Czechoslovak Mathematical Journal

Ján Jakubík

On half lattice ordered groups

Czechoslovak Mathematical Journal, Vol. 46 (1996), No. 4, 745-767

Persistent URL: http://dml.cz/dmlcz/127331

Terms of use:

© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON HALF LATTICE ORDERED GROUPS

Ján Jakubík, Košice

(Received October 7, 1994)

The notion of half lattice ordered groups was introduced and studied by Giraudet and Lucas [3]; it is a generalization of the notion of a lattice ordered group.

Each half lattice ordered group can be represented as a group of monotone transformations of a linearly ordered set [3].

We apply the same terminology and notation as in [3]. In particular, if G is a half lattice ordered group, then $G \uparrow$ is the romected component of G containing the neutral clement e of G. This substructure $G \uparrow$ of G is a lattice ordered group.

The half lattice ordered glupp G fails to be uniqueiy determined by the lattice ordered group $G \uparrow$. In [3] it was proved that there exst half lattice ordered groups G_{1} and G_{2} such that G_{1} is not isomorphic to $G_{2}, G_{1} \uparrow=G_{r_{2}} \uparrow$ and $G_{1} \uparrow \neq G_{1}, G_{2} \uparrow \neq G_{2}$.

In the present paper we investigate ongruence relations on and small direct proclucts of half lattice ordered groups. The motivation of introducing the latter concept is as follows.

Let \mathcal{H} be the class of all half lattice oraered groups and let \mathcal{H}_{1} be the class of all clements of \mathcal{H} which fail to be lattice ordered groups. If I is a nonempty set and if $G_{i} \in \mathcal{H}$ for each $i \in I$, then the direct product $\prod_{i \in I} G_{i}$ need not belong to \mathcal{H}.

Let $G_{i} \in \mathcal{H}_{1}$ for each $i \in I$. We construct a substructure G^{0} of $\prod_{i \in I} G_{i}$ such that G^{0} belongs to \mathcal{H}_{1} and satisfies a certain maximality condition. G^{0} will be said to be a small direct product of the system $\left(G_{i}\right)_{i \in I}$.

The relations between direct product decompositions of the lattice ordered group $G \uparrow$ and small direct product decompositions of G will be dealt with.

Sample results:
Each congruence relation on a half lattice ordered group G is determined by an ℓ-ideal of the lattice ordered group $G \uparrow$ which is normal in G.

Supported by grant GA SAV 1230/94

Let $G \in \mathcal{H}_{1}$. If $G \uparrow=\prod_{i \in I} A_{i}$ is such that, for cach $i \in I, A_{i}$ is normal in G and $A_{i} \neq\{e\}$, then G can be expressed as a small direct product of a system $\left(G_{i}\right)_{i \in I}$ with $G_{i} \uparrow=A_{i}$ for each $i \in I$.

If C is a normal convex chain in G such that $e \in('$ and C has neither an upeer bound nor a lower bound in G_{r}, then there exist $C_{r_{1}}, C_{r_{2}} \in \mathcal{H}_{1}$ such that (i) G is a small direct product of G_{1} and G_{2}, and (ii) $C=G_{1} \uparrow$.

We define a set $S D_{r}(G)$ of small direct product derompositions of G which will be called regular. Each small direct product decomposition of G is isomorphic to an element of $S D_{r}(G)$. It is proved that under a natural partial order the set $S D_{r}(G)$ is a meet-semilattice.

It is shown that any two small direct product decompositions of G have isomorphic refinements.

Let us recall that an analogous theorem for lexicographic product decompositions of linearly ordered groups was proved by Maltsev [6]: this result was generalized by Fuchs [2] and by the author [5].

1. Preliminaries

We recall the definition of a half lattice ordered group (cf. [3], Section 1).
Let G be a group with the neutral element e. Further. suppose that G is a partially ordered set.

