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§ 1. INTRODUCTION

The concepts of a normal subgroup, a ring ideal and a lattice ideal were extended
by A. Ursini in 1972 to the notion of an ideal in universal algebras with 0 [12]. In
their 1984 paper [5] H.-P. Gumm and A. Ursini studied and characterized universal
algebras «/ such that every ideal I of «/ ist he kernel (i.e. I = [0]d) for a unique
congruence ¢ of «/. Such an algebra is called ideal determined. As it is well-known
ideal determined algebras include groups and rings but not all lattices. In this paper
we study algebras « with a weaker property: every ideal of o/ is the kernel of some
congruence of /. In Theorem 10 we list 8 equivalent conditions for this property.
Here three conditions refer to the kernels of congruences generated by certain sets of
the form {0} x S, one condition to a certain congruence permutability around 0 and
three conditions relate ideals and unary polynomials or translations of fundamental
operations.

In Corollary 12 we characterize all varieties » (with a nullary term 0) such that
for every & € ¥ each ideal is a congruence kernel. This condition requires that to
each at least ternary term g(xy,...,2,) of ¥ in which z; appears exactly once there
exists a term p(z1,...,z,) of ¥ satisfying the identities

(1) 2(0,0,0,24,...,2,) =0
‘I(l" :l:v Z/’ I47 e sx‘ll) = p(‘](y~ ‘T’ ya LL‘4, MR} :L‘n)y Z’, y7 1747 M ,xn)~
Finally, in Proposition 13 we give a Malt’sev type condition for varieties with a

nullary term 0 such that each & € ¥ is permutable at 0 (i.e. [0]J(6 V ¢) = {a € 4;
(0,2) € 8 and (x,a) € ¢ for some z € A}).

' The financial support provided by NATO Collaborative Research Grant LG 930 302 is
gratefully acknowledged.
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Definitions 1. Let «/ = (: F) be an algebra and let 0 be a fixed element of 1.

Let f be an n-ary term operation of o and let N C {1... .n}. Following [5] call f an
N-ideal term operation (or briefly an ideal term operation) of .« if f(ay.. ... ay) =0
holds whenever «y,. ... a, € A satisfy a; =0 for all / = \.

For example, let .« = (A:+.—,-,0) be a ring. Then both @y + @y and xp — 0 are
{1,2}-ideal term operations of «/. Similary x; - r» is an N-ideal term operation of
« for both N = {1} and .V = {2}. Next for a lattice "= (L:V.A.0) with the least
element 0 clearly @y V ay is an {1, 2}-ideal term operation of .2 and oy A vy is an
N-ideal term operation of .Z for both N = {1} and .\ = {2}.

Denote by J. the set of all ideal term operations of «/. The following fact was
noted in [5]:

Proposition 2. The set .J., is a subclone of the clone of term operations of .« .

Proof. Let 1 < i < n. Clearly the i-th n-ary projection is an {/}-ideal term
operation. Let f,¢g € Jy be m-ary and n-ary. Then f is an M-ideal and ¢ is an
N-ideal term operation of A for some A C {1,....m} and N C {1l....,n}. It is
casy to see that the operation f’ obtained from f by exchanging its variables also
belongs to Jo/. Similary J is closed under any fusion of variables. Finally set p:=

m-+n—1and define i := f*¢ as the p-ary operation on A satisfying h(ay.. ... ap) =
flglar,...,an),angq ... a,) tor all ay,...,a, € A Let M = {ij..... ir} and N =
{Ji,.. i} where 1 <iy < ... <ip<mand 1< j; <...<j; <n We have two
cases:

1)Ifip=1then hisa {j..... Jisia+n—1,....0) +n—1}-ideal term operation
of .

2) If iy > 1 the his an {iy +n — 1,... ik +n — 1}-ideal term operation.

From Mal’cev's formalism it follows that J is a clonc. O

Example 3. Let o = (4:+,—,-,0,{a: @ € :1}) he an associative and com-

mutative ring (with all possible nullary operations). Let {F,.... .} be afam-
ily of not necessarily distinct subsets of {1..... niolet ap,.ooiay € A and let
(i € {1,....m}, j € F;) be positive integers. Further let NV C {1..... r}. The
polynomial

m

f(.l'[ e ,.l‘,l) = Z(I.i H .l"i"

i=1 Jjel,

is an N-ideal term operation of .« if and only if N meets cach F; (i =1..... m).

Definition 4. A nonempty subset [ of A is an idcal of & if for every n-ary
N-ideal term operation f of «/

(2) a; €I forall i€ N= flap..... ay) €1

holds for all a,....,a, € .
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Notice that for rings and lattices this definition agrees with the standard onc.
Consider a group o = (A:-,=".0). The operations f(xy,x2) = 212271, g(ay,19) =
oy o by, ) = ay Ty are N-ideal term operations for N equal {1.2}, {1.2}
and {1} respectively. It follows that every ideal of & is a normal subgroup of /.
Conversely, it is not difficult to verify that every normal subgroup of « is an ideal
of .

Denote by J(o/) the set of all ideals of /. The poset J(.«/) = (J(&/),C) is a
complete lattice in which

N{Jiviely=({Ji:iiel}
for every subset {J;}ies of J(A). Thus for every S C A the ideal generated by S is
the least ideal 1(S) of o containing S. We have the following description of I(.5)
5):

Lemma 5. Let S € A, Then I(S) is the set of all f(ay,...,a,) where f is an
N-ideal term operation of v/ and ay, .. .. a, € A satisfy a; € S for alli € N.

Proof. Denote by I the set defined in Lemmma 5. Clearly ' C I(S). Moreover,
S C I because idy is a {1}-ideal term operation. Thus it suffices to show that
LK € J(</). Let g be an m-ary M-ideal term operation and let aj,...,a,, € A
satisfy ap € IV for all k € M. ‘

1) First consider the case A/ = @. Then ¢ is constant with value 0 and 0 =
glay, ..., am) € K.

2) Thus let M # @. Without loss of generality we may assume that M =
{1.....p} for some p < m. By the definition of I\, for each 1 < i < p we have
a; = fi(bir....,biy) for some L;-ideal term operation f; and b;y,...,0y, € A such
that b;; € Sforall je€ L; (i =1,...,p). Set l: 1, +...4+1, and

P
L= JLi+h+...+4) (i=1,....p),

=1
where for every set X of positive integers and a nonegative integer a, the symbol
X + a stands for {@ + a: @ € X'}. Further define an (1 + m — p)-ary operation /i on
A by setting
/)((’1 Leoo oy Cllpy oo s Cplae ooy ('])I,.‘('H—l‘ ey ('[+,,,_l,) =

= (/(jl (('ll §oee e (4”1 )’ ey f])((.[ll D) ('pll,), Clgls- - -,(.l-f—nl—p)
forall cyy,...,¢p ., Clu1y. .., Clam—p € A. It is casy to check that / is an L-ideal term

pPlp + + b )

operation of A. Finally

g(“'la . ,(L,,,) = ]L(b“, RN bl'/,w“[—*—l [P ,(l.v,,l) cIy.

=1
(%)
[\



Notice that for J; € J(&/) (i € I) clearly

\/Ji:I(UJ,-)

iel i€l

and that {0} and A are the least and greatest elements of J(o/). We abbreviate
I({s1,..-y8n}) by I(s1,....5.).

Definition 6. For S C 4 and ¢ C A? the set [S]o := {a € A: (s,a) € p for some
s € S}is the hull of S in p. In particular, the set [0]o := [{0}]o is the kernel of ¢. A
subset B of A is a congruence kernel if B = [0]8 for some congruence 6 of «/. The
following lemma extends a result from [5].

Lemma 7. If g is a reflexive subuniverse of o/ then the kernel of p is an ideai
of /.

Proof. Let f be an n-ary N-ideal term of « and ay,.... a, € A satisfv
a; € I :=[0]p for all i € N. Set b; := 0 for all / € N and 0, := a; otherwisc.
Then 3 := f(by,....b,) = 0 and (b;,a;) € o due to (0,a;) € o for i € N and

(aiya;) € p otherwise. Thus for a = f(a,..., «,,) we have (0.a) = (J.a) =
(flar,...,an), f(b1,...,0,)) € p proving «a € [0]o. G

For the proof of the next theorem we need the following minute sharpening of a
well-known result.

Definiton 8. Let f be an n-ary operationon A, let 1 <7 < nandletay..... a, €
A. The selfmap r of A defined by

(@) = flay, ... Qie1, T Qg )

is an i-translation (or shortly a translation) of f. For «/ = (A: F') denote by P(.<)
and T'() the sets of all unary polynomials of ' and of all translations of opera-
tions from F, respectively. Further, let M (/) denote the monoid of selfmaps of A
generated by T'(«/) and set

p = (A; P(). Sy = (A; M()). Sy = (A, T()).

Clearly @, /) and @/ are unary algebras on A and P(«/) D M (&) 2 T(«/). The
following simple example shows that M (&) may be a proper submonoid of P(.&/).

Let A5 = (Ns;V,A) denote the 5-element nonmodular lattice with N5 =
{0,a,b,c,1} and 0 < a < b <1 > ¢ > 0. Set plr) = (xVbA(xVe). A
direct check shows that

p(0) = 0, p(a) = p(b) = b, p(c) = ¢, p(1) = 1.
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Clearly p € P(.45). We show that p € M(.45). The translations of .45 are the
selfmaps o — a2V k and x — & Ak with & € Ny. Every map from M(.435) can be
expressed

(3) (. ((@VE)ADM)V ... VEL) A Dy

for suitable n > 0 and Ay, ... .k, Iy, ...,y € N5. Suppose p € M(A5). Choose a
representation (3) of p with the least possible n. From p(1) = 1 we obtain

(4) (.0 VEIAN.)VE, =1=1],
while p(0) =0 yields (... (ki Aly) V... V) Al =01ie.
(iR ARV ) ANDyoy =0 =k,

By the minimality of n we obtain n = 1 and p(x) = (x V 0) A1 = 2. However. this
contradicts p(a) = b. Thus p & M(Ns).

We have:

Lemma 9. Let & = (A: F') be an algebra. Then
(i) Con«/ = Con &/p = Con ./ay = Con .ofp.
(i1) The following are equivalent for S C A:

(a) S is a block of a congruence of &/

(b)

SNg(S)Y#0=g(S)CS
holds for all g € P(<&/),
(c) (5) holds for all g € M ().

Proof. (i) From P(%/) O M(%/) 2 T(«/) and the fact that P(&/) is the sct
of unary polynomials of & we obtain Con.¥ C Con &p C Con &y C Conay. To
prove Con @/ C Con & let 8 € Con o7, let f € F be n-ary and let

("’lvbl)a sy (an«,bn) € 9

Fori=0,...,n set
ci = f(by,....0i,Qi41,...,an)
and notice that ¢o = f(ai,...,a,) while ¢,, = f(b1,...,0,). For i =1,...,n denote

by t; the translation

ti(x) = f(br,...,bim1,2,Qi41,...,an).

=~
w
=1



Ast; € T and 6 € Con /. we have
(cimr.ci) = (ti(aq), ti(bi)) € ¢,

By transitivity,
(.f(('l """ ”n,)-, f(bls ceey bn)) - ("l)- ('n) €h.

(Notice that in this standard proof the symmetry of # has not been used and so (1)
holds if we replace Con by Quao where Quao «/ denotes the set of all compatible
quasiorders (= reflexive and transitive relations). The equality Quao.o/ = Quao «/p
was observed in [7], p. 10).

(ii) Let S C A. (a)=(b): If S is a block of some # € Con ./, then clearly cvery
polynomial g of & satisfies (5). (b)=>(c): Trivial. (c)=(a): Let (5) hold for every g €
M (/). Denote by 6 the reflexive and transitive hull of the binary relation [J{g(5):
g € M(&/)}. It is easy to verify that § € Con&);. As Con/yy = Con /. by (i). it
remains to show that S is a block of 8. As id4 € M (/) clearly S? = id 4(S?) C 4.
Suppose to the contrary that S is not a block of . By the definition of 6 there exist
s,s' € S and g € M(/) such that g(s) € S while ¢g(s') ¢ S in contradiction to (5).

O

In this paper we study algebras & with 0 such that every ideal of &/ is a congruence
kernel. The next theorem characterizes such algebras. As usual, for a binary relation
o on A we denote by Cg(p) the least congruence of « containing g. For g = {(a.0)}
we abbreviate Cg({a,b}) by C'y(a,b).

Theorem 10. The following are equivalent for an algebra o/ = (A; F') with 0:
(i) Every ideal of «/ is a congruence kernel.
) I(S) =[0]Cg({0} x S) for every subset S of .
(i) I(S) =[0]Cg({0} x S) for every finite subset S of .
) I(S) = [I(S\ {s})]Cyg(0,s) for every finite noncupty subset S of A and cach
s€eS.
(v) For every finite subset S = {s1,...,s,} of A and #; = Cy(0,s;) (i =1..... n)
I(S) =[0](fy0...08,).
(vi) For every ideal I of «/, all a,b € I and every p € (/)
p(a) € I = p() € 1.

(vii) For every ideal I of </, all a,b € I and every m € M (/)

m(a) € I = m(b) € I.



wviil) pla) € Ia.b,p(b)) for all a,b € A and every p € P(&/).
(ix) m(a) € I(a,b.m(b)) for all a,b € A and every m € M (/).

Proot. (i)=(i): Let (i) hold and let S € A. The I(S) = [0]7 for some
7€ Cona/. Set 6 := Cg({0} x S). From S C I(S) = [0]7 we obtain {0} x S C 7
and so [0]8 C [0]r. Clearly S C [0]6. By Lemma 7 the set [0]6 is an ideal of </
and therefore I(S) C [0]0. Together 1(S) C [0]¢ C [0]7 = I(S); hence I(S) = [0]0
proving (ii). Next (il)=-(iii) is trivial.

(ii)=>(iv): Let (iii) hold and let S = {s;,....s,} be a finite subset of 4. Sct
Shi= s Sn—1}: N = 1{(S") and 6 := Cg(0.s,,).

1) Let v = 1. Then I(9) = {0}. Applyving (iii) to S = {s;} we obtain the required
105) = [0]6 = [I)}6 = [1(s")}6.

2) Thus let n > 1. To prove I(S) C [I(S")]0 let w € I(S) be arbitrary. By
Lemma 5 we have w = f(ay,...,ay) for an m-ary A -ideal term operation f of «/
and ap... .. a,, € A such that a; € S for all i € M. If M = () then f is constant
with value 0 and w = 0 € [I(S")]f. Thus let M # ). For notational simplicity let
M =A1,.... p} for some 1 < p < m. Without loss of generality we may assume that
cach s; appears at most once wmong «j....,a,. (Indeed, if some s; appears more
than once. it suffices to fuse the coresponding variables). We distinguish two cases.
(1) Let s, & {ay,....a,}. Then w € I(S") C [I(S")]0 and we are done. (2) Thus let
s, € dag, ap}, eg. let s, = ay. Set v:= f(0,as....,a,). Again from Lemma 5
and [(S") = [(S"U{0}) we obtain that v € 1(S"). Morcover. (v,w) € 6 because f is
aterm operation of «/. Together we have the required w € [I(S)]6 and C. To prove
I1(S) D [1(S"))6 let w € [I(S")]F. Then (v,w) € # for some v € I(S"). By (iii) clearly
[(S") =[0]Cg({0} xS"). Thus (0,w) € Cy({0} xS")v8 = Cyg({0} xS")vCyg(0,s,) =
C'y(0 x S). Thus w € [0]Cg({0} x S) and so by (iii) we have w € I(S). Thus (iv)
holds.

(iv)=(v) Let (iv) hold and let S = {sy,...,s,} C 4. Fori =1,...,n sct 6; :=
Cy(0.5;) and S; = {s1,...,: s;i}. From (iv) we get I(S,) = [1(0)]6; = [0]6,. By an

casy induction we obtain

~
W

=
Il
~
n
Il

(.. (([0]6)82) ...) = [0](By 0Bz 0...08,).

(v)=(iii): Let (v) hold and let S = {s;....,s,} € A. Fori = 1,...,n sct
0; = Cg(0,s;). Further set 0 := Cg¢({0} x S) and I\ := [0]o. Notice that ¢ =
B V...V, (in the lattice of ecquivalences on A). By Lemma 7 the set I is an
ideal of «/. Clearly S C K and whence I(S) C Iv. To prove IS C I(S) let v € I\,
re. (0bv) € o =6, v...Vvé,. Thereexist m > 1.0 = bg,by....,b,, = v in A and
JOaJlee s Jm—1 € {1,..., n} such that (0, 0i41) € 65, fori =0,...,m — 1. We need
the following:
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Claim. [0](0) o ... ¢ 8,) = [0](fx1) © ... 0 fr,)) for every permurtation 7 ol

Proof of the claim. Apply (v) to S = {s;(1). ...5zn)} to obtain I(S) =
[O](gﬂ(l) ©0...0 97‘.(”)),

Jsmg repeatedly the claim we obtain (0,v) € f,0.. of.,. hence v € [0](8,0...08,) =
I(S) by (v). Thus K C I(S) and (iii) holds.

(iii)=>(ii): Let (iii) hold and let S C A. Set o := ("¢({0} x S). Again by Leuuna
7 and S C [0]o we have I(S) C [0]o. For the converse let v < [0]o. Then (0,v) € o
The congruence o is compactly generated and so (0.1) € o' := Cg({0} x S’") for
some finite subset S’ of S. From (iii) we obtain v € [0]¢’ = I(S) C I(S). Thus
[0]o C I(S).

(i1)=>(1): Trivial. ()< (vi)<(vii): Lemma 9 (i) (a)<(h)e(c).

(vi)=(viii): Let (vi) hold and let a,b € A and p € (/). Set I := I(a.b.p(b)).
As p(b) € I, the condition (vi) vields p(a) € I. (viii)=(ix): Trivial.

(xi)=>(1): Let (ix) hold. Suppose to the contrary that (i) does not hold. Then there
exists an ideal S of «/ which is the kernel of no congruence of /. By Lemma 9 (ii)
(¢) = (a) there exist 1 € M(«/) and a,b € S such that m(a) € S while m(b) € S.
Observe that by (ix) we have m(a) € I(a,b,m(b)} Z [(S) = S in contradiction to

m(a) €S. -

Corollary 11. Let ./ be such that to every two-clement subset T of A there exists
a binary term operation py of «v satisfying pr(0.0) == 0 and Cg({0} x T') C C'g(0. 1)
for some t = pr(a,b) with a,b € T. Then every ideal of «¥ is a congruence kernel if
and only if I(x) is a congruence kernel for every v € .

Proof. (=) Obvious. (<) Let I(a) be a congruence kernel for all « € A. We
need the following:

Claim. For every finite subset S of A we have C'¢({0} x S) = C¢(0. s) for some
s € I(S).

Proof of the claim. By induction on n :== |S]. The claim is evident for
n < 1. Thus assume that the claim holds for some n > L and let S = {s1,..., 5,41}
Set S’ := {s1,...,s,}. By the induction hypothesis C'¢({0}xS") = Cy(0, s) for some
s' € I(S"). Set T :={s'.sp41} and 8 := Cg({0} xT'). By the hypothesis § C Cg(0.t)
for some t := pr(a,b) with a,b € T. Clearly (0,t) = (p1(0,0).pr(a,b)) € 8; whence
Cg(0,t) € 0 and 8 = Cyg(0,t). As pr(0,0) = 0, clearly pr is an {1,2}-ideal term
operation and so t € I(T") C I(S). This concludes the induction step.

For the remaining part, we verify (iii) from Theorem 10. Let S be a finite subset
of A. By the claim and the hypothesis I(S) C [0]Cy({0} x S) =[0]Cg(0,s) = I(s) C
I(S). O
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For varieties we obtain:

Corollary 12. The following conditions are equivalent for a variety ¥ of algebras
of the same type with a nullary term 0:

(i) Every ideal of each & € /" is a congruence kernel.

(ii) To every n > 3 and each term ¢(xy,...,x,) of ¥ in which z, occurs exactly
once, there exists an n-ary term p of ¥ satisfying the following identities:

6) [)(0» 0,0..17.1, ..... Cn) = O’

(7) gy, a0, ) = plg(eo, 1, 20,283, oo, 1)y X1y e e oy Tney)-

Proof. (i)=(ii): Let (i) hold, let n > 1 and let ¢(xy,...,x,) be an n-ary term
of 77 in which @y occurs exactly once (e.g. (r2 A ag) V (za A (a3 V (21 A 232))) is
such a term in the variety of lattices). Denote by 2 the free algebra of ¥ onn — 1
generators 'y, ..., ry—1. For every 2 € Z set

(8) m(z) i =q(z,r1,..., Tpo1).
it is casy to see that m € M (%) (in the above example m = t; o tg o t3 o t4 where
fiz) = (@A) Ve, ta(z)mag Az, t3(z) =y V oz, ty(z) = 2 Axy). By assumption

2 € Y satisfies (i) and therefore by Theorem 10 (i)=>(iii) the algebra 2 also satisfies
(ix). For a =, and b = @2 we obtain m(x;) € I(vy.x2,m(x2)) where by (8)

m(xy) = q(xy, 21, Tnet)y m(x2) = q(x2, 1, ..., Tnoy).
Set S := {xy, 2, q(xa,x1,...,0y—1)}. From m(a;) € I(S) and Lemma 5 we obtain
gz, a1, .. xn—y) = m(ay) = g(ay, ..., ax)
where g is an N-ideal term operation of 2" and ay,...,ax € Z satisfy a; € S for all
i€ N.

Notice that each a; € Z\ S is of the form h;(xy,...,x,_1) for some term h; of ¥.
It follows that

glay,...,ar) = p(g(2, 1y ooy Tne1)y X1y v oy Tnet)-

for some {1,2,3}-ideal term operation p of ¥. Thus (ii) holds. (ii)=>(i): Let (ii)
hold, let @ € ¥, let a;,a; € A and let m € M (). Then there exists k > 1, a k-ary
term r(xy,...,2x) of ¥ and ag, ...,ax4+1 € A such that (1) z; appears at most once
in 7 and (2) m(z) = r9(z,as,...,axy1) for all z € A (where, as usualy r¥ denotes
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the A-ary term operation of A which to arbitrary ;... .. by € 4 assigns the value
caleulated in &/ according to r). Set no= Ak +2 and detine the n-ary term g of 7 by

qler. o) =r(epaeg,. o)

(i.c. ¢ differs from r onlv i two dummy variables). By (i1) to ¢ there exists an n-arv
term p of 77 satistying (0} and (7). Now

(%) m((:l):q“/(ul.ul,uz,.. Cn—1)

=P g (o, ay, @ az, ooy, oy (Ipy_y)

— ['.(/ ( ,,.(/(

(I;g..‘.,(l,L_l).(Il... Ly, [).
According to (6) the operation p? s an {1.2.3}-ideal term of . Now (%) and
Lemma 5 show that mi(ay) € [(ay.az,m(az)). Thus (ix) of Theorem 10 is satisticd

and so (1) holds. -

Example 13. 1) Consider the variety of all groups (with the neutral element

0). For n > 3 each term (. .. .. v,) in which @ oceurs exactly once is of the form
aryb where a and b are terms in .y, ..., and j € {—1.1}. Put
. . R L A . A . .
[)(.I(),.....I,, ,_|\1.~— .l|,l) (.ll,.‘.,.l,l_l)l-_v ’,I|III(.I] ...... I,Iﬁl).
Clearly p satisfies (6). We cheek (7). Abbrevite (... - ) by wand set o := a(u)

and 3 := b(u). Then ¢(ry.u) = axy? B, qlry, u) = arsi 3 and
plglreu)ou) = gro. )3 s i B = w387 i3 = o I3 = q(ay i)

proving (7). From Corollary 12 we obtain that cvery group ideal is a congruence
kernel. As group ideals are exactly the normal subgronps this is just the elementary
fact relating normal subgroups and group congruences.

2) Consider the variety 7 of distributive lattices with 0. Let n > 3 and let
q(ry.. .. x,) be aterm of V. Then ¢ can be written as (1) (ay Aa)Vbor (2) oy VD

where @ and b are terms of 7 in variables @&y, ..., .r,. Consider the case (1). Set
plrye o oey) = (g AD)V (o Aa).
Clearly p satisfies (6). We check (7). Again abbreviate (... . Un—1) by v and «a(u)

and b(u) by o and /3. Now

plqea, u).u) = (q(ra,u) A3 V(s Aa) = (((aa A)V ) AB) V(01 Aa) =
=pV(r;Aa)=qlry.u).



The case (2) s similar but simpler.

From Corollary 12 we obtain that every ideal of a distributive lattice is a congru-
ence kernel. This is a known result [4]; in fact, in [4] it is also shown that among
lattices only distributive lattices have this property.

Folowing [2, 3, 5] we say that ./ is permutable at 0 if [0](6 o ) = [0](y 0 8) for all
f.> € Con/. We have

Proposition 14. Let 7V he a variety of algebras of the same type such that 0 is
a nullary ternm of Y. Then
1) The following are equivalent:
(1) Every & € 7 is permutable at 0,
(ii)

(9) b(r,2) =0, b(x,0) =

for a binary term b of V. and

(iii)
(10) tHa,z,y) =y, t(0,2,20) =0
for a ternary term t of /7.

2) If V7 satisfies one of (i)- (iii), then for every o/ € ¥ ecach ideal of «/ is a
congruence kernel.

Proof. 1) The equivalence of (i)-(iii) is shown in [5] pp. 48-49. 2) Let (iii) hold
for 77 and let t be a term of 7~ satisfying (10). Let «/ € ¥ and let I be an ideal
of /. We verify the condition (vi) of Theorem 10. Let p € P(«/) satisfy p(i) € I
for some i € I and let ' € I. There exists an m-ary term operation ¢ of & and
A2eens a, € A such that p(x) = q(x,as,...,a,). Set

s(ar, .o xmypr) (e, (o, vy e g2) (23, T4, Tngn).
By the second half of (10)
$(0,0,0, 24, ... png2) = H0,q(0,24. ..., Um42), (0,240 Zmyn)) =0

and so s is an {1,2.3}-ideal term operation of «/. By the first half of (10) and the
definition of s

p(") = t(p(i). pi), p(")) = s(p(i),i, i’ as,. .. .an).

Here p(i).i,i" € I and so p(i') € I as well. O



Example 15. Consider the variety ¥ of all pscudocomplemented meet-semi-

latices @ = (A; A, *,0) with 0 (i.e. for every a € 4 the element a* is the greatest
element y such that a Ay = 0). The term b(z,y) := r A y* satisfies (9) and theretore
cvery ideal of a pseudocomplemented meet-semilattice with 0 is a congruence kernel.

(10]

(1]
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