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IDEALS AND CONGRUENCE KERNELS O F ALGEBRAS 

I. CHAJDA, O lomouc, and I. G. ROSENBERG, Montrea l 1 

(Received December 29, 1994) 

§ 1. INTRODUCTION 

The concepts of a normal subgroup, a ring ideal and a lattice ideal were extended 

by A. Ursini in 1972 to the notion of an ideal in universal algebras with 0 [12]. In 

their 1984 paper [5] H.-P. Gumm and A. Ursini studied and characterized universal 

algebras .c/ such tha t every ideal I of sJ ist he kernel (i.e. I — [0]6) for a unique 

congruence 6 of sV. Such an algebra is called ideal determined. As it is well-known 

ideal determined algebras include groups and rings but not all lattices. In this paper 

we study algebras sV with a weaker property: every ideal of sV is the kernel of some 

congruence of sV. In Theorem 10 we list 8 equivalent conditions for this property . 

Here three conditions refer to the kernels of congruences generated by certain sets of 

the form {0} x S, one condition to a certain congruence permutability around 0 and 

three conditions relate ideals and unary polynomials or translations of fundamental 

operations. 

In Corollary 12 we characterize all varieties y (with a miliary term 0) such tha t 

for every £/ G y each ideal is a congruence kernel. This condition requires tha t to 

each at least ternary term q(x.\,..., xn) of Y in which x\ appears exactly once there 

exists a term p(x\,..., xn) of Y satisfying the identities 

(1) p(0,0,0,x4,...,xn)=0 

q(x, x, y, x4,. . . , xn) = p(q(y, x, y,xA,..., xn),x, y,x4,..., xn). 

Finally, in Proposition 13 we give a Malt'sev type condition for varieties with a 

miliary term 0 such tha t each &/ G Y is permutable at 0 (i.e. [O](0 V (D) = {a G A; 

(0,x) G 0 and (x,a) G <D for some x G A}). 

1 T h e financial suppor t provided by N A T O Co l laborative Research Gran t LG 930 302 is 
gratefully acknowledged. 
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Def in i t ions 1. Let .<y = {A: F) be an algebra and let 0 be a fixed element of A. 

Let / be an /i-ary term operation of xy and let V C { 1. . . . / / } . Following [5] call / an 

N-ideal term operation (or briefly an ideal term opciatiaa) of .(/ if f(ci{ an) = 0 

holds whenever Oi,. . . . an G A satisfy O; = 0 for all /' G X. 

For example, let ,c/ = (A; + . - , •,()) be a ring. Then both X[ + x2 and X{ — x2 ;uv 

{l,2}-ideal term operations of xY. Similary ;ri • T2 is an A'-ideal term operation of 

xY for both IV = {1} and X = {2}. Next for a lattice ¥' = (L; V./VO) with the least 

element 0 clearly x\ V x2 is an {l,2}-ideal term operation of ^ and ./•[ A x2 is an 

IV-ideal term operation of Y/J for both IV = {1} and A' = {2}. 

Denote by J<y the set of all ideal term operations of xy'. The following fact was 

noted in [5]: 

P r o p o s i t i o n 2. The set Jx/ is a subclone of the clone of term operations of xy . 

P r o o f . Let 1 ^ i ^ //. Clearly the i-th //-arv projection is an {/[-ideal term 

operation . Let / , g G J<y be ///-ary and //-ary. Then / is an A/-ideal and g is an 

V-ideal term operation of A for some M C {1 /// [• and jV C { 1 . . . ., / / } . It is 

easy to see tha t the operation / ' obtained from / by (Exchanging its variables also 

belongs to J^/. Similary Jt/ is closed under any fusion of" variables. Finally set // : = 

///. + // — 1 and define h := / * / ; as the p-ary operation on A satisfying b(Oi,. . . , O;)) = 

f(g(au... ,O n ) ,O ? l + i a,,) for all Oi,... ,OP e A. Let M = {ix ik] and A' = 

{/li • • •, .Ji} where 1 ^ i\ < . . . < ik ^ m and 1 ^ j \ < . . . < ]\ ^ n. We have two 

cases: 

1) If i\ = 1 then h is a {j{ j\,h + n — 1 , . . . , /A + // — l}-ideal term operation 

of xy. 

2) If ii > 1 the h is an {/1 + // — 1 , . . . , ik + n - 1 }-ideal term operation. 

From Mal'cev's formalism it follows that J^ is a clone. • 

E x a m p l e 3 . Let xY — (A ;+ ,—,- , 0, {O: O £ A\) bo an associative and com­

mutative ring (with all possible miliary operations). Let {F{ Fm} be a fam­

ily of not necessarily distinct subsets of {1 •//}, let a [,.... am E 4̂ and let r,j 

(i G { 1 , . . . , / ? / } , j G Fi) be positive integers. Further let Ar C {1, /•}. Tlu^ 

polynomial 
ni 

/ ( . / • , . . . . , ; r ; l ) : « ^(H Y[ •>/" 
i = i je/*', 

is an TV-ideal term operation of xY if and only if Ar meets each F; (i — 1 ///). 

De f ini t ion 4. A nonempty subset / of A is an ah al of .c/ if for every //-arv 

V-ideal term operation / of xY 

(2) Oi G / for all i G Ar => /(O i O„ ) G / 

holds for all Oi, . . . , an G A. 
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Notice that for rings and lattices this definition agrees with the s tandard one. 

Consider a group .o/ = (A ; - , - 1 ,0) . The operations / (T i ,T2) ~ £ i # 2 _ 1 , g(xi,x-2) ~ 

.v\~lX2. h(xi,x2) ~ :r2
_1TiT2 are Ar-ideal term operations for Ar equal {1,2}, {1.2} 

and {1} respectively It follows that every ideal of to/ is a normal subgroup of .c/. 

Conversely, it is not difficult to verify that every normal subgroup of *o/ is an ideal 

of .c/. 

Denote by J(.c/) the set of all ideals of .c/. The poset J(,o/) = ( J ( .c / ) ,C) is a 

complete lattice in which 

/\{-Jr,ieI} = f]{jr,iel} 

for every subset {Jy}^/ of «IM). Thus for every S C A the ideal generated by S is 

the least ideal I(5) of .o7 containing S. We have the following description of I(S) 

(51: 

L e m m a 5. Let S C A. Then I(S) is the set of all / ( O i , . . . ,an) where f is an 

X-ideal term operation of .c/ and Oi an G A satisfy Oi G 5 for ail i G Ar. 

P r o o f. Denote by A" the set defined in Lemma 5. Clearly A' C I(S). Moreover, 

5 C Iv because id A is a {l}-ideal term operation. Thus it suffices to show tha t 

A' G J(.o/). Let g be an m-ary jAI-ideal term operation and let O1,...,Om G A 

satisfy ok G A for all A: G jAI. 

1) First consider the case M = 0. Then O is constant with value 0 and 0 = 

(j(ai am) G K. 

2) Thus let M ^ 0. Without loss of generality we may assume tha t M = 

{ 1 , . . . ,p} for some p ^ m. By the definition of A', for each 1 ^ i ^ p we have 
ai — fi(bn,. .. ,bjir) for some L,-ideal term operation fi and bn,. .. ,but G A such 

that bij G 5 for all j G L; (i = 1,. . . ,p). Set /: lY + . . . + lp and 

p 

L:= U(L,-+/- + ... + /;_-) (/ = 1,...,P), 
j=i 

where for every set Ar of positive integers and a nonegative integer O, the symbol 

A' + a stands for {x + a: x G A'}. Further define an (1 + ra — p)-ary operation h on 

A by setting 

l/(rn , Q/ , , . . . ,cpi ,<>/,,, o + i, . . . , r / + m _ / ) ) : = 

:= </(/i (en , • . . , n / i ) , • • • , / / A ^ i < • • • > <V,.)' °i+i - • • ' Q + m-/,) 

for all On,..., cp//(, Q + 1 , . . . , c /+ m _ p G A It is easy to check that h is an L-ideal term 

operation of A. Finally 

O(Oi,... ,O m ) = h(bn,. . . .6 / 1 , / ) ,O /+1 . . . . ,O m ) G A. 

D 
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Notice that for J{ e J(&) (i e I) clearly 

iei iei 

and that {0} and A are the least and greatest elements of J(s^/). We abbreviate 

/ ( { s i , . . . , 5 n } ) by I(sXl...,sn). 

Def in i t ion 6. For 5 C A and g C A2 the set [5]O := JO G A: (s,O) G O for some 

5 e S} is the hull of 5 in O. In particular, the set [0]O := [{0}]O is the kernel of O. A 

subset H of A is a congruence kernel if H = [0]# for SOUK* congruence 0 of .c/. The 

following lemma extends a result from [5]. 

L e m m a 7. If g is a retiexive subuniverse of ,c/2 then the kernel of o is an ideal 

ofsy. 

P r o o f . Let / be an //-ary Ar-ideal term of s/ and u\,....an e A satisfy 

a.j e I := [0]G for all i G A\ Set b3- := 0 for all /' G N and b, := a,- otherwise. 

Then f3 := / ( b i , . . ., b„) = 0 and (b;,Oz) G O due to (0,r/.;) G O for / G N and. 

(Oi,Oi) G O otherwise. Thus for a := / ( O i , . . . , au) we have (O.o) = (/J, n ) = 

( / ( O i , . . . , O n ) , / ( b i , . . . , b n ) ) G O proving a G [0]O. G 

For the proof of the next theorem we need the following minute sharpening of a 

well-known result. 

De f in i ton 8. Let / be an //-ary operation on A, let 1 ^ / $J n and let Oi an G 

A. The selfmap r of A defined by 

r(x) « / ( O i , . . . ,ai-i1x,ai+] an) 

is an i-translation (or shortly a translation) of / . For s/ = (A ;F) denote by P(w') 

and T(sy) the sets of all unary polynomials of «c/ and of all translation^ of opera­

tions from F, respectively Further, let M(s/) denote the monoid of selfmaps of A 

generated by T(s?/) and set 

syP := (A;P(sy)), sfM : = (A;M(.c/)) , s/T := (A,T(sy)). 

Clearly syp, syM and S</T are unary algebras on A and P(s/) D M(sy) D T(.o /) . The 

following simple example shows that M(sy) may be a proper submonoid of P(sV). 

Let .A5 = (IV5;V,A) denote the 5-element noninodular lattice with N5 = 

{0,a,b,C, 1} and 0 < a < b < 1 > c > 0. Set p(x) « (T V b) A (T V C). A 

direct check shows that 

p(0) = 0, ;>(«) = p(&) = b, P(c) = c,P{l) = l. 
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Clearly p G FM'i,)- We show that p g M(,VF)). The translations of ,./*£ are the 

selfmaps x »-> ;r V k and x »-> x A k with k G Ns- Every map from M(<As) can be 

expressed 

(3) ( . . . ( ( : i : V f c i ) A / n ) V . . . V f c n ) A / l n 

for suitable n > 0 and ki,..., kn, hi,... , hn G 1V5. Suppose p G M(,A$). Choose a 

representation (3) of p with the least possible ?/. From p(l) = 1 we obtain 

(4) ( . . . ( / M V f c 2 ) A . . . ) V f c n = l = / in 

while p(0) = 0 yields ( . . . (ki A //.x) V . . . V kn) A 1 = 0 i.e. 

(...(kx A In) V ...) Ahn-i = 0 = kn. 

By the minimality of n we obtain n = 1 and />(:/;) « (T V 0) A 1 « x. However, this 

contradicts p(a) = b. Thus p g M(NF)). 

We have: 

L e m m a 9. Let tc/ = (A\ F) be an algebra. Then 

(i) Con.c/ = Con.c/p = Con,u/A/ — Cor ,e/7-. 

(ii) The following are equivalent for S C A: 

(a) S is a block of a congruence of ±2/, 

(b) 
S n O ( S ) T - 0 ^ > a(S) C S 

holds for all g E P(^), 

(c) (5) hoids for aii g G M ( ^ ) . 

P r o o f , (i) From P(s/) D M(,s/) D F(.c/) and the fact that P(jtf) is the set 

of unary polynomials of &/ we obtain C o n * / C Con &/p C C O I I ^ M C COII.Q/T. To 

prove Con.o^r Q Con .a/ let c? G C o n ^ / r . let / G F be ?i-ary and let 

(O! ,b i ) , . . . , ( a n , b n ) G 0. 

For i = 0 , . . . , n set 

C{ = / ( 6 1 , - > z , a t + i , • • - , « n ) 

and notice that CQ = / ( O i , . . . , an) while c n = / ( b i , . . . , bn). For i = 1 , . . . , n denote 

by ti the translation 

U(x) « / ( b i , . . . , b i _ . i , : v , a i + i , . . . , a n ) . 



As t{ G T and 0 G COIKC/ / . we liave 

(ci-i,Ci) = (l?-(a?-),l;(M> e r\ 

By transitivity, 

(/(fl-i < / « ) , / ( 6 i , . . . , 6 n ) ) = (n>.rM )Gl9. 

(Notice tha t in this standard proof the symmetry of 0 has not been used and so (i) 

holds if we replace Con by Quao where Quao .c/ denotes the set of all compatible 

quasiorders (= reflexive and transitive relations). The equality Quao.c/ = Quao.c//, 

was observed in [7], p. 10). 

(ii) Let S C A. (a)=>(b): If 5 is a block of some 0 G Con .cy\ then clearly every 

polynomial g of ^ / satisfies (5). (b)=>(c): Trivial. (c)=>(;\): Let (5) hold for every g G 

M(sV). Denote by 6 the reflexive and transitive hull of the binary relation \J{g(S2) : 

g G M(ec/)}. It is easy to verify that 0 G Con.c/A/ . As Con.cyu = C o n . c / by (i). it 

remains to show tha t 5 is a block of 6. As id^ G i\/(.c/) clearly S2 = id / i (5 2 ) C 0. 

Suppose to the contrary that S is not a block of 6. By the definition of 0 there exist 

s , s ' G 5 and O G M(.c/) such that g(s) G 5 while O(.s') ^ S in contradiction to (5). 

• 
In this paper we study algebras «G/ with 0 such that every ideal of s/ is a congruence 

kernel. The next theorem characterizes such algebras. As usual, for a binary relation 

Q on A we denote by Cg(g) the least congruence of c/ containing g. For g = {(a. b)} 

we abbreviate Cg({a,b}) by Cg(a,b). 

T h e o r e m 10. The following are equivalent for an algebra s/ = (A\ F) with 0: 

(i) Every ideal of ,c/ is a congruence kernel. 

(ii) I(S) = [0]CO({0} x S) for every subset S of A. 

(hi) I(S) = [0]Ca({0} x S) for every finite subset S of A. 

(iv) I(S) = [I(S \ {s})]Cg(Q,s) for every finite nonempty subset S of A and each 

seS. 
(v) For every Unite subset S = { s i , . . . , sn} of A and #,• — CO(0, s7-) (i = 1 //) 

J (S) = [O] (0 1 o . . . o0 , l ) . 

(vi) For every ideal I of\<y, all a, b G I and every p G P(s/) 

p(a) G I => p(b) G I. 

(vii) For every ideal I of s/', all a, b G I and every /// G AI(.c/) 

m(a) E i" ==> m(b) G I. 
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'vviii) //((/) G I(O, b,p(b)) for all O, b G A mid every p G P(-c/). 

(ix) in (a) G I(O, 6, ?//(b)) for aii O,6 G A and every m G AI(.c/). 

P r o o f . (i)=»(h): Let (i) hold and let 5 C A. The I(5) = [0]T for some 

T G Con.o/. Set (9 := CVy({0} x 5 ) . From 5 C I(5) = [0]T we obtain {0} x 5 C T 

and so [0]f9 C [0]T. Clearly 5 C [O]0. By Lemma 7 the set [0]0 is an ideal of / / 

and therefore 1(S) C [O]0. Together I(5) C [0]9 C [0]T = I(5); hence I(5) = [O]0 

proving (ii). Next (h)=->(ih) is trivial. 

(iii) =->(iv): Let (in) hold and let 5 = {,sL,..., sn} be a finite subset of A. Set 

S' := {.s, 5 a _ i } : Iv := l(S') and 0 :=Cg(0<sn). 

1) Let // = 1. Then I(0) = {0}. Applying (iii) to 5 = {51} we obtain the required 

1(s) = [o]9 = [i(9)]e = [i(s')]o. 
2) Thus let // > 1. To prove I(5) C [1(S')]0 let w G 1(S) be arbitrary. By 

Lemma 5 we have w = f(Oi,. . . , Om) for an /?/-ary M-ideal term operation f of ,(/ 

and a 1 am G A such that O,- G 5 for all i G AI. If M — 0 then / is constant 

with value 0 and w = 0 G [1(S')]0. Thus let AI ^ 0. For notational simplicity let 

M = {I,... .j)} for some 1 ^ p ^ m. Without loss of generality we may assume that 

each s; appears at most once among OL,...,O7,. (Indeed, if some S{ appears more 

than once, it suffices to fuse the coresponding variables). We distinguish two cases. 

(1) Let .s,. (/ {</ . , , . . . ,« , ,} . Then w G l(S') C [1(S')]0 and we are done. (2) Thus let 

sn G {Oi, . . . , O;,}, e.g. let sn = Oi. Set v := f(0,O2,. . . , a m ) . Again from Lemma 5 

and I(5r) = I(5' U {0}) we obtain that v G l(S'). Moreover. (v,w) G 0 because / is 

a term operation of .o7. Together we have the required w G [1(S')]0 and C. To prove 

I(5) D [l(S')]d let w G [I(5,)]rV. Then (/»,H;) G 6> for some U G I(5r). By (iii) clearly 

I(S') = [0]Cry({0}x5 /). Thus (0, w) e Cg({0} x S')w0 = Cg({0} x S')wCg(0, sn) = 

Cg(0 x 5 ) . Thus w G [0]C7y({0} x 5) and so by (iii) we have w G I(5). Thus (iv) 

holds. 

(iv)=4>(v) Let (iv) hold and let 5 = {s{,. . . , sn} C A. For / = 1 , . . . , n set (9;- : = 

Cg(O.si) and 5Z- := {sx, s/}. From (iv) we get I(5t) = [I(0)]fli = [O]0i. By an 

(^asy induction we obtain 

I(S) = l(Sn) = (... (([O]0{ )02)...) = [O](0, o 02 o . . . o 0 n ) . 

(v)-=>(iii): Let (v) hold and let 5 = { s i , . . . , s n } C A. For i = l,...,n set 

0/ := Cg(0,Si). Further set a := Cg({0} x S) and Iv := [0]O. Notice that a = 

0[ V . . . V 0n (in the lattice of equivalences on A). By Lemma 7 the set A' is an 

ideal of .0/. Clearly 5 C Iv and whence I(5) C Iv\ To prove Iv C I(S) let v G Iv\ 

i.e. (0, v) G cr = 0X V . .. V 0,,. There exist ///. ^ 1, 0 = b0, by,. . . , bm = v in A and 

jo,Ii,. • • , j m - i G {I,.. . ,71} such that (b,-,b?-+i) G 0j, for i = 0,...,m - 1. We need 

the following: 
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Claim. [O](0i o . . . o 0n) = [ O ] ^ ^ o . . . o 0n{n]) for every permutat ion x ol 

{ l , . . . , n } . 

P r o o f of t h e c l a i m . Apply (v) to S = {.^in- ••> *w(n)} to obtain I(S) = 

[O](0„ ( 1 )o. . .o6>w ( n ) ) . 

Using repeatedly the claim we obtain (0, v) E 0ie . . o0,,. lience t> E [O](0io.. .o0,.) = 

I(S) by (v). Thus K C I(S) and (iii) holds. 

(iii)=>(ii): Let (iii) hold and let 5 C A. Set a := Ca({0} x S). Again by Lemma 

7 and S C [0]O we have I(S) C [0]O. For the converse let u E [0]O. Then (0, v) E O. 

The congruence O is compactly generated and so (0. v) E O' := Ca({0} x 5') for 

some finite subset S' of 5 . From (iii) we obtain e E [0]O' = I(S) C I(S). Thus 

[ 0 ] O C I ( 5 ) . 

(ii)=>(i): Trivial. (i)<^>(vi)<^>(vii): Lemma 9 (ii) (a)<^(b)<^>(c). 

(vi)=>(viii): Let (vi) hold and let a,b E A and p E FU/). Set I := I(a,b,p(b)). 

As p(b) E I, the condition (vi) yields p(a) E I. (viii)=->(ix): Trivial. 

(xi)=>(i): Let (ix) hold. Suppose to the contrary that (i) does not hold. Then there 

exists an ideal S of sJ which is the kernel of no congruence of .c/. By Lemma 9 (ii) 

(c) => (a) there exist m E i\I(.c/) and a, b E S such that /71(a) ĉ  S while ;H(b) E 5 . 

O b s e n e that by (ix) we have m(a) E I(a, b, m(b): L 1(5) = S in contradiction to 

?/i(a) ^ 5 . D 

C o r o l l a r y 1 1 . Let .c/ be sucii tiiat to eveiy two-eieiijcuf subset T of A there exists 

a binary term operation pT of xv satisfyingPT-(0,0) = 0 auc/ Cg({0} x T) C Ca(0. l) 

foi" some l = PT(CL, b) with a, b E T. Then eveiT idea/ or' .<./ is a congruence kernel if 

and only if I(x) is a congruence kernel for every x E A. 

P r o o f . (=>) Obvious. (<=) Let I(x) be a congruence kernel for all x E A. We 

need the following: 

Claim. For every finite subset 5 of A we have C(j({0} x 5) = Clj(0, s) for some 

s G / ( S ) . 

P r o o f of t h e c l a i m . By induction on n := \S\. The claim is evident for 

n ^ 1. Thus assume that the claim holds for some n ^ 1 and let 5 = {s\,. . . , s n + 1 } . 

Set 5 ' := { s i , . . . , s n } . By the induction hypothesis 0 / ( { 0 } x 5 ' ) = Cg(0, s') for some 

s' E I(5'). S e t T : = { s ' , s / l + 1 } and 0 := Cg({0} x T ) . By the hypothesis 0 C Ca(0,t) 

for some l := pT(a,b) with a, b E T. Clearly (0,l) = (pT(0,0).pT(a,b)) E 0; whence 

Cg(0,t) C 0 and 0 = Cg(0,i). As pr(0,0) = 0, clearly pT is an {l,2}-ideal term 

operation and so t E I(T) C I(5). This concludes the induction step. 

For the remaining part , we verify (iii) from Theorem 10. Let 5 be a finite subset 

of A. By the claim and the hypothesis I(S) C [0}Cg({0} x 5) = [0}Cg(0, s) = I(s) C 

I(S). • 
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For varieties we obtain: 

Corol lary 12. The following conditions are equivalent for a variety Y of algebras 

of the same type with a miliary term 0: 

(i) Every ideal of each &/ E f is a congruence kernel. 

(ii) To every n ^ 3 and each term q(x+,... ,xn) of V in which x\ occurs exactly 

once, there exists an n-ary term p of Y satisfying the following identities: 

•G) / j ( 0 , 0 , 0 , T 4 , cn) = 0, 

(7) q(xi,x\,x2 ,xn-i) = p(q(x2,x\,x2,x3,. . . ,xn-\),X\,.. .,xn-\). 

P r o o f . (i)=>(ii): Let (i) hold, let n > 1 and let q(x+,. . . ,xn) be an n-ary term 

of '/' in which x+ occurs exactly once (e.g. {x2 A x3) V (x4 A (x3 V (x\ A x2))) is 

such a term in the variety of lattices). Denote by t¥ the free algebra of Y on n — 1 

generators x\,. . ., : r n _ i . For every z E Z set 

(8) m(z) := q(z.X\,...,xn-\). 

it is easy to see that m E M{&) (in the above example m = t\ o t2 o t3 o t4 where 

ti(z) « (x+ Ax2) V z, t2(z) « ;*•;, A^ , £3(~) ~ -*'2 V 2, t4(z) « : A x i ) . By assumption 

. ^ E E' satisfies (i) and therefore by Theorem 10 (i)=>(iii) the algebra i ? also satisfies 

(ix). For a = x+ and b = x2 we obtain m(x\) E 7(Ti , :L2,m(:T2)) where by (8) 

m(:vi) = q(xi,x\,...,xn-i), m(x2) = q(x2,X\,.. . ,xn-\). 

Set S := {T i ,J-2,f l(^2,xi , . . . , T , , _ i ) } . From m(x\) E I(S) and Lemma 5 we obtain 

q(x+,x\,. . . ,xn-i) = m(x\) = g(ax,. . .,ak) 

where g is an N-ideal term operation of i£' and a\,. .. ,ak E Z satisfy ai £ S for all 

i E N. 

Notice tha t each a{ E Z \ S is of the form h{(x\,.. . , x-n_i) for some term li; of V. 

It follows tha t 

o ( a i , . . . , ak) = p(q(x2,x\,..., xn-\),X\,.. . , : r n _ i ) . 

for some {1, 2, 3}-ideal term operation p of V. Thus (ii) holds. (ii)=>(i): Let (ii) 

hold, let sf E Y, let Oi,a2 E A and let m E M(&/). Then there exists k ^ 1, a k-ary 

term r ( x i , . . . , Xk) of Y and O3,..., ak+\ E A such tha t (1) x\ appears at most once 

in r and (2) m(x) = rJ2/(x,a3,..., ak+\) for all x E A (where, as usualy r^ denotes 
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the k-ary term operation of A which to arbitrary b\ bA- _ A. assigns the value 

calculated in s./ according to / ) . Set n := k 4-2 and define the //-ary term q of / by 

<l(X\. . . ,.r„) = /•(;/•!,./'.! / ..) 

(i.e. q differs from r onlv in two dummy variables). By (ii) to q there exists an /j-arv 

term /; of /•' satisfying (G) and (7). Now 

(*) ni(cii) = (fc/(u\.u\,a2, . . , a „ _ i ) 

= /Y'y ( ( / t y ( ( / 2 , ( / i , O2. U's, . . . , r/,,, _ i i../ r / , , - , ! 

" - P " t y i / - l / ( ( / 2 , . . . , r t n _ l ) , a l , . . ,r/„ i) . 

According to (G) the operation / / l / is an {1, 2,3}-ideal term of .c>'. Now (*) and 

Lemma 5 show that m(a\ ) 6 I{ai.a2,m(a2)). Thus (ix) of Theorem 10 is satisfied 

and so (i) holds. •__] 

E x a m p l e 1 3 . 1) Consider the variety of all groups (with the neutral element 

0). For y? ^ 3 each term q(x\ r ; i) in which x{ oceurs exactly once is of the form 

ax\b where a and b are terms in x2,. . . , xn and j _ { - 1. 1}. Put 

pC*'o. I'n-i^ •= xulr
{(xi,.. . , : r „ _ i )./'•)" y./'i 'b(x\ T„_i). 

Clearly /; satisfies (6). We check i 7). Abbrevite (xi / „_ [ ) by u and set o := //(//) 

a n d [3 := b(u). T h e n q(x\. u) = <\X\ J/3, q(x2, u) = (\x2
J .1 a n d 

p(q(x2,u),u) = q(x2, u):i~ [ x2 ~JXiJ/3 = ax2
J/J/r' x2 ' 'xy'.l = ax\J;3 = q(xl. //) 

proving (7). From Corollary 12 we obtain that every group ideal is a congruence 

kernel. As group ideals are exactly the normal subgroups this is just the elementary 

fact relating normal subgroups and group congruences. 

2) Consider the variety / ' of distributive lattices with 0. Let n ^ 3 and let 

q(.V[,. . . , xn) be a term of / . Then q can be written as (1) (x\ A a) V b or (2) x\ V b 

where a and b are terms of / in variables x2,. .. ,./•„. Consider the case (1). Set 

P(-n '•») := (-H Ab ) V ( .c , A a). 

Clearly p satisfies (G). We check (7). Again abbreviate (x\ xn-\) by // a n d a(u) 

and b(u) by a and /3. Now 

p(q(x2, / / ) , /t) = (q(x2, u) A A) V (x2 A a) = (((x2 A i\) V ,i) A (3) V (T, A o ) = 

= /. V (.r, A n ) = O(;ri.//). 
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The1 case1 (2) is similar but simpler. 

From Corollary 12 we obtain that every ideal of a distributive lattice is a congru­

ence kernel. This is a known result [4j; in fact, in [4] it is also shown that among 

lattices only distributive lattices have this property. 

Folowmg [2, 3, 5] we say that .c/ is permutable at 0 if [O](0 o 0) = [0](//' o 0) for all 

#, C G COIKC/. We have 

P r o p o s i t i o n 14 . Let Y be a variety of algebras of the same type such that 0 is 

a miliary term of Y. Then 

1) The following are equivalent: 

(i) Every .t/ G Y is permutable at 0, 

Hi) 

(9) b(x,x) « 0 , b(T,0) « ; r 

for a binary term b of 'lx, and 

(iii) 

(10) t(x,x,y)^ip t(0,x,x)*0 

for a ternary term t of Y. 

2) If Y satishes one of (i) • (iii), then for every .c/ G Y each ideal of .o/ i.s a 

congruence kernel. 

P r o o f . 1) The equivalence of (i)—(iii) is shown in [5] pp. 48-49. 2) Let (iii) hold 

for Y and let t be a term of Y satisfying (10). Let .c/ G Y and let I be an ideal 

of .c/. We verify the condition (vi) of Theorem 10. Let /; G P(&V) satisfy p(i) G I 

for some / G I and let i' G I. There exists an m-ary term operation q of JV and 

a2 am G A such tha t p(:r) « O;(x, a 2 , . . . , a m ) . Set 

.s(.n, . . . ,:z:m+2) : « l(.rL, O(T2, ^4, • • • , ̂ m + 2 ) , q(x3, x4, . . . , x \ n + 2 ) ) . 

By the second half of (10) 

. s ( 0 A ) , 0 , T 4 , . . . , : r m + 2 ) &t(Q,q(0,X4....,xm+2),q(0,xA....,xm+2)) ^ 0 

and so .s is an {1, 2, 3}-ideal term operation of sV. By the first half of (10) and the 

definition of s 

p(i') =t(p(i).p(i),p(i')) =s(p(i)J,i',a2,....am). 

Here p(i).i,i' G I and so p(i') G I as well. • 
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Example 15. Consider the variety y of all pseudocomplemented meet-semi-

latices sz/ — (A;A,*,0) witli 0 (i.e. for every a G A tin1 element a* is the greatest 

element y such that a Ay — 0). The term b(x,y) :« .r A //* satisfies (9) and therefore 

every ideal of a pseudocomplemented meet-semilattice with 0 is a congruence kernel. 
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[-. 

[3 

н: 
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[e: 
[-
[»: 
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