We denote by $G \uparrow$ and $G \downarrow$ the set of all $x \in G$ such that, whenever $y, z \in G$ and $y \leqslant z$, then $x y \leqslant x z$ or $x y \geqslant x z$, respectively.
G is said to be a half lattice ordered group if the following conditions are satisfied:

1) the partial order \leqslant on G is nontrivial (i.e., there are $x_{1}, x_{2} \in G$ with $x_{1}<x_{2}$):
2) if $x, y, z \in G$ and $y \leqslant z$, then $y x \leqslant z x$;
3) $G=G \uparrow \cup G \downarrow$;
4) $G \uparrow$ is a lattice.

In what follows we assume that G is a half lattice ordered group. Let \mathcal{H} be as above. Next let \mathcal{H}_{1} be the class of all elements G of \mathcal{H} such that $G \downarrow \neq \emptyset$.

It is obvious that $\mathcal{H} \backslash \mathcal{H}_{1}$ is the class of all lattice ordered groups with more than one element.
1.1. Proposition. (Cf. [3]). Let $G \in \mathcal{H}_{1}$. Then
(i) $G \uparrow$ is a subgroup of G having the index 2 ;
(ii) the partially ordered sets $G \uparrow$ and $G \downarrow$ are isomorphic and, at the same time. dually isomorphic;
(iii) if $x \in G \uparrow$ and $y \in G \downarrow$, then x and y are incomparable.

2. Small direct products

Let I be a nonempty set and for each $i \in I$ let G_{i} be a half lattice ordered group. Hence for each $i \in I$ we consider the structure

$$
\left(C_{i} ; \leqslant, \cdot\right)
$$

where \leqslant is a partial order on G_{i} and \cdot is a group operation on G_{i} such that the (onditions 1)-4) are satisfied.

We can construct the direct product

$$
G^{1}=\prod_{i \in I} G_{i}
$$

in the usual way (i.e., the partial order and the group operation in G^{1} are defined (omponent-wise).

For $g \in G^{1}$ and $i \in I$ we denote by g_{i} the component of g in G_{i}.
2.1. Lemma. Let $G^{1} b c$ as above and let card $I \geqslant 2$. Then the following conditions are equivalent:
(i) G^{1} is a lattice ordered group;
(ii) G^{1} is a half lattice ordered group;
(iii) for each $i \in I, G_{i}$ is a lattice ordered group.

Proof. The relations (i) \Leftrightarrow (iii) and (iii) \Rightarrow (ii) are obviously valid. Suppose that (iii) fails to hold. Hence there exists $i(1) \in I$ with $G_{i(1)} \downarrow \neq \emptyset$. Next there is $i(2) \in I$ such that $i(2) \neq i(1)$.

Choose $y, z \in G^{1}$ such that

$$
y_{i}<z_{i} \quad \text { for each } \quad i \in I .
$$

Thus ! $<z$. There exists $x \in G^{1}$ with

$$
x_{i(1)} \in G_{i(1)} \downarrow, \quad x_{i} \in G_{i} \uparrow \quad \text { for each } \quad i \in I \backslash\{i(1)\} .
$$

Then

$$
\begin{gathered}
x_{i(1)} y_{i(1)}>x_{i(1)} z_{i(1)} \\
x_{i} y_{i}<x_{i} z_{i} \text { for cach } i \in I \backslash\{i(1)\} .
\end{gathered}
$$

Hence the elements $x y$ and $x z$ are incomparable. Thus $x \notin G \uparrow \cup G \downarrow$. Therefore G^{1} is not a half lattice ordered group.

Again, let G^{1} be as above. We denote by G^{0} the set of all $g \in G^{1}$ such that either

$$
\begin{equation*}
g_{i} \in G_{i} \uparrow \text { for each } \quad i \in I \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
g_{i} \in G_{i} \downarrow \text { for each } \quad i \in I . \tag{2}
\end{equation*}
$$

Then G^{0} is a subgroup of the group G^{1}. The partial order on G^{0} is inherited from that in G^{1}.
2.2. Lemma. G^{0} is a half lattice ordered group.

Proof. We have to verify that the conditions 1) 4) above are valid. Let $i \in I$. Since $G_{i} \in \mathcal{H}$ there exists $x^{i} \in G_{i}$ with $e<x^{i}$. Hence $x^{i} \in G_{i} \uparrow$. Let $g \in G^{1}$ be such that $g_{i}=x^{i}$ for each $i \in I$. Then $g>e$. In view of the definition of G^{0} we have $g \in G^{0}$ and $e \in G^{0}$. Hence 1) holds.

Since the multiplication in G^{0} is performed component-wise we infer that 2) is valid.

The set $G^{0} \uparrow$ consists of those elements g of $G_{T^{0}}^{(}$which satisfy (1); similarly, $G^{0} \downarrow$ is the set of elements of G^{0} satisfying (2). Thus the condition 3) holds. The validity of 4$)$ is obvious.
2.3. Lemma. Let G^{2} be a subgroup of G^{1} and let \leqslant be the partial order on G^{2} which is inherited from G^{1}. Suppose that G^{2} is a half lattice ordered group such that $G^{0} \subseteq G^{2}$. Then $G^{0}=G^{2}$.

Proof. We proceed similarly as in the proof of 2.1. By way of contradiction. suppose that G^{2} fails to be a subset of G^{0}. Thus there are $i(1)$ and $i(2)$ in I and $g \in G^{2}$ such that

$$
g_{i(1)} \in G_{i(1)} \uparrow, \quad g_{i(2)} \in G_{i(2)} \downarrow .
$$

For each $i \in I$ we have $G_{i} \neq\{e\}$ and hence in view of $1.1, G_{i} \uparrow \neq\{e\}$; thus there exists $g^{i} \in G_{i} \uparrow$ with $e<g^{i}$. According to the definition of G^{0} there exists $z \in G^{0}$ such that $z_{i}=g^{i}$ for each $i \in I$. Hence $e, z \in G^{2}$ and $\epsilon<z$. Then

$$
\begin{aligned}
g_{i(1)} e_{i(1)} & <g_{i(1)} z_{i(1)} \\
g_{i(2)} e_{i(2)} & >g_{i(2)} z_{i(2)}
\end{aligned}
$$

Therefore the elements $g=g e$ and $g z$ are incomparable in G^{2}, which is a contradiction.

The half lattice ordered group G^{0} will be said to be the small direct product of half lattice ordered groups $G_{i}(i \in I)$; we denote it by the symbol

$$
(s) \prod_{i \in I} G_{i} .
$$

It is obvious that if G^{1} is a lattice ordered group (i.e., if $G^{1} \downarrow=\emptyset$) then $G^{0}=G^{1}$.
In our construction, all G_{i} are half lattice ordered groups, thus $G_{i} \neq\{e\}$. On the other hand, by considering direct product decompositions of a lattice ordered group, one-element direct factors can be taken into account (this occurs when forming common refinements of two direct decompositions.) In the case of lattice ordered groups the notions of a direct product with all factors distinct from $\{e\}$ and a small direct product coincide.

If φ is an isomorphism of a half lattice ordered group H onto $(s) \prod_{i \in I} G_{i}, h \in$ $H, \varphi(h)=\left(\ldots, g^{i}, \ldots\right)_{i \in I}$ and if no confusion can occur, then we can identify the elements h and $\varphi(h)$, and in this sense we write

$$
\begin{equation*}
H=(s) \prod_{i \in I} G_{i} ; \tag{3}
\end{equation*}
$$

the relation (3) is said to be a small direct product decomposition of H. In particular, if $i \in I$ and $g^{i} \in G_{i}$, then the element g^{i} is identified with the element g of G such that $g_{i}=g^{i}$ and $g_{i(1)}=e$ whenever $i(1) \in I$ and $i(1) \neq i$.

If a more thorough description is needed then instead of (3) we apply the notation where the isomorphism under consideration is explicitly written.

Let (3) be valid. If, moreover, for each $i \in I$ we have

$$
G_{i}=(s) \prod_{j \in J(i)} G_{i j}
$$

then

$$
\begin{equation*}
H=(s) \prod_{i \in I, j \in J(i)} G_{i j} \tag{4}
\end{equation*}
$$

The small direct product decomposition (4) will be called a refinement of (3).
Throughout this paper we shall apply without further reference the known facts on direct product decompositions of lattice ordered groups (cf. , e.g. [1]). In particular, we apply the notion of internal direct decomposition as in [1], Section 5.3. Namely, if H is a lattice ordered group and if we have an isomorphism φ of H onto a direct product $\prod_{i \in I} H_{i}$, then for each $i(0) \in I$ we can construct the set $H_{i(0)}^{0}=\{h \in H$:
$\varphi(h)_{i}=e$ for each $\left.i \in I \backslash\{i(0)\}\right\}$. Then $H_{i(0)}^{0}$ is an (-subgroup of H which is isomorphic to $H_{i(0)}$; we call $H_{i(1)}^{0}$ an internal dirert factor of H. To simplify the notation, we use the following convention:
2.4. Convention. Under the assumptions as above. $H_{i(0)}$ will be identified with $H_{i(0)}^{0}$.

3. C'ongruence relations

Several results and methods from this section will be applied below for investigating small direct product decompositions.

In what follows we assume that G is a half lattice ordered group which fails to be lattice ordered. Under the notation as above, G can le viewed as a structure with a group operation and two binary partial operations \vee, \wedge (partial lattice operations).

From this point of view the following definition is a natural one.
3.1. Definition. An equiralence ϱ on G is said to be a congruence relation if it satisfies the following conditions:
(i) ϱ is a congruence relation with respect to the group operation;
(ii) if $\circ \in\{\wedge, \vee\}, x, y, z \in(r, y \varrho z$ and if $x \circ y$ exists in G. then $x \circ z$ exists in G and $(x \circ y) \varrho(x \circ z)$.

For $u, v \in G \uparrow$ (or $u, v \in G \downarrow$. respectively) we put $u \varrho^{(1)} v\left(\right.$ or $\left.u \varrho^{(2)} v\right)$ iff $u \varrho v$. Then from 3.1 we obtain
3.2. Lemma. (i) $\varrho^{(1)}$ is a congruence relation on the lattice ordered group $C_{i} \uparrow$. (ii) $\varrho^{(2)}$ is a congruence relation of the lattice $G \downarrow$.

We apply the symbols $G_{F} / \varrho, C_{i} \uparrow / \varrho^{(1)}$ and $G \downarrow / \varrho^{(2)}$ in the usual sense.
Let $x \in G$. We denote $\bar{x}(\varrho)=\{y \in G: x \varrho y\}$. Next we put $\bar{C}(\varrho)=\left\{\bar{x}(\varrho): x \in C \cdot\left(\begin{array}{l}\text { f }\end{array}\right.\right.$. If no misunderstanding can ocrur, then we write \bar{x} and $\overline{C_{i}}$ instead of $\bar{x}(\underline{0})$ and $\overline{G_{r}}(\underline{g})$.

For $\bar{x}, \bar{y} \in \bar{G}$ we put $\bar{x} \leqslant \bar{y}$ if there are $x_{1} \in \bar{x}$ and $y_{1} \in \bar{y}$ with $x_{1} \leqslant y_{1}$. Next we put $\bar{x} \cdot \bar{y}=\overline{x y}$. Then
(i) \bar{G} turns out to be a partially ordered set;
(ii) \bar{C} is a group with respect to the operation \cdot and $\bar{x} \cdot \bar{y}=\overline{x y}$.

In view of (i) and (ii) we canconstruct the sets $\overline{C_{i}} \uparrow$ and $\bar{G} \downarrow$. Clearly $\bar{G}=G / \underline{\varrho}$.
3.3. Remark. Let $\varrho_{\max }$ be the largest equivalence relation on G. Next let $\varrho_{(2)}$ be the equivalence on G such that for $x, y \in G$ we have $x \varrho_{(2)} y$ iff either $x, y \in G \uparrow$ or $x, y \in G \downarrow$. Then both $\varrho_{\max }$ and $\varrho_{(2)}$ are congruence relations on G. Next, