algebras with 0 [12]. In their 1984 paper [5] H.-P. Gumm and A. Ursini studied and characterized universal algebras α such that every ideal I of α ist he kernel (i.e. $I=[0] \theta$) for a unique congruence θ of α. Such an algebra is called ideal determined. As it is well-known ideal determined algebras include groups and rings but not all lattices. In this paper we study algebras \mathscr{O} with a weaker property: every ideal of \mathscr{V} is the kernel of some congruence of α. In Theorem 10 we list 8 equivalent conditions for this property. Here three conditions refer to the kernels of congruences generated by certain sets of the form $\{0\} \times S$, one condition to a certain congruence permutability around 0 and three conditions relate ideals and unary polynomials or translations of fundamental operations.

In Corollary 12 we characterize all varieties \mathscr{V} (with a nullary term 0) such that for every $\mathscr{A} \in \mathscr{V}$ each ideal is a congruence kernel. This condition requires that to each at least ternary term $q\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{V} in which x_{1} appears exactly once there exists a term $p\left(x_{1}, \ldots, x_{n}\right)$ of $\%$ satisfying the identities

$$
\begin{gather*}
p\left(0,0,0, x_{4}, \ldots, x_{n}\right)=0 \tag{1}\\
q\left(x, x, y, x_{4}, \ldots, x_{n}\right)=p\left(q\left(y, x, y, x_{4}, \ldots, x_{n}\right), x, y, x_{4}, \ldots, x_{n}\right)
\end{gather*}
$$

Finally, in Proposition 13 we give a Malt'sev type condition for varieties with a nullary term 0 such that each $\mathscr{A} \in \mathscr{V}$ is permutable at 0 (i.e. $[0](\theta \vee \varphi)=\{a \in A$; $\langle 0, x\rangle \in \theta$ and $\langle x, a\rangle \in \varphi$ for some $x \in A\}$).

[^0]Definitions 1. Let $\Delta \checkmark=(\mathcal{A}: F)$ be an algebra and let 0 be a fixed element of \mathcal{A}. Let f be an n-ary term operation of of and let $N \subseteq\{1 \ldots . n\}$. Following [5] call f an N-ideal term operation (or briefly an ideal term operationi) of af if $f\left(a_{1}, \ldots, a_{n}\right)=0$ holds whenever $a_{1}, \ldots a_{n} \in A$ satisfy $a_{i}=0$ for all $i \equiv \lambda$.

For example, let $. \downarrow=(A ;+,-, 0)$ be a ring. Then both $x_{1}+x_{2}$ and $x_{1}-x_{2}$ are $\{1,2\}$-ideal term operations of.γ. Similary $x_{1} \cdot x_{2}$ is an N-ideal term operation of .8 for both $N=\{1\}$ and $N=\{2\}$. Next for a lattice $\mathscr{Z}:=(L: V, \wedge$. 0$)$ with the least element 0 clearly $x_{1} \vee x_{2}$ is an $\{1,2\}$-ideal term operation of \mathscr{L} and $x_{1} \wedge x_{2}$ is an N-ideal term operation of \mathscr{L} for both $N=\{1\}$ and $N=\{2\}$.

Denote by $J_{o \mathcal{S}}$ the set of all ideal term operations of cy. The following fact was noted in [5]:

Proposition 2. The set $J_{a r}$ is: a subclone of the clone of term operations of a'.
Proof. Let $1 \leqslant i \leqslant n$. ('learly the i-th n-ary profection is an \{i\}-ideal term operation. Let $f, g \in J_{\Delta \gamma}$ be m-ary and n-ary. Then f is an M-ideal and g is an N-ideal term operation of A for some $M \subseteq\{1, \ldots m\}$ and $N \subseteq\{1 \ldots, n\}$. It is easy to see that the operation f^{\prime} obtained from f by exchanging its variables also belongs to $J_{s a}$. Similary $J_{\Delta y}$ is closed under any fusion of variables. Finally set $p:=$ $m+n-1$ and define $h:=f *!$ as the p-ary operation on 4 satisfying $h\left(a_{1}, \ldots, a_{p}\right)=$ $f\left(g\left(a_{1}, \ldots, a_{n}\right), a_{n+1} \ldots \ldots\left(a_{p}\right)\right.$ for all $a_{1}, \ldots, a_{p} \in A$. Let $M=\left\{i_{1} \ldots, i_{k}\right\}$ and $\mathcal{M}=$ $\left\{j_{1}, \ldots, j_{1}\right\}$ where $1 \leqslant i_{1}<\ldots<i_{k} \leqslant m$ and $1 \leqslant j_{1}<\ldots<j_{1} \leqslant n$. We have two cases:

1) If $i_{1}=1$ then h is a $\left\{j_{1} \ldots j_{1}, i_{2}+n-1, \ldots, i_{h}+n-1\right\}$-ideal term operation of d.
2) If $i_{1}>1$ the h is an $\left\{i_{1}+n-1, \ldots, i_{k}+n-1\right\}$-ideal term operation.

From Mal'cev's formalism it follows that J_{α} is a clone.
Example 3. Let $d y=(A:+,-, \cdot, 0,\{a: a \in A\}) b e$ an associative and commutative ring (with all possible nullary operations). Let $\left\{F_{1} \ldots \ldots F_{m}\right\}$ be a family of not necessarily distinct subsets of $\{1 \ldots, n\}$. let $\|_{1}, \ldots a_{m} \in A$ and let $r_{i j}$ $\left(i \in\{1, \ldots, m\}, j \in F_{i}\right)$ be positive integers. Further let $N \subseteq\{1, \ldots, r\}$. The polynomial

$$
f\left(x_{1}, \ldots, x_{n}\right): \approx \sum_{i=1}^{m} a_{i} \prod_{j \in F_{i}} r_{j}^{r_{i}^{\prime \prime}}
$$

is an N-ideal term operation of.γ if and only if N meets each $F_{i}(i=1 \ldots \ldots, m)$.
Definition 4. A nonempty subset I of A is an infal of d if for every 11 -ary N-ideal term operation f of $c \gamma$

$$
\begin{equation*}
a_{i} \in I \quad \text { for all } \quad i \in N \Rightarrow f\left(a_{1} \ldots \ldots a_{n}\right) \in I \tag{2}
\end{equation*}
$$

holds for all $a_{1}, \ldots, a_{n} \in A$.

Notice that for rings and lattices this definition agrees with the standard one. Consider a group $\quad \mathbb{V}=\left(A \cdot,^{-1}, 0\right)$. The operations $f\left(x_{1}, x_{2}\right) \approx x_{1} x_{2}^{-1}, g\left(x_{1}, x_{2}\right) \approx$ $x_{1}^{-1} r_{2} . h\left(x_{1}, x_{2}\right) \approx x_{2}^{-1} x_{1} x_{2}$ are N-ideal term operations for N equal $\{1,2\},\{1,2\}$ and $\{1\}$ respectively. It follows that every ideal of $o \delta$ is a normal subgroup of \circ. . Conversely, it is not difficult to verify that every normal subgroup of α is an ideal of .8 .

Denote by $J(\mathscr{\alpha})$ the set of all ideals of $\alpha \mathscr{O}$. The poset $J(\alpha \gamma)=(J(\mathscr{\gamma}), \subseteq)$ is a complete lattice in which

$$
\bigwedge\left\{J_{i} ; i \in I\right\}=\bigcap\left\{J_{i} ; i \in I\right\}
$$

for every subset $\left\{J_{i}\right\}_{i \in I}$ of $J(A)$. Thus for every $S \subseteq A$ the ideal generated by S is the least ideal $I(S)$ of oo containing S. We have the following description of $I(S)$ [5]:

Lemma 5. Let $S \subseteq A$. Then $I(S)$ is the set of all $f\left(a_{1}, \ldots, a_{n}\right)$ where f is an \mathcal{N}-ideal term operation of or and $a_{1}, \ldots, a_{n} \in A$ satisfy $a_{i} \in S$ for all $i \in N$.

Proof. Denote by I^{\prime} the set defined in Lemma 5. Clearly $K^{\prime} \subseteq I(S)$. Moreover, $S \subseteq K$ because id_{A} is a $\{1\}$-ideal term operation. Thus it suffices to show that $\Pi \in J(\propto)$. Let g be an m-ary M-ideal term operation and let $a_{1}, \ldots, a_{m} \in A$ satisfy $a_{k} \in K$ for all $k \in M$.

1) First consider the case $M=\emptyset$. Then g is constant with value 0 and $0=$ $g\left(a_{1}, \ldots, a_{m}\right) \in K$.
$2)$ Thus let $M \neq \emptyset$. Without loss of generality we may assume that $M=$ $\{1, \ldots, p\}$ for some $p \leqslant m$. By the definition of h, for each $1 \leqslant i \leqslant p$ we have $a_{i}=f_{i}\left(b_{i 1}, \ldots, b_{i l_{1}}\right)$ for some L_{i}-ideal term operation f_{i} and $b_{i 1}, \ldots, b_{i l}, \in A$ such that $b_{i j} \in S$ for all $j \in L_{i}(i=1, \ldots, p)$. Set $l: l_{1}+\ldots+l_{p}$ and

$$
L:=\bigcup_{j=1}^{p}\left(L_{i}+l_{1}+\ldots+l_{j-1}\right) \quad(i=1, \ldots, p)
$$

where for every set X of positive integers and a nonegative integer a, the symbol $X+a$ stands for $\{x+a: x \in X\}$. Further define an $(1+m-p)$-ary operation h on A by setting

$$
\begin{aligned}
& h\left(c_{11} \ldots, c_{1 l_{1}}, \ldots, c_{p 1} \ldots, c_{p l_{p}}, c_{l+1}, \ldots, c_{l+m-p}\right):= \\
& \quad:=g\left(f_{1}\left(c_{11}, \ldots, c_{1 l_{1}}\right), \ldots, f_{p}\left(c_{p 1}, \ldots, c_{p l_{p}}\right), c_{l+1}, \ldots, c_{l+m-p}\right)
\end{aligned}
$$

for all $c_{11}, \ldots, c_{p l_{p}}, c_{l+1}, \ldots, c_{l+m-p} \in A$. It is easy to check that h is an L-ideal term operation of A. Finally

$$
g\left(a_{1}, \ldots, a_{m}\right)=h\left(b_{11}, \ldots, b_{p_{l},}, a_{l+1}, \ldots, a_{m}\right) \in K
$$

Notice that for $J_{i} \in J(\mathscr{Q})(i \in I)$ clearly

$$
\bigvee_{i \in I} J_{i}=I\left(\bigcup_{i \in I} J_{i}\right)
$$

and that $\{0\}$ and A are the least and greatest elements of $J(\mathscr{O})$. We abbreviat $I\left(\left\{s_{1}, \ldots, s_{n}\right\}\right)$ by $I\left(s_{1}, \ldots, s_{n}\right)$.

Definition 6. For $S \subseteq A$ and $\varrho \subseteq A^{2}$ the set $[S] \varrho:=\{a \in A:(s, a) \in \varrho$ for some $s \in S\}$ is the hull of S in ϱ. In particular, the set $[0] \varrho:=[\{0\}] \varrho$ is the kernel of $\varrho \cdot A$ subset B of A is a congruence kernel if $B=[0] \theta$ for some congruence θ of $\alpha \%$. The following lemma extends a result from [5].

Lemma 7. If ϱ is a retlexire subuniverse of δ^{2} then the kernel of ϱ is an indeai of $\&$.

Proof. Let f be an 11 -ary N-ideal term of.$/$ and ${ }_{1}, \ldots a_{n} \in A$ satisfy: $a_{i} \in I:=[0] \varrho$ for all $i \in N$. Set $b_{i}:=0$ for all $i \in N$ and $i_{i}:=a_{i}$ otherwise. Then $\beta:=f\left(b_{1}, \ldots, b_{n}\right)=0$ and $\left(b_{i}, a_{i}\right) \in \varrho$ due 0 ($\left(0, a_{i}\right) \in \varrho$ for $i \in N$ ant $\left(a_{i}, a_{i}\right) \in \varrho$ otherwise. Thus for $\alpha:=f\left(a_{1}, \ldots, a_{1}\right)$ we have $(0 . \alpha)=(\beta, a)=$ $\left(f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)\right) \in \varrho$ proving $\alpha \in[0] \varrho$.

For the proof of the next theorem we need the following minute sharpening of a well-known result.

Definiton 8. Let f be an n-ary operation on A, l+ $1 \leqslant i \leqslant n$ and let $a_{1}, \ldots, a_{n} \in$ A. The selfmap r of A defined by

$$
r(x) \approx f\left(a_{1}, \ldots, a_{i-1}, x, a_{i+1} \ldots \ldots, a_{n}\right)
$$

is an i-translation (or shortly a translation) of f. For $. \delta=(A ; F)$ denote by $P\left(. \mathcal{C}^{\prime}\right)$ and $T(\mathscr{A})$ the sets of all unary polynomials of \mathscr{A} and of all translations of operations from F, respectively. Further, let $M(\mathscr{A})$ denote the monoid of selfmaps of A generated by $T(\mathscr{A})$ and set

$$
\mathscr{A}_{P}:=(A ; P(\mathscr{A})), \mathscr{A}_{M}:=(A ; M(\mathscr{A})), \mathscr{\mathscr { A }}_{T}:=(A, T(\mathscr{A})) .
$$

Clearly $\mathscr{A}_{p}, \mathscr{A}_{M}$ and \mathscr{A}_{T} are unary algebras on A and $P(\mathscr{\mathscr { V }}) \supseteq M(\mathscr{A}) \supseteq T(\mathscr{A})$. The following simple example shows that $M(\mathscr{A})$ may be a proper submonoid of $P(\mathscr{A})$.

Let $\mathscr{N}_{5}=\left(N_{5} ; \vee, \wedge\right)$ denote the 5-element nommodular lattice with $N_{5}=$ $\{0, a, b, c, 1\}$ and $0<a<b<1>c>0$. Set $p(x) \approx(x \vee b) \wedge(x \vee c)$. A direct check shows that

$$
p(0)=0, p(a)=p(b)=b, p(c)=c, p(1)=1
$$

Clearly $p \in P\left(\mathcal{N}_{5}\right)$. We show that $p \notin M\left(\mathcal{N}_{5}\right)$. The translations of \mathscr{N}_{5} are the selfmaps $x \mapsto x \vee k$ and $x \mapsto x \wedge k$ with $k \in N_{5}$. Every map from $M\left(\mathcal{A}_{5}\right)$ can be expressed

$$
\begin{equation*}
\left(\ldots\left(\left(x \vee k_{1}\right) \wedge h_{1}\right) \vee \ldots \vee k_{n}\right) \wedge h_{n} \tag{3}
\end{equation*}
$$

for suitable $n>0$ and $k_{1}, \ldots, k_{n}, h_{1}, \ldots, h_{n} \in N_{5}$. Suppose $p \in M\left(\mathscr{N}_{5}\right)$. Choose a representation (3) of p with the least possible n. From $p(1)=1$ we obtain

$$
\begin{equation*}
\left(\ldots\left(h_{1} \vee k_{2}\right) \wedge \ldots\right) \vee k_{n}=1=h_{n} \tag{4}
\end{equation*}
$$

while $p(0)=0$ yields $\left(\ldots\left(k_{1} \wedge h_{1}\right) \vee \ldots \vee k_{n}\right) \wedge 1=0$ i.e.

$$
\left(\ldots\left(k_{1} \wedge h_{1}\right) \vee \ldots\right) \wedge h_{n-1}=0=k_{n}
$$

By the minimality of n we obtain $n=1$ and $p(x) \approx(x \vee 0) \wedge 1 \approx x$. However, this contradicts $p(a)=b$. Thus $p \notin M\left(N_{5}\right)$.

We have:

Lemma 9. Let $\mathscr{A}=(A ; F)$ be an algebra. Then
(i) Con $. \mathscr{\varnothing}=\operatorname{Con} \mathscr{A}_{P}=\operatorname{Con} . \mathscr{Q}_{M}=\operatorname{Con} \cdot \mathscr{Q}_{T}$.
(ii) The following are equivalent for $S \subseteq A$:
(a) S is a block of a congruence of \mathscr{A}.
(b)

$$
S \cap g(S) \neq \emptyset \Rightarrow g(S) \subseteq S
$$

holds for all $g \in P(. \propto)$,
(c) (5) holds for all $g \in M(\mathscr{A})$.

Proof. (i) From $P(\mathscr{A}) \supseteq M(\mathscr{A}) \supseteq T(\mathscr{A})$ and the fact that $P(\mathscr{A})$ is the set of unary polynomials of \mathscr{A} we obtain Con $\mathscr{A} \subseteq \operatorname{Con} \mathscr{A}_{P} \subseteq \operatorname{Con} \mathscr{A}_{M} \subseteq \operatorname{Con} \mathscr{A}_{T}$. To prove Con $\mathscr{A}_{T} \subseteq \operatorname{Con} \mathscr{A}$ let $\theta \in \operatorname{Con} \mathscr{A}_{T}$, let $f \in F$ be n-ary and let

$$
\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) \in \theta
$$

For $i=0, \ldots, n$ set

$$
c_{i}=f\left(b_{1}, \ldots, b_{i}, a_{i+1}, \ldots, a_{n}\right)
$$

and notice that $c_{0}=f\left(a_{1}, \ldots, a_{n}\right)$ while $c_{n}=f\left(b_{1}, \ldots, b_{n}\right)$. For $i=1, \ldots, n$ denote by t_{i} the translation

$$
t_{i}(x) \approx f\left(b_{1}, \ldots, b_{i-1}, x, a_{i+1}, \ldots, a_{n}\right)
$$

As $t_{i} \in T$ and $\theta \in \mathrm{Con} c / T$. we have

$$
\left(c_{i-1}, c_{i}\right)=\left(t_{i}\left(a_{i}\right), t_{i}\left(b_{i}\right)\right) \in H .
$$

By transitivity,

$$
\left(f\left(a_{1}, \ldots . a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)\right)=\left(c_{1}, c_{n}\right) \in \theta .
$$

(Notice that in this standard proof the symmetry of θ has not been used and so (i) holds if we replace Con by Quao where Quao of denotes the set of all compatible quasiorders ($=$ reflexive and transitive relations). The erpuality Quao $d=$ Quaocs'p was observed in [7], p. 10).
(ii) Let $S \subseteq A .(\mathrm{a}) \Rightarrow(\mathrm{b})$: If S is a block of som $H \in \operatorname{Con} .(\mathbb{d}$, then clearly every polynomial g of \mathscr{A} satisfies (5). (b) \Rightarrow (c): Trivial. (c) $\Rightarrow(\mathrm{a})$: Let (5) hold for every $!\}$ $M(\mathscr{O})$. Denote by θ the reflexive and transitive hull of the binary relation $\cup\left\{g\left(S^{2}\right)\right.$: $g \in M(\mathscr{A})\}$. It is easy to verify that $\theta \in \operatorname{Con} . \alpha_{M}$. As Con $\alpha M=\operatorname{Con} \alpha$. by (i). it remains to show that S is a block of θ. As id $A_{A} \in M\left(. \gamma^{\prime}\right)$ clearly $S^{2}=\operatorname{id}_{A}\left(S^{2}\right) \subseteq \theta$. Suppose to the contrary that S is not a block of θ. By the definition of θ there exist $s, s^{\prime} \in S$ and $g \in M(\alpha)$ such that $g(s) \in S$ while $g\left(s^{\prime}\right) \notin S$ in contradiction to (5).

In this paper we study algebras \mathscr{A} with 0 such that every ideal of \mathscr{O} is a congruence kernel. The next theorem characterizes such algebras. As usual, for a binary relation ϱ on A we denote by $C g(\varrho)$ the least congruence of cy containing ϱ. For $\varrho=\{\langle a . b\rangle\}$ we abbreviate $C g(\{a, b\})$ by $C^{\prime}!g(a, b)$.

Theorem 10. The following are equivalent for an algebra $\alpha=(A ; F)$ with 0 :
(i) Every ideal of α is a congruence kernel.
(ii) $I(S)=[0] C g(\{0\} \times S)$ for cevery subset S of A.
(iii) $I(S)=[0] C g(\{0\} \times S)$ for every finite subset S of A.
(iv) $I(S)=[I(S \backslash\{s\})] C g(0, s)$ for every finite noncmpty subset S of A and cach $s \in S$.
(v) For every finite subset $S=\left\{s_{1}, \ldots, s_{n}\right\}$ of A and $H_{i}=C g\left(0, s_{i}\right)(i=1 \ldots \ldots n)$

$$
I(S)=[0]\left(\theta_{1} \circ \ldots \circ \theta_{n}\right) .
$$

(vi) For every ideal I of \propto, all $a, b \in I$ and every $p \in I^{\prime}(. \downarrow)$

$$
p(a) \in I \Rightarrow p(b) \in I .
$$

(vii) For every ideal I of α, all $a, b \in I$ and every $m \in M(. \alpha)$

$$
m(a) \in I \Rightarrow m(b) \in I .
$$

(viii) $p(a) \in I(a, b, p(b))$ for all $a, b \in A$ and every $p \in P(\mathscr{A})$.
(ix) $m(a) \in I(a, b, m(b))$ for all $a, b \in A$ and every $m \in M(. \propto)$.

Proof. (i) \Rightarrow (ii): Let (i) hold and let $S \subseteq A$. The $I(S)=[0] \tau$ for some $\tau \in \operatorname{Conc} . \delta$. Set $\theta:=C g(\{0\} \times S)$. From $S \subseteq I(S)=[0] \tau$ we obtain $\{0\} \times S \subseteq \tau$ and so $[0] \theta \subseteq[0] \tau$. Clearly $S \subseteq[0] \theta$. By Lemma 7 the set $[0] \theta$ is an ideal of of and therefore $I(S) \subseteq[0] \theta$. Together $I(S) \subseteq[0] \theta \subseteq[0] \tau=I(S)$; hence $I(S)=[0] \theta$ proving (ii). Next (ii) \Rightarrow (iii) is trivial.
(iii) \Rightarrow (iv): Let (iii) hold and let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be a finite subset of A. Set $S^{\prime \prime}:=\left\{s_{1} \ldots, s_{n-1}\right\}: K:=I\left(S^{\prime}\right)$ and $\theta:=C g\left(0, s_{n}\right)$.

1) Let $n=1$. Then $I(\emptyset)=\{0\}$. Applying (iii) to $S=\left\{s_{1}\right\}$ we obtain the required $I(S)=[0] \theta=[I(\emptyset)] \theta=\left[I\left(S^{\prime}\right)\right] \theta$.
2) Thus let $n>1$. To prove $I(S) \subseteq\left[I\left(S^{\prime}\right)\right] \theta$ let $w \in I(S)$ be arbitrary. By Lemma 5 we have $w=f\left(a_{1}, \ldots, a_{m}\right)$ for an m-ary M-ideal term operation f of α and $a_{1} \ldots \ldots a_{m} \in A$ such that $a_{i} \in S$ for all $i \in M$. If $M=\emptyset$ then f is constant with value 0 and $w=0 \in\left[I\left(S^{\prime}\right)\right] \theta$. Thus let $M \neq \emptyset$. For notational simplicity let $I=\{1, \ldots, p\}$ for some $1 \leqslant p \leqslant m$. Without loss of generality we may assume that ach s_{i} appears at most once among a_{1}, \ldots, a_{p}. (Indeed, if some s_{i} appears more than once, it suffices to fuse the coresponding variables). We distinguish two cases. (1) Let $n_{n} \notin\left\{a_{1}, \ldots, a_{p}\right\}$. Then $w \in I\left(S^{\prime}\right) \subseteq\left[I\left(S^{\prime}\right)\right] \theta$ and we are done. (2) Thus let $s_{n} \in\left\{a_{1}, \ldots, a_{p}\right\}$, e.g. let $s_{n}=a_{1}$. Set $v:=f\left(0, a_{2}, \ldots, a_{m}\right)$. Again from Lemma 5 and $I\left(S^{\prime}\right)=I\left(S^{\prime} \cup\{0\}\right)$ we obtain that $v \in I\left(S^{\prime}\right)$. Moreover, $(v, w) \in \theta$ because f is a term operation of α. Together we have the required $w \in\left[I\left(S^{\prime}\right)\right] \theta$ and \subseteq. To prove $I\left(S^{\prime}\right) \supseteq\left[I\left(S^{\prime}\right)\right] \theta$ let $w \in\left[I\left(S^{\prime}\right)\right] \theta$. Then $(v, w) \in \theta$ for some $v \in I\left(S^{\prime}\right)$. By (iii) clearly $I\left(S^{\prime}\right)=[0] C g\left(\{0\} \times S^{\prime}\right)$. Thus $(0, w) \in C g\left(\{0\} \times S^{\prime}\right) \vee \theta=C g\left(\{0\} \times S^{\prime}\right) \vee C g\left(0, s_{n}\right)=$ $C^{\prime} g(0 \times S)$. Thus $w \in[0] C g(\{0\} \times S)$ and so by (iii) we have $w \in I(S)$. Thus (iv) holds.
(iv) \Rightarrow (v) Let (iv) hold and let $S=\left\{s_{1}, \ldots, s_{n}\right\} \subseteq A$. For $i=1, \ldots, n$ set $\theta_{i}:=$ $C g\left(0 . s_{i}\right)$ and $S_{i}:=\left\{s_{1}, \ldots, s_{i}\right\}$. From (iv) we get $I\left(S_{1}\right)=[I(\emptyset)] \theta_{1}=[0] \theta_{1}$. By an easy induction we obtain

$$
I(S)=I\left(S_{n}\right)=\left(\ldots\left(\left([0] \theta_{1}\right) \theta_{2}\right) \ldots\right)=[0]\left(\theta_{1} \circ \theta_{2} \circ \ldots \circ \theta_{n}\right) .
$$

$(\mathrm{v}) \Rightarrow(\mathrm{iii})$: Let (v) hold and let $S=\left\{s_{1} \ldots, s_{n}\right\} \subseteq A$. For $i=1, \ldots, n$ set $\theta_{i}:=C g\left(0, s_{i}\right)$. Further set $\sigma:=C g(\{0\} \times S)$ and $K:=[0] \sigma$. Notice that $\sigma=$ $\theta_{1} \vee \ldots \vee \theta_{n}$ (in the lattice of equivalences on A). By Lemma 7 the set K is an ideal of $c \cdot$. Clearly $S \subseteq K^{\prime}$ and whence $I(S) \subseteq I^{\prime}$. To prove $K \subseteq I(S)$ let $v \in K^{\prime}$, i.e. $(0, v) \in \sigma=\theta_{1} \vee \ldots \vee \theta_{n}$. There exist $m \geqslant 1,0=b_{0}, b_{1} \ldots, b_{m}=v$ in A and $j_{0}, j_{1}, \ldots, j_{m-1} \in\{1, \ldots, n\}$ such that $\left(b_{i}, b_{i+1}\right) \in \theta_{j}$, for $i=0, \ldots, m-1$. We need the following:

Claim. $[0]\left(\theta_{1} \circ \ldots \circ \theta_{n}\right)=[0]\left(\theta_{\pi(1)} \circ \ldots \circ \theta_{\pi(n)}\right)$ for every permutation π of $\{1, \ldots, n\}$.

Proof of the claim. Apply (v) to $S=\left\{s_{\pi(1)} \ldots, s_{\pi(n)}\right\}$ to obtain $I(S)=$ $[0]\left(\theta_{\pi(1)} \circ \ldots \circ \theta_{\pi(n)}\right)$.

Jing repeatedly the claim we obtain $(0, v) \in \theta_{1} \circ$. o o H_{1}. hence $v \in[0]\left(\theta_{1} \circ \ldots\right.$. o $\left.\theta_{n}\right)=$ $I(S)$ by (v). Thus $K \subseteq I(S)$ and (iii) holds.
(iii) \Rightarrow (ii): Let (iii) hold and let $S \subseteq A$. Set $\sigma:=\sigma(\{0\} \times S)$. Again by Lemma 7 and $S \subseteq[0] \sigma$ we have $I(S) \subseteq[0] \sigma$. For the converse let $\eta \boxminus[0] \sigma$. Then $(0, v) \in \sigma$. The congruence σ is compactly generated and so $(0,1) \in \sigma^{\prime}:=C g\left(\{0\} \times S^{\prime}\right)$ for some finite subset S^{\prime} of S. From (iii) we obtain $\because \in[0] \sigma^{\prime}=I(S) \subseteq I(S)$. Thas $[0] \sigma \subseteq I(S)$.
(ii) $\Rightarrow(\mathrm{i})$: Trivial. (i) $\Leftrightarrow(\mathrm{vi}) \Leftrightarrow($ vii $):$ Lemma 9 (ii) $(\mathrm{a}) \Leftrightarrow(\mathrm{b}) \Leftrightarrow(\mathrm{c})$.
(vi) \Rightarrow (viii): Let (vi) hold and let $a, b \in A$ and $p \in I^{\prime}(\alpha \gamma)$. Set $I:=I(a, b, p(b))$. As $p(b) \in I$, the condition (vi) yields $p(a) \in I .($ viii $) \Rightarrow(\mathrm{ix})$: Trivial.
$(\mathrm{xi}) \Rightarrow(\mathrm{i})$: Let (ix) hold. Suppose to the contrary that (i) does not hold. Then there exists an ideal S of α which is the kernel of no congrnence of d. By Lemma 9 (ii) $(c) \Rightarrow(a)$ there exist $m \in M(. \vee)$ and $a, b \in S$ such that $m(a) \notin S$ while $m(b) \in S$. Observe that by (ix) we have $m(a) \in I(a, b, m(b): I(S)=S$ in contradiction to $m(a) \notin S$.

Corollary 11. Let of be such that to every two-element subset T of A there exists a binary term operation p_{T} of a' satisfying $p_{T}(0,0)==0$ and $C g(\{0\} \times T) \subseteq C^{\prime} g(0 . t)$ for some $t=p_{T}(a, b)$ with $a, b \in T$. Then every ideal of as is a congruence kernel if and only if $I(x)$ is a congruence kernel for every $x \in A$.

Proof. (\Rightarrow) Obvious. (\Leftrightarrow) Let $I(x)$ be a congruence kernel for all $x \in A$. We need the following:

Claim. For every finite subset S of A we have $C y(\{0\} \times S)=C y(0, s)$ for some $s \in I(S)$.

Proof of the claim. By induction on $n:==|S|$. The claim is evident for $n \leqslant 1$. Thus assume that the claim holds for some $n \geqslant 1$ and let $S=\left\{s_{1}, \ldots, s_{n+1}\right\}$. Set $S^{\prime}:=\left\{s_{1}, \ldots, s_{n}\right\}$. By the induction hypothesis $C^{\prime} g\left(\{0\} \times S^{\prime}\right)=C g\left(0, s^{\prime}\right)$ for some $s^{\prime} \in I\left(S^{\prime}\right)$. Set $T:=\left\{s^{\prime}, s_{n+1}\right\}$ and $\theta:=C g(\{0\} \times T)$. By the hypothesis $\theta \subseteq C g(0, t)$ for some $t:=p_{T}(a, b)$ with $a, b \in T$. Clearly $(0, t)=\left(p_{T}(0,0) \cdot p_{T}(a, b)\right) \in \theta$; whence $C g(0, t) \subseteq \theta$ and $\theta=C g(0, t)$. As $p_{T}(0,0)=0$, clearly p_{T} is an $\{1,2\}$-ideal term operation and so $t \in I(T) \subseteq I(S)$. This concludes the induction step.

For the remaining part, we verify (iii) from Theorem 10 . Let S be a finite subset of A. By the claim and the hypothesis $I(S) \subseteq[0] C g(\{0\} \times S)=[0] C g(0, s)=I(s) \subseteq$ $I(S)$.

For varieties we obtain:

Corollary 12. The following conditions are equivalent for a variety \mathscr{V} of algebras of the same type with a nullary term 0 :
(i) Every ideal of each $\mathscr{A} \in \not \subset$ is a congruence kernel.
(ii) To every $n \geqslant 3$ and each term $q\left(x_{1}, \ldots, x_{n}\right)$ of \mathscr{V} in which x_{1} occurs exactly once, there exists an n-ary term p of ϑ^{\prime} satisfying the following identities:
(6)

$$
\begin{gathered}
p\left(0,0,0, x_{4}, \ldots, x_{n}\right)=0 \\
q\left(x_{1}, x_{1}, x_{2}, \ldots, x_{n-1}\right)=p\left(q\left(x_{2}, x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}\right), x_{1}, \ldots, x_{n-1}\right) .
\end{gathered}
$$

Proof. (i) \Rightarrow (ii): Let (i) hold, let $n>1$ and let $q\left(x_{1}, \ldots, x_{n}\right)$ be an n-ary term of $\%$ in which x_{1} occurs exactly once (e.g. $\left(x_{2} \wedge x_{3}\right) \vee\left(x_{4} \wedge\left(x_{3} \vee\left(x_{1} \wedge x_{2}\right)\right)\right)$ is such a term in the variety of lattices). Denote by \mathscr{Z} the free algebra of \mathscr{V} on $n-1$ generators x_{1}, \ldots, x_{n-1}. For every $z \in Z$ set

$$
\begin{equation*}
m(z):=q\left(z, x_{1}, \ldots, x_{n-1}\right) . \tag{8}
\end{equation*}
$$

it is casy to see that $m \in M\left(\mathcal{Z}^{\prime}\right)$ (in the above example $m=t_{1} \circ t_{2} \circ t_{3} \circ t_{4}$ where $\left.t_{1}(z) \approx\left(x_{1} \wedge x_{2}\right) \vee z, t_{2}(z) \approx x_{3} \wedge z, t_{3}(z) \approx x_{2} \vee z, t_{4}(z) \approx z \wedge x_{1}\right)$. By assumption $\not \mathcal{Z}^{\prime \prime} \in{ }^{\prime}$ satisfies (i) and therefore by Theorem 10 (i) \Rightarrow (iii) the algebra \mathscr{Z} also satisfies (ix). For $a=x_{1}$ and $b=x_{2}$ we obtain $m\left(x_{1}\right) \in I\left(x_{1}, x_{2}, m\left(x_{2}\right)\right)$ where by (8)

$$
m\left(x_{1}\right)=q\left(x_{1}, x_{1}, \ldots, x_{n-1}\right), m\left(x_{2}\right)=q\left(x_{2}, x_{1}, \ldots, x_{n-1}\right)
$$

Set $S:=\left\{x_{1}, x_{2}, q\left(x_{2}, x_{1}, \ldots, x_{n-1}\right)\right\}$. From $m\left(x_{1}\right) \in I(S)$ and Lemma 5 we obtain

$$
q\left(x_{1}, x_{1}, \ldots, x_{n-1}\right)=m\left(x_{1}\right)=g\left(a_{1}, \ldots, a_{k}\right)
$$

where g is an N-ideal term operation of \mathscr{z}^{\prime} and $a_{1}, \ldots, a_{k} \in Z$ satisfy $a_{i} \in S$ for all $i \in N$.

Notice that each $a_{i} \in Z \backslash S$ is of the form $h_{i}\left(x_{1}, \ldots, x_{n-1}\right)$ for some term h_{i} of ϑ. It follows that

$$
g\left(a_{1}, \ldots, a_{k}\right)=p\left(q\left(x_{2}, x_{1}, \ldots, x_{n-1}\right), x_{1}, \ldots, x_{n-1}\right)
$$

for some $\{1,2,3\}$-ideal term operation p of \mathscr{V}. Thus (ii) holds. (ii) \Rightarrow (i): Let (ii) hold, let $\mathscr{A} \in \mathscr{V}$, let $a_{1}, a_{2} \in A$ and let $m \in M(\mathscr{A})$. Then there exists $k \geqslant 1$, a k-ary term $r\left(x_{1}, \ldots, x_{k}\right)$ of \mathscr{V} and $a_{3}, \ldots, a_{k+1} \in A$ such that (1) x_{1} appears at most once in r and (2) $m(x)=r^{\mathscr{A}}\left(x, a_{3}, \ldots, a_{k+1}\right)$ for all $x \in A$ (where, as usualy $r^{\mathscr{A}}$ denotes
the k-ary term operation of A which to arbitrary $b_{1} \ldots . . b_{k} \in A$ assigns the value calculated in of according tor). Set $n:=k+2$ and define the n-ary term q of ${ }^{\prime}$ h

$$
q\left(r_{1} \ldots \ldots, x_{n}\right)=r\left(x_{1}, r_{4}, \ldots \ldots\right)
$$

(i.e. q differs from r onlv in two dummy variables). By (ii) to of there exists an n-arr term p of 4 satisfying (6) and (7). Now

$$
\begin{align*}
& m\left(a_{1}\right)=q^{c t}\left(a_{1} \cdot a_{1}, a_{2}, \ldots, a_{n-1}\right) \tag{*}
\end{align*}
$$

$$
\begin{aligned}
& =p^{c s /}\left(r^{c t}\left(a_{2}, \ldots, a_{n-1}\right) \cdot a_{1}, \ldots .\left(a_{n} 1\right) .\right.
\end{aligned}
$$

According to (6) the operation p^{62} is an $\{1,2,3\}$-ideal term of (o. Now (*) amt Lemma 5 show that $m\left(a_{1}\right) \in I\left(a_{1} . a_{2}, m\left(a_{2}\right)\right)$. Thus (ix) of Theorem 10) is satistien and so (i) holds.

Example 13. 1) Consider the variety of all group- (with the neutral element $0)$. For $n \geqslant 3$ each term $q\left(r_{1} \ldots \ldots x_{n}\right)$ in which x_{1} oc our exactly once is of the form a. $x_{1}^{j} b$ where a and b are terms in x_{2}, \ldots, x_{n} and $j \in\{-1.1\}$. Put

$$
p\left(x_{0}, \ldots, x_{n-1}\right):=r_{n} b^{-1}\left(x_{1}, \ldots, x_{n-1}\right) x_{2}^{\prime} x_{1}^{\prime} b\left(x_{1} \ldots \ldots x_{n-1}\right) .
$$

Clearly p satisfies (6). We rheckit). Abbrevite (. $r_{1} \ldots \ldots r_{n-1}$) by u and set $a:=$ a(11$)$ and $\beta:=b(u)$. Then $q\left(x_{1}, u\right)=a, x_{1}^{j} \beta, q\left(\cdot x_{2}, u\right)=a, r_{2}{ }^{j}$. 3 and

$$
p\left(q\left(x_{2}, u\right), u\right)=q\left(x_{2}, u\right): j^{-1} x_{2}{ }^{-j} x_{1}^{j} \beta=\alpha x_{2}^{j} \beta \beta^{-1} r_{2}^{-} r_{1}^{j}, \beta=\alpha x_{1}^{j} \beta=q\left(x_{1} \cdot u\right)
$$

proving (7). From Corollary 12 we obtain that every group ideal is a congruence kernel. As group ideals are exactly the normal subgronps this is just the elementary fact relating normal subgroups and group congruencers.
2) Consider the variety $\%$ of distributive lattices with 0 . Let $n \geqslant 3$ and let $q\left(x_{1}, \ldots, x_{n}\right)$ be a term of $\%$. Then q can be written as (1) $\left(r_{1} \wedge a\right) \vee b$ or (2) $r_{1} \vee b$ where a and b are terms of $\%$ in variables r_{2}, \ldots, r_{n}. ('onsider the case (1). Set

$$
p\left(r_{1} \ldots \ldots r_{n}\right):=\left(r_{1} \wedge b\right) \vee\left(r_{2} \wedge a\right)
$$

Clearly p satisfies (6). We cheek (7). Again abbreviate (. $i_{1} \ldots x_{n-1}$) by $/ 1$ and a(u) and $b(u)$ by α and β. Now

$$
\begin{aligned}
p\left(q\left(x_{2}, u\right), u\right) & =\left(q\left(x_{2}, u\right) \wedge, \beta\right) \vee\left(x_{2} \wedge \alpha\right)=\left(\left(\left(x_{2} \wedge a\right) \vee ;\right) \wedge \beta\right) \vee\left(x_{1} \wedge a\right)= \\
& =\beta \vee\left(x_{1} \wedge a\right)=q\left(x_{1}, u\right) .
\end{aligned}
$$

The case (2) is similar but simpler.
From Corollary 12 we obtain that every ideal of a distributive lattice is a congruence kemel. This is a known result [4]; in fact, in [4] it is also shown that among lattices only distributive lattices have this property.

Folowing $[2,3,5]$ we say that.α is permutable at 0 if $[0](\theta \circ \psi)=[0](\psi \circ \theta)$ for all $\theta, \imath^{\prime} \in \operatorname{Con} .8$. We have

Proposition 14. Let \because be a variety of algebras of the same type such that 0 is a mullary term of $\%$. Then

1) The following are equivalent:
(i) Every ov $\in \%$ is permutable at 0 .
(ii)

$$
\begin{equation*}
b(x, x) \approx 0, b(x, 0) \approx x \tag{9}
\end{equation*}
$$

for a binary term b of $\%$. and
(iii)

$$
\begin{equation*}
t(x, x, y) \approx y, t(0, x, x) \approx 0 \tag{10}
\end{equation*}
$$

for a ternary term t of $\%$.
2) If $\%$ satisfies one of (i) (iii), then for every $o \delta \in \%$ each ideal of (δ) is a congruence kernel.

Proof. 1) The equivalence of (i)--(iii) is shown in [5] pp. 48-49. 2) Let (iii) hold for $\%$ and let t be a term of $\%$ satisfying (10). Let $\alpha \in \%$ and let I be an ideal of \propto. We verify the condition (vi) of Theorem 10. Let $p \in P(\varnothing)$ satisfy $p(i) \in I$ for some $i \in I$ and let $i^{\prime} \in I$. There exists an m-ary term operation q of \mathscr{Q} and $a_{2}, \ldots, a_{m} \in A$ such that $p(x) \approx q\left(x, a_{2}, \ldots, a_{m}\right)$. Set

$$
s\left(x_{1}, \ldots, x_{m+2}\right): \approx t\left(x_{1}, q\left(x_{2}, x_{4}, \ldots, x_{m+2}\right), q\left(x_{3}, x_{4}, \ldots, x_{m+2}\right)\right)
$$

By the second half of (10)

$$
s\left(0,0,0, x_{4}, \ldots, x_{m+2}\right) \approx t\left(0, q\left(0, x_{4} \ldots, x_{m+2}\right), q\left(0, x_{4} \ldots, x_{m+2}\right)\right) \approx 0
$$

and so s is an $\{1,2,3\}$-ideal term operation of α. By the first half of (10) and the definition of s

$$
p\left(i^{\prime}\right)=t\left(p(i) \cdot p(i), p\left(i^{\prime}\right)\right)=s\left(p(i), i, i^{\prime}, a_{2}, \ldots a_{m}\right)
$$

Here $p(i) . i, i^{\prime} \in I$ and so $p\left(i^{\prime}\right) \in I$ as well.

Example 15. Consider the variety $\%$ of all pseudocomplemented meet-semilatices $\mathscr{A}=(A ; \wedge, *, 0)$ with 0 (i.e. for every $a \in A$ the element a^{*} is the greatest element y such that $a \wedge y=0$). The term $b(x, y): \approx r \wedge y^{*}$ satisfies (9) and therefore cvery ideal of a pseudocomplemented meet-semilattice with 0 is a congruence kernel.

References

[1] Bělohlávek R., Chajda I.: Congruences and ideals in semiloops. Acta Sci. Math. (Эzeged) 59 (1994), 43-47.
[2] Chajda I.: A localization of some congruence conditions in varieties with nullary operations. Annales Univ. Sci Budapest, Sectio Math. 30 (1987), 17-23.
[3] Duda J.: Arithmeticity at 0. ('zech. Math. J 27 (1987). 197-206.
[4] Grätzer G., Schmidt E.T.: Ideals and congruence relations in lattices. Acta Math. Acad. Sci. Hungar. 9 (1958), 137-175.
[5] Gumm H.-P., Ursini A.: Ideals in universal algebras. Algebra Universalis 19 (198.4). 45-54.
[6] Hashimoto J.: Ideal theory folattices. Mathem. Japon. 2 (1952), 149-186.
[7] Larose B.: M. Sc. thesis. Université de Montréal, 1990 .
[8] Mal'tsev A.I.: On the general theory of algebraic systems (Russian). Matem. Sbornik 35 (1954), 3-20.
[9] Matthiessen G.: Ideals, normal sets and congruences. ('olloq. Math. Soc. J. Bolyai Szeged (Hungary) 17 (1975), 295-310.
[10] Raftery J.G.: Ideal determined varieties need not be congruence 3-permutable. Preprint University of Natal, Pietermaritzburg, 1992.
[11] Ursini A.: Sulle varietá di algebra con una buona teoria degli ideali. Boll. U.M.I. (4) 6 (1972), 90-95.

Authors' addresses: I. Chajda, Algebra \& Geometry. Palacký University Olomonc. Tomkova 38, 77900 Olomouc, Czech Republic; I. G. Rosenberg, Math. \& Stat.. L'niversité de Montréal, C.P. 6128 Succ. Centre-ville Montréal, Qué. Canada H3C 3J7.

[^0]: ${ }^{1}$ The financial support provided by NATO Collaborative Research Grant LG 930302 is gratefully acknowledged.

