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The notion of half lattice ordered groups was introduced and studied by Giraudet.
and Lucas [3]; it is a generalization of the notion of a lattice ordered group.

Each half lattice ordered group can be represented as a group of monotone trans-
formations of a linearly ordered set [3].

We apply the same terminology and notation as in [3]. In particular, if G is a
half lattice ordered group, then G7 is the connected component of G containing the
neutral clement e of G. This substructure Gt of G s a lattice ordered group.

The half lattice orderced group G fails to be uniqueiy determined by the lattice
ordered group G1. In [3] it was proved that there exist half lattice ordered groups G
and G5 such that Gy is not isomorphic to Gy, Gt = GyT and G111 # Gy, G # Ga.

Ini the present paper we investigate ~ongrucnce relations on and small direct prod-
ucts of half lattice ordered groups. The motivatiorn of introducing the latter concept
is as follows.

Let ‘H be the class of all half lattice oraered groups and let H; be the class of all
clements of H which fail to be lattice ordered groups. If I is a nonempty set and if

G; € H for each ¢ € I, then the direct product [] G; need not belong to H.
iel
Let G; € H, for each i € I. We construct a substructure G° of [] G; such that
iel

GO belongs to H; and satisfies a certain maximality condition. G° will be said to be
a small direct product of the system (G;)e;.

The relations between direct product decompositions of the lattice ordered group
G171 and small direct product decompositions of G will be dealt with.

Sample results:

Each congruence relation on a half lattice ordered group G is determined by an
(-ideal of the lattice ordered group G71 which is normal in G.
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Let G € H;. If Gt = [] A, is such that, for cach i € I, 4; is normal in G and
A; # {e}, then G can bezeelxprossed as a small direct product of a system (G;);z;
with G;1 = A; for each i € I.

If C is a normal convex chain in G such that ¢ € (" and C has neither an upper
bound nor a lower bound in G, then there exist (/,.(/» € H; such that (i) G is a
small direct product of G; and Gy, and (i) C = G 1.

We define a set SD,(G) of small direct product decompositions of G which will
be called regular. Each small direct product decomposition of G is isomorphic to an
element of SD,(G). It is proved that under a natural partial order the set SD, ()
is a meet-semilattice.

It is shown that any two small direct product decompositions of G have isomorphic
refinements.

Let us recall that an analogous theorem for lexicographic product decompositions
of linearly ordered groups was proved by Maltsev [6]: this result was generalized hy
Fuchs [2] and by the author [5].

1. PRELIMINARIES

We recall the definition of a half lattice ordered group (cf. [3], Section 1).
Let G be a group with the neutral element e. Further. suppose that G is a partially
ordered set.
We denote by G1T and G | the set of all x € G such that, whenever y,z € G and
y < z, then xy < xz or xy > wz, respectively.
G is said to be a half lattice ordered group if the following conditions are satisfied:
1) the partial order < on G is nontrivial (i.e.. there ave 2. x5 € G with ) < a2):
2) if z,y,2 € G and y < =, then ya < zx;
3) G=GTUG;
4) G7 is a lattice.
In what follows we assume that G is a half lattice ordered group. Let H be as
above. Next let H; be the class of all elements G of H such that G |# 0.
It is obvious that H \ H, is the class of all lattice ordered groups with more than

one element.

1.1. Proposition. (Cf. [3]). Let G € H,. Then

(i) G71 is a subgroup of G having the index 2;
(ii) the partially ordered scts GT and G | are isomorphic and, at the same time.,
dually isomorphic;
(iii) ifx € Gt and y € G |, then x and y are incomparable.
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2. SMALL DIRECT PRODUCTS

Let T be a nonempty set and for each 7 € I let G; be a half lattice ordered group.
Hence for each i € I we consider the structure

where < is a partial order on G; and - is a group operation on G; such that the
conditions 1)-4) are satisfied.
We can construct the direct product

G‘:HG;

il

in the usual way (i.e.. the partial order and the group operation in G! are defined
component-wise).
For g € G! and i € I we denote by ¢; the component of g in G;.

2.1. Lemma. Let G' he as above and let cardl > 2. Then the following
conditions are equivalent:

(i) G' is a lattice ordered group;

(i) G' is a half lattice ordered group;

(iii) for eachi € I, G; is a lattice ordered group.

Proof. The relations (i) < (iii) and (iii) = (ii) are obviously valid. Suppose
that (iii) fails to hold. Hence there exists i(1) € I with G;) {# 0. Next there is
i(2) € I such that i(2) # i(1).

Choose y, z € G! such that

yi <z foreach 1€ l.
Thus y < z. There exists 2 € G with
Ty € Gyy 4. w; € Gyt forcach i e T\ {i(1)}.

Then
LiyYi(r) = Ti(1)<i(1)»
xyi <z forcach e I\ {i(1)}.
Hence the elements xy and @z are incomparable. Thus @ ¢ GTUG |. Therefore G!

is not a half lattice ordered group. ]
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Again, let G! be as above. We denote by G the sct of all ¢ € G such that either

(1) gi € G;t foreach i€ [
or
(2) gi € G;l foreach /=1,

Then G° is a subgroup of the group G'. The partial order on G° is inherited from
that in G1.

2.2. Lemma. G is a half lattice ordered group.

Proof. We have to verify that the conditions 1) -1) above are valid. Let i € [.
Since G; € H there exists @' € G; with e < 2¢. Hence o € G;1. Let g € G! be such
that g; = 2 for each i € I. Then g > e. In view of the definition of G® we have
g € GY and e € GY. Hence 1) holds.

Since the multiplication in ;% is performed component-wise we infer that 2) is
valid.

The set G consists of those elements g of GV which satisfy (1); similarly. GV |
is the set of elements of G satisfying (2). Thus the condition 3) holds. The validiiv
of 4) is obvious. O

2.3. Lemma. Let G? be a subgroup of G' and let < be the partial order on
G? which is inherited from G'. Suppose that G* is a half lattice ordered group such
that G° C G?. Then G° = G>.

Proof. We proceed similarly as in the proof of 2.1. By way of contradiction.
suppose that G2 fails to be a subset of G°. Thus there ave i(1) and i(2) in [ and
g € G? such that

giin) € Ginyts gie) € Gigey |-
For each i € I we have G; # {e} and hence in view of 1.1, G;T # {e}; thus there
exists ¢ € G;1T with ¢ < ¢'. According to the definition of G° there exists = € G
such that z; = ¢* for each i € I. Hence e,z € G? and ¢ < z. Then

Ji(1)€i(1) < Ji(1)Zi(1)»
Ji(2)€i(2) > 9i(2)%i(2)-

Therefore the elements g = ge and gz are incomparable in G2, which is a contradic-
tion. O
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The half lattice ordered group G° will be said to be the small direct product of
half lattice ordered groups G; (i € I); we denote it by the symbol

() [ G-

el

It is obvious that if G! is a lattice ordered group (i.e., if G' = 0) then G° = G'.

In our construction, all G; are half lattice ordered groups, thus G; # {e}. On
the other hand, by considering direct product decompositions of a lattice ordered
group, one-element direct factors can be taken into account (this occurs when forming
common refinements of two direct decompositions.) In the case of lattice ordered
groups the notions of a direct product with all factors distinct from {e} and a small
direct product coincide.

If ¢ is an isomorphism of a half lattice ordered group H onto (s) [[ Gi, I €
i€l
H. p(h) = (...,¢%...)ics and if no confusion can occur, then we can identify the
elements h and ¢(h), and in this sense we write

(3) H=()]]Gs

i€l

the relation (3) is said to be a small direct product decomposition of H. In particular,
if i € I and ¢g' € Gy, then the clement ¢' is identified with the element g of G such
that g; = ¢* and g;(;) = e whenever i(1) € I and i(1) # i.

If a more thorough description is needed then instead of (3) we apply the notation
where the isomorphism under consideration is explicitly written.

Let (3) be valid. If, moreover, for each i € I we have

Gi=(s) [] Gu
)

JjEJ (1

then

(4) H=0) [[ G

i€l,jeJ(i)

The small direct product decomposition (4) will be called a refinement of (3).
Throughout this paper we shall apply without further reference the known facts on
direct product decompositions of lattice ordered groups (cf. , e.g. [1]). In particular,
we apply the notion of internal direct decomposition as in [1], Section 5.3. Namely,
if H is a lattice ordered group and if we have an isomorphism ¢ of H onto a direct
product le_[lHi, then for each i(0) € I we can construct the set H?(o) ={h € H:
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p(h); = e for each ¢ € I\ {i(0)}}. Then Hl(0 is an (-subgroup of H which is
isomorphic to Hj(gy; we call H,.“) an internal direct factor of H. To simplify the
notation, we use the following convention:

2.4. Convention. Under the assumptions as above. H o) will be identified with
0
Ho)

3. CCONGRUENCE RELATIONS

Several results and methods from this section will be applied below for investigat-
ing small direct product decompositions.

In what follows we assume that G is a half lattice ordered group which fails to he
lattice ordered. Under the notation as above, G can he viewed as a structure with a
group operation and two binary partial operations V. A (partial lattice operations).

From this point of view the following definition is a natural one.

3.1. Definition. An equivalence g on G is said to he a congruence relation if it

satisfies the following conditions:

(i) o is a congruence relation with respect to the group operation;
(i1) ifo € {A,V}, x,y.z € G. ypz and if v oy exists in G. then x o = exists in G
and (roy)o(xroz).

For u,v € G1 (or u,v € G |. respectively) we put wo'" v (or ue'®v) iff upe. Then
from 3.1 we obtain

3.2. Lemma. (i) o'") is a congruence relation ou the lattice ordered group Gi71.

(i) 0'?) is a congruence relation of the lattice G |.

We apply the symbols G/o. G1/oY) and G | /o) in the usual sense.

Let r € G. We denote T(p) = {y € G: rpy}. Next we put G(o) = {T(0): v € G}.
If no uusuudclstcm(hug., can occur, then we write T and ¢ 111\t('(\(l of T(o) and G (o).

For r,5 € G we put T < g if there are ¥y € T and y; € y with @} < y;. Next we
put T - 7 =T7y. Then

(i) G turns out to be a partially ordered set;
(ii) G is a group with respect to the operation - and 7 -y = Ty.

In view of (i) and (i) we can construct the sets G1 and G J. Clearly G=0GJo.
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3.3. Remark. Let gnax be the largest equivalence relation on G. Next let g(,)
he the equivalence on G such that for »,y € G we have xp(y)y iff either 2,y € G71
or v,y € G |. Then both g,.x and gy are congruence relations on G. Next,
(';mla(g,,mx) =1, ('ardé(gz) < 2 and the partial orders on hoth é(g,,,;.x), 6(0(._,))
are trivial. Hence neither G(p,.x) nor 5(0(2)) is a half lattice ordered group.

3.4. Lemma. Let p be a congruence relation on G such that omax # 0 # 0(2)-
Then the partial order < on G is non-trivial.

Proof. In view of the assumption there exist @,y € G such that (i) T # y. and
(ii) cither x,y € Gt or a,y € G |. Hence there exist

u=xANy. v=xVy.

Thus w < ©. If w =7, then 3.2 yields that ¥ = 7, which is a contradiction. 0

<
/N
[§l}

3.5. Lemmma. Let g be a congruence relation on G and let T,y,%z € G, 1

Theny -T <= 7.
Proof. There are y; € § and z; € = such that y; < z;. Then y;z < z12. Hence

e rand la =y, T =y -7, Zjr =2 -7T. O

3.6. Lemma. Let p be a congruence relation on G. Then G = GTtuUG |.

Proof. It is obvious that
r€EGt=7T€Gl, +€G|l=T€CG|.
Now it suffices to apply the relation G = GTUG |. a

3.7. Lemma. Let ¢ be a congruence relation on G, onax # 0 # 0(2)- Then
GtNG = 0.

Proof. By way of contradiction, suppose that T € Gt NG |. Let 7,Z € G,
¥ < =. In view of the assumption we have T -7 < T -Z and, at the same time,
T-§ > 7T -3, whence T-7 =T-%. Then § = =. Hence the partial order on G is trivial,

which contradicts 3.4. d
3.8. Lemma. Let p be a congruence relation on G, gmax # @ # 02 Then Gt
is a lattice.

Proof. Let oY) be as above. In view of 3.7, the partially ordered set G1
coincides with Gt/ whence it is a lattice. 0

=1
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3.9. Proposition. Let ¢ he a congruence relation on G such that opmax # 0 #
0(2)- Then G is a half lattice ordered group.

Proof. This is a consequence of 3.4, 3.5, 3.6 and 3.8. C

The maximal equivalence relation on G1 will bhe denoted by max. Let 7 be a
congruence relation of the lattice ordered group G1. 7 # Tiax. For v.v € G we put
upv if and only if u='v € Gt and eru~lv.

The definition of G implies that the relation «=!'v € (1 is valid iff either u,v € G*
or u,v € G |. Next, for u,v € Gt we have

UQV <> UTV.

3.10. Lemma. p is an equivalence relation on .

Proof. It is obvious that the relation p is reHexive. Let wpv, thus u='erc.

Then (v~ 'v)~!re, whence v~ 'ure and vou. Thus o is symmetric.

Let 2,y,z € G, xoy, yoz. Hence = yre and y~'z7¢. We have either x.y.z € G*
or ,y,z € G |. This yields that 2712 € GT. Next. + 'z = (+ 7 1y)(y~!2)Te, whence
xpz. Therefore p is transitive. C

3.11. Lemma. Let x,y,z € G, ypz. Then xypr-.

1 1

Proof. We have ery™'z. From y~ 'z = (y ' "(rz) = (vy) ! (wz) we obtain

that xyoxz. O

3.12. Lemma. The following conditions are equivalent:

(i) Ifz,y,z € G,yo=, then yrozx.
(i) Ifz € G |, t € G1 and tre, then x~'tare.
(iii) If x and t are as in (ii), then txox.

Proof. ((i)=>(ii)) Let (i) be valid. Let x and t he as in (ii). Then tpe, hence
according to 3.11 we have x~'tpx~! and thus (i) yields that 2~ tzge. Thus 2~ 'trre.
((ii)==(iii)) Let (ii) be valid and let a,t be as in (ii). Then t~! € Gt and t ' rec.

~lare. This yields that tzox.

Thus in view of (ii), z7't~'x7e. Hence (tz)
((iii)==(i)) Let (iii) be valid and let z,y,z be as in (i). Then epy~!z. Put
y~'z =t. Hence t € Gt and ert.
First suppose that = belongs to GT. Since 7 is & congruence relation on Gt we
obtain that x7tz, thus etz ™'y ~!zz yielding that yapz.r.
Now assume that = belongs to G |. From tre we get, applying (iii), the relation
tzox. Thus in view of 3.11 we obtain 2~ !tzge. Therefore 271y~ !zxpe and hence

YTP2T. 0O
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3.13. Lemma. Leto € {A,V}, z,y,2z € G, yoz and suppose that x oy exists
in G. Then x o z exists in G and (x o y)o(z o 2).

Proof. Let o be the partial operation A (for the partial operation V we proceed
analogously).
From the relation ypz and from the fact that A y exists we obtain that either

(1) r.y,z € GT
or
(i1) Ty, €G

holds. Hence x o z exists in G.

Assume that (i) is valid. Then, since g coincides with 7 on G1 and 7 is a congruence
relation on G, we infer that @ A yox A = holds.

Next let us suppose that (ii) is valid. Choose a fixed element v in G | and consider
the mappings

ei(ty) =uty  (t; € G,
@a(ta) =u"'ty (ty € C1).

Then ¢ is a dual isomorphism ot the lattice G | onto the lattice Gt and py = apl_l.
Thus

ere Ay) = i) Ve (y),
er(aVz)=pi(r) Apr(z).

According to 3.11,
e1(y)opr ()

and hence (cf. the case (i) where A is replaced by V)

p1() Vo1 (y)eer(x) V@i (2),
or(x Ay)opi(x A z).

If we apply the mapping ¢, then from the last relation we get (in view of 3.11)

T AYyox A z.

753



3.14. Proposition. Let p be as above. Then the following conditions are
equivalent:

(i) o is a congruence relation on G.
(ii) Some of the conditions from 3.12 is satisficd.

Proof. The implication (1)=(ii) is obvious. The inverse implication is a
consequence of 3.10-3.13. O

If 7 and p are as above, then o will be said to be a (f-extension of 7. It is obvious
that if 7 has a G-extension, then this G-extension is uniquely determined.
By using this term, Proposition 3.14 can be expressed as follows:

3.14.1. Proposition. Lect 7 be a congruence relation on the lattice ordered
group G1. Then the following conditions are equivalent:

(i) The G-extension of T Is a congruence relation on G.
(i1) The set {x € GT: aTe} is normal in G.

It is easy to verify that if p is a congruence relation on G, then p is a G-extension
of oM.

Let Con Gt and Con G be the systems of all congruence relations on GT and on G.
respectively; these systems are partially ordered in the usual way. Then Con G1 and
Con G are complete lattices. Let Cony G be the system of all 7 € Con G1 satisfving
the condition (i) from 3.14.1.

As an immediate consequence of 3.14.1 we obtain

3.14.2. Proposition. Con, G7 is a closed sublattice of the lattice Con GT.

Let ¢ be a mapping of Con; &G into Con G such that. for each 7 € Con, G, ¢(7) is
the G-extension of 7.

3.15. Proposition. ¢ is an isomorphism of Cion; (¢ onto ConG.

Proof. If p € ConG, then ¢(o(!)) = p; hence ¢ is an epimorphism. Let
7: € Cony GT, 0; = p(1:) (i =1,2).

Let 7, < 7, ¥,2 € G, yo,z. Then y!

l~me and thus yo»:.

zrie. whenee y~
Therefore g; < 0.
Conversely, assume that g; < p2. We have 7, = ol. 7 = o), thus 7 < 7, which

completes the proof. O

3.16. Proposition. Let 7; € Cony G, 0; = (1) (i = 1,2). Then 1y, 7 are
permutable if and only if g, 0, are permutable.
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Proof. Assume that 7, and 7 are permutable. Let x,y,z € G, zpo1y, yo.=.
Then we have either (i) z,y,z € G, or (ii) x,y,2 € G |. If (i) is valid, then a1y,
y7To =, hence there is © € G1 such that xmu, urpz. This yields that zoyu, upsrz. If
(ii) holds, then we take any t € G | and obtain txp, ty, tyoestz and tz, ty,tz € GT.
Hence tar ty, tymotz. Thus there is v € GT such that txmyv, vtz Then tzpov and
vortz. There exists w € G | such that v = tw. We get xp,w, wp;2z. Hence g, and
02 are permutable.

Conversely, suppose that ¢, and g, are permutable. Let z,y,2 € G, a1y, y72=.
Then o1y, yooz. There exists u € G such that xzp,u, upyz. We have u € GT and

hence rmu, ur . O

4. TWO-FACTOR SMALL DIRECT PRODUCTS

For a two-factor small direct product decomposition of a half lattice ordered group
G we apply the notation

(1) G = (s)G; X Go;

G, and G, are said to be s-factors of G. Let S(G) be the system of all s-factors
of G.
If g € G and 7 € {1,2}, then the component of ¢ in G; will be denoted by g;.

4.1. Lemma. Let (1) be valid. Then

(i) for the lattice ordered group G1 we have a direct product decomposition
Gt =Gt x Gty
(ii) for the lattice G | we have a direct product decomposition

Gl=G I xGy .

Proof. This is an immediate consequence of the definition of the small direct
product. O
Let (1) be valid. For 2,y € G we put xo;y if the following conditions are satisfied:
(i) either r,y € Gt or z,y € G {;
(i) vy =y

=1



Similarly we define the binary relation g, on G (the condition (ii) is replaced by
T2 = yz)-
The definitions of g; and g, imply

4.2. Lemma. Let (1) be valid. Then

(1) o1 and py are congruence relations on G;
(ii) o1 and g, are permutable;
(ii) 01 A 02 = Omin;
(iv) ifeither x,y € Gt orx,y € G |, then there is : € G such that x01z and zp-y.

4.3. Lemma. Suppose that g, and g, are congruence relations on G such that
the conditions (i)-(iv) from 4.2 are satisfied and p,,.x # 0i # 0(2) (1 =1.2). Put
Gi = G/o; (i = 1,2). Then the mapping ¢¥: G — G| x Gy defined by ¢'(x) =
(T(e1),T(02)) gives a small direct product decomposition of G.

Proof. According to 3.9, G; and G are half lattice ordered groups. In view
of (iil), ¢ is a monomorphism. If ¥ € GT, then T(gy) € (/11T and T(g2) € G271, hence
w(x) € Gt x Gyt Similarly, if @ € G |, then v(2) € Gy | xG2 §. Thus v is a
mapping of G into (GT x G»1T) U (G 4 xGa ).

Let (T(01),7(02)) € G171 x G21. According to (iv) there exists = € G1 such that
xorz and zpoy. Then ¢(z) = (T(o1),¥(02)). An analogous consideration can he
performed for G; | XG5 |. Thus v is an epimorphism of G onto (G 1> G, T)U(Gy
xGy ).

Let x,y € G, v < y. Since g; and gy are congruence relations on G we have
T(o1) < glo1) and T(g2) < ¥Ylo2), thus ¥(x) < w(y). Conversely, assume that
() < ¥(y). This means that T(o1) < ¥(o1) and T(02) < Y(o2). Hence either
x,y € Gtor a,y € G |. We first suppose that @,y € (it. Let us denote by o! the
relation p; reduced to G1 (i = 1.2). From (i)—(iv) and from 3.16 we obtain that the
mapping ¢ reduced to Gt is an isomorphism of the lattice Gt onto G 1T x G,T. A
similar result holds for the lattice G |. Hence ¢ is an isomorphism with respect to
the partial order.

From the fact that ¢ is an injective mapping of G onto (G T x GaT)U(Gy L xG» L)
and from the condition (i) in 1.2 we obtain that ¢ is an isomorphism with respect
to the group operation. O

Combining 4.2 and 4.3 we obtain

4.4. Theorem. Let g, and g» be congruence relations on G with gmax # 0i #
0(2) (1 = 1,2). Then the following conditions are equivalent:

(i) The conditions (i)—(iv) from 4.2 are satisfied.
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(ii) The mapping ¥ (z) = (T(01),T(02)) is an isomorphism of G onto (s)(G/p1) %
(G/o2).

Now let us investigate the relations between two-factor direct product decompo-
sitions of the lattice ordered group G1 and two-factor small direct product decom-
positions of G.

Let us have a direct product decomposition

(2) Gt=AxB, A#{e}#B

of the lattice ordered group G1.

For x € GT we denote by x(A) and 2(B) the components of x on A and in B,
respectively.

Let a,y € GT. We put z1y (xmoy) if 2(A4) = y(A) (or 2(B) = y(B), respectively).

4.5. Lemma. 7, and 12 are congruence relations on G1 satisfying the conditions
(i), (i1), (iii) of 4.2, and also the condition

(ivy) ifx,y € G1, then there is = € G1 with a1y 2, 2Toy.
Proof. The validity of these conditions is a consequence of (2). a

Let us construct binary relations g9 and ¢9 by means of 7, and 7 by the same
method as we did in Section 3 for 7 and p.

4.6. Lemma. Assume that A is a normal subset of G. Then ¢f is a congruence
relation on G.

Proof. Thisis a consequence of 3.14.1. a

4.7. Lemma. If A is a normal subset of G, then B is a normal subset of G as
well.

Proof. Assume that A is a normal subset of G. The relation (2) yields that
B=A%={x € G?t: |z|Ala| = e for each a € A}.

Let = € G. If z € G1, then from (2) we obtain that z='Bz = B. Let z € G |.
Then the mapping ¢: Gt — G1 defined by (t) = z~ 'tz for each t € Gt is a dual
automorphism of the lattice G1 with p(e) = e. Thus p(A4%) = A%, which completes
the proof. a
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4.8. Lemma. Let (2) be valid and suppose that A is a normal subset of (.
Then ¢ and g9 are congruence relations on G satistving the conditions (i)—(iv) from
4.2.

Proof. Thisis a consequence of 4.7, 4.6 and 3.14.1. 4d

4.9. Theorem. Let (2) be valid and let 09, 03 be as above. Then G = (s)G /o) x
G/eh.

Proof. This result is valid in view of 4.4 and 4.8. O

4.10. Proposition. Under the assumptions and notation as in 4.9, the lattice
ordered groups (G /o)1 and A are isomorphic; moreover, under the convention as in
24, (G/e))t = A.

Proof. We have
(Gt = {g(a)): g € G1}.

whence (G/0%)1 = (G1)/71, where 7q is as above. Next, (G1)/7 is isomorphic to A.
Under the convention as in 2.4 we clearly have (G/o\)1 = A. O
5. THE GENERAL CASE

Consider the relation
(1) G=(s)[] ¢

Let i(0) be a fixed element of I. We put
Gy ={9 € G: gi0) = ¢}
From the definition of the small direct product we immediately obtain
5.1. Lemma. Let (1) be valid and let i(0) € I. Then G = (s)Gio) X G-

5.2. Lemma. Let I be a nonempty set and for cach i € I let G; be an s-factor
of G. For g € G and i € I let g; be the component of g in G;. Put ¢o(g) = (yi)ici-
Then ¢ is a mapping of G into (s) [] G;.

i€l
Proof. Let g€ GT. Then for each i € 1 we have ¢g; € G;1. Similarly, if g € G .
then ¢g; € G; | for each i € I. Hence ¢(g s) [1 Gi. O

i€l
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5.3. Proposition. Let I,(G;)ic; and ¢ be as in 5.2. Then the following
conditions are equivalent:
(1) ¢ is an isomorphism of G onto (s) [] G;.
i€l
(ii) ¢ is a bijection.

Proof. The relation (i)==(ii) obviously holds. Let (ii) be valid. From the def-
inition of ¢ we infer that ¢ is a homomorphism with respect to the group operation.
Thus, in view of (ii), ¢ is an isomorphism with respect to the group operation. Put

w1 = |Gt w2 =|G .

In view of 5.2, ¢; is a bijection of G1 onto [](G:1) = ((s) [] G:i)T and, similarly,
i€l i€l
is a bijection of G | onto ((s) [ G:) . We have to verify that ¢, is an isomorphism
iel
of the lattice GT onto the lattice J] Gi1, and that an analogous result is valid for
i€l

P2 '

Let g,¢9' € Gt,9 < ¢'. Then we have g; < ¢! for each 7 € I, thus ¢;(g9) < ¢1(¢').
Since ) is a bijection we obtain that g;(g) < ¢1(¢’).

Conversely, suppose that ¢(g) < ¢(¢'). Then ¢’ < g cannot hold. By way of
contradiction, assume that g and ¢’ are incomparable. Put u = g A ¢'. Then u # g.
In view of the definition of ¢; we conclude that ¢; is a homomorphism with respect

to the operation A, whence

e1(u) = @1(g N g') = (9i Agi)ier = (9i)ier = 1(9),

which is a contradiction. Therefore g < ¢'.
For ¢, we can apply analogous arguments. ad

5.4. Lemma. Let ¢; and s be as in the proof of 5.3. Then the following
conditions are equivalent:
(i) @ Is a bijection.
(ii) ¢, is a bijection.

Proof. The implication (i)==-(ii) is obvious. Let (ii) be valid. We have to
prove that ¢, is a bijection.

Let g,9' € G, g # ¢'. Choose any x € G |. Then xg, v¢g’ € Gt and xg # x¢'.
Thus p(xrg) # p(ag’). Since

p(zg) = p(2)e(g) = @(x)ea(g), w(rg") = p(x)ea(g")

=1
[}
<o



we obtain that p2(g) # w2(g').
For each i € I let ¢! € G; |. Choose z € G |. Hence z; € G; | for each i € I.
Next, 2;¢° € G;71 for each i € I. Hence there exists ¢, € G1 such that

(g1)i = xig* foreach i€l
Put g =27 'g;. Then g; € G and
(92)i = (@ Vilwig’) = gi
for each 7 € I. Thus ¢, is a bijection. a

5.5. Theorem. Assume that Gt = [] 4; and that all A; are normal in G.
i€l
A; # {e}. Then there are half ordered groups G; such that GG;t = A; for each i € |
and G = (s) [] G:.
icl
Proof. Let i(0) € I. There exists a direct factor .1
Aj) X A;(O). Since Aj(g) is normal in G, in view of 1.7 the set A;(o) is also normal

’.(0) of G1 such that GT =

l

in G. Hence according to 4.9 and 4.10 there exists a small direct decomposition
G = (5)Gio) x G:'(m

such that G0t = A;(0)-

Let ¢, 1 and @2 be as above. In view of G = [] A; we obtain that ¢, is a
el
bijection. Thus according to 5.4, ¢ is a bijection as well. Therefore 5.3 yields that

G= (S) H G;. O
i€l
The following example shows that a direct factor of ;1 need not be, in general, a
normal subset of the group G.
Let H; be the additive group of all integers with the natural linear order and
H, = H,. Put H = H; x H,. Next, let F and F’ he as in [3], p. 87. By applyving
[3], Lemma III.3 we construct the half ordered groups Gy and Gy pr. Then

Gurt=Gurt=H.

It can be easily verified that neither H; nor H, are normal subgroups of Gy p. On
the other hand, both H; and H, are normal in Gy .

5.6. Theorem. Let G be a half lattice ordered group and let C C G, c € C.
Suppose that

(i) C is a convex chain in G which has no upper bound and no lower bound;
(ii) the set c™'C is normal in G.
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Then there exists an s-factor G, of G such that Gt = c~1C.

Proof. The set ¢c71C is a convex chain in G1 which has no upper bound and
no lower bound in Gt. Thus in view of [2], c™'C is a direct factor of the lattice
ordered group Gt. Hence according te 5.5, there is an s-factor G, of G such that
Gt =clC. 0

6. REGULAR DECOMPOSITIONS

Consider a small direct product decomposition

() G=(s)[] G

Let i € I. For x,y € G we put xzo'y if ; = y;. Then o' is a congruence relation
on G.

Let g' € G; and let ¢;(g?) be the set of all x € G such that x; = g*. Then ¢, is an
isomorphism of G; onto G/ '

For cach x € G we put

o(x) = (T(9"))ier-

The mapping ¢ determines a sm:ll direct product decomposition

(@) ¢ =]]G

i€l

where G; = G/o' for each i € I. We will say that @ is a regular decomposition
corresponding to the small direct decomposition «.

A small direct product decomposition 3 of G will be called regular if there exists
a small direct product decompositions 3; of G such that 3 = 3.

Let us have another small direct decomposition

(B) G=(s)[[ G

jed

The small direct product decompositions o and 3 are called isomorphic if there
exists a bijection ¢: I — J such that for each i € I the half lattice ordered groups
G and Gy(;) are isomorphic.

Next, a and 3 are said to be equivalent (notation: a ~ ) if @ = f3; in other words,
if there exists a bijective mapping 1 : I — J such that ¢° = ¥ for each i € I. It
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is obvious that o = @. The relation = is an equivalence on the class SD(G) of all
small direct product decompositions of G. Put SD.((/) = {a: a € SD(G)}.

It is clear that if a, 3 are regular and if @ = 3. then a = 3.

If « € SD(G), then a and @ are isomorphic (in view of the isomorphisms ;
above). This yields that if & and 3 are equivalent, then they are isomorphic.

On the other hand, if a and /3 are isomorphic, then they need not be equivalent.

Let H be a lattice ordered group, H # {e}. We denote by D(H) the class of all
direct product decompositions of H. Next, let D;(H ) he the subclass of H containing
those direct product decompositions all factors in which are distinct from {e}. We
can introduce an analogous equivalence on D (H) as we did for SD(G) above: this
equivalence on D;(H) will be denoted by the same symbhol .

Assume that G,G; and A; (i € I) are as in 5.5. We apply the notation a as above
and denote

(a1) Gt=[] 4
i€l
Let us put f(ay) = a.

6.1. Proposition. Let ay.ay € D{(G?1). Then

a) X ay <= flay) = flay).

Proof. This is a consequence of the construction performed in Section 5. O

The definition of @ implies that SD(G)/ =~ is a sct, and so is Dy(GT). For
a € SD(G) we denote by «(=) the class of all J € SD(G) with a = . For
a1 € Di(G7) the symbol «a; (=) has an analogous meaning.

Let ai(x) € D1(G1)/ =. We put f(ai(=)) = f(a1)(=). Then f is a correctly
defined mapping of D(G?1)/ =~ into SD(G)/ =.

From 5.5 and 6.1 we obtain

6.2. Corollary. f is a bijection of the set D|(G1)/ = onto SD(G)/ ~.

Let a and 3 be as above. We put a < 3 if for cach i € I there exists j € .J such
that

e(o') 22(d).

Analogously we define the relation < on the class D,(G7). From these definitions
we obtain
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6.3. Lemma. The relation < is a quasiorder on the class SD(G). If ay, s €
D\ (G), then
o) < ag <= f(a1) < f(az).

Next, if o, p € SD(G), then
apf=a<p.

6.4. Lemma. Let a and 3 be as above, i € I, j € J. Then the following
conditions are equivalent:
(i) e(o") 2 &(e’).
(ii) Git C Gyt

Proof. Lete(o') D&(o?). In view of 5.1,
G = (S‘)Gi X Gi

Analogously we have

Hence

GT = GzT X GZT,
Next, 2(0') N GT = G71 and e(¢/) N Gt = G1. From (i) we obtain G}t 2 G1 and

this yields that G;1 C G;1.
The proof of the implication (ii)=-(i) is similar. ]

6.4.1. Corollary. Let «, /3 € SD(G). Then the following conditions are equiv-
alent:

(i) a<pB;
(ii) for each i € I there exists j € J such that G;1 C G;1.

6.5. Lemma. Leta,f3 be asabove. Then the following conditions are equivalent:

(1) a<pandp<a;
(il) a=pg.

Proof. Let (i) be valid. Choose i € I. In view of the relation @ < 3 and of 6.4
there exists j € J such that G;1 C G;T. Since G; # {e} we have G;1 # {e}. Let
J(1) € J, j(1) #j. If Git C Gyt then G;1 NGt # {e}, which is impossible.
Hence we obtain a mapping ¢»: I — J defined by (i) = j (where i, are as above).
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Similarly, 8 < « yields that there is i(1) € I with G;1 C G;;)t. Then G;T N
GiyT # {e} and thus ¢ = i(1). From this we obviously infer that 1 is a bijection;
moreover, G;T = Gy;*T for each i € I. Thus G = G’w(i)T for each i € I. Hence
a1 = ag. According to 6.1 we obtain that a =~ S.

Conversely, suppose that (ii) holds. Hence according to 6.1, a; =~ 1. Let ¢ be as
in the definition of =~. Then

G; = E(Qi) = E(le(i)) = Glu‘(i)
for each ¢ € I. Thus
G;T = Gip(i)T»
Gt = Gw(i)T

for each ¢ € I. Hence in view of 6.4 we obtain that (i) holds. O

6.6. Theorem. Leta,3 € SD(G). There exists v € SD(G) such that
(i) y<aand~y < G;
(ii) ify" € SD(G) and v’ < «, v < B3, then v' <~

Proof. Let o« € D, (G?1) = f(ay). Suppose that 3; has an analogous
meaning. Without loss of genomhty we can suppose that a; and J3; are internal
direct decompositions of GT. There exists a common refinement of oy and 3), namely
(cf., e.g., [1])

ar= [ @tnGm.

i€l,jed
Let ¥ = {(¢,j): i €1,j € Jand GitNG;T # {e}}. Then i # 0 and
(m) ar= ][I @rnaGn

() EN

All G;t N G;1 are normal in ;. Hence there exists v € SD(G) with v = f(v,).

Clearly v < oy and 4, < 31, Thus in view of 6.3 7 <« and v < 3.

Let v/ € SD(G), ¥ < a, 73" < B. Thereis v, € D|(G) with f(v1) = +'. Then
v < ay and ) < Bi. Again, without loss of generality we can suppose that 4] is
an internal direct product decomposition of G1. Hence 41 is a refinement of both
ayp and ;. Thus ] is a refincment of v;. This yields that 7] <« and 4] < 3.
Therefore v/ < a and 7' < 3. O

On the set SD,(G) we consider the relation < which is inherited from SD(G).

6.7. Lemma. The relation < is a partial order on SD,.(G).

Proof. Thisis a consequence of 6.1 and of the fact that for o, 8 € SD,.(G) we
havea~ = a= /. O
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6.8. Corollary. With respect to the relation <, SD,(G) is a meet-semilattice.

Proof. This follows from 6.6 and 6.7. O

7. COMMON REFINEMENTS

In the present section we prove that any two small direct product decompositions
of a half lattice ordered group G have isomorphic refinements.
Let a and 3 be as in Section 6.

7.1. Lemma. Suppose that o and 3 are regular and that a < 3. For j € J let
1(j) ={i € I:e(o") De(¢’)}. Then I(j) # 0 for each j € J.

Proof. Letj € J. By way of contradiction, suppose that I(j) = 0. Let i € I.
In view of 6.4, G;1T C G;-T for each i € I. This yields that Gt C G’?1 and thus
G;1 = {e}, which is impossible. O

7.2. Lemma. Leta, 3 beasin77.1 andletj€ J, g € G. We put

X(G() = (--,3(2"), - - Diery)-

Then \ is a mapping of G; into (s) [] Gi.
1€1(j)

Proof. If g, ¢' € G such that g(¢’) = ¢’(¢’), then for each i € I(g) we have
o(0") = ¢'(0"), whence  is a correctly defined mapping on G ;.

For o(¢g?) € G;?1 the relation g € G7 is valid and hence g(o') € G;? for each
i € 1(j). Analogously, if g(¢?) € G; |. then g(o') € G; | for each i € I(j). Thus
(G S (s) TI G 0

i€l)j)

7.3. Lemma. Y is a homomorphism with respect to the group operation and

also with respect to the partial lattice operations A and V.

Proof. This is an immediate consequence of the definition of the mapping .

O

7.4. Lemma. G;t= []| G;t foreachje J.
i€l(j)
Proof. Let j € J and i € I(j). In view of 6.4.1 we have G;+ C G;*1, whence
GitNG;1 =Gt Since G1 is a lattice ordered group, the relation

Git=[] (G1naG;t

i€l



is valid. If i(1) € I\ I(j), then there exists j(1) € ./ with j(1) # j such that
Giay € Gy, whence

Therefore

H G:t.

i€1(j)

7.5. Lemma. The mapping \ is a mononiorphisun..

Proof. Let g, ¢ € G and suppose that \(G(0’)) = \(¢'(¢?)). Hence we have
either (i) g, ¢’ € G1, or (ii) ¢, ¢’ € G |. If (i) holds. then g(o/) and ¢/(¢7) belong to
G ;1 and hence in view of 7.4 we obtain that g(o?) = ¢'(¢’). Let (ii) be valid. Then
e, 97 1g' € Gt and

\(@(07) = (g7 (')

This yields that 2(o7) = ¢='¢'(0’), whence g(¢’) = ¢'(¢/). O

7.6. Lemma. \ is an epimorphism.

Proof. Let
((/ (i ) i€1(j) H G

i€l(j)
Then either
(i) ¢* € Gt for each i € I(}).

or

(i) ¢* € G | for each i € I(}).
First assume that (i) is satistied. Then in view of 7.4 there is ¢ € G1 such that
\X(@(07) = (97(0"))icu(j)- .

Next suppose that (ii) is valid. Choose g € G |. Hence g(o’) € G; | and
gigt € Gyt for each i € I(j). Therefore there exists ¢’ € ¢ such that

\(9'(07)) = (9:9 )ie1))-

Then
(0= ()" (")) = (9")ic10))

which completes the proof. 0

766



7.7. Proposition. Let a < . Then the mapping \ determines a small direct
product decomposition

Gi=(s) [ G-

i€l(j)
Prcof. Thisis a consequence of 7.1-7.6. a

7.8. Corollary. Let a and 8 be regular and « < . Then « is a refinement
of 3.

The definition of an isomorphism of small direct product decompositions implies

7.9. Lemma. Let a,f3 be small direct decompositions of G and suppose that «
is isomorphic to 3. Let v be a refinement of «. Then there exists a refinement ~' of
3 such that v is isomorphic to v'.

7.10. Theorem. Let a and 3 be small direct product decompositions of a half
lattice ordered group G. Then « and /3 have isomorphic refinements.

Proof. Let~vybeasin6.6. Theny < aandy < . In view of 6.3 we have 7y < @
and 3 < 3. Since @, 3 and 7 are regular, from 7.8 we obtain that ¥ is a refinement
of both @ and 3. Next, a = @ and 3 ~ /3, thus by applying 7.9 we get that there
exist v, 4" € SD(G) such that

v is a refinement of a and 4’ is isomorphic to 7;

~'"is a refinement of 3 and 4" is isomorphic to 7.

Hence 4" and 4" are isomorphic. (]
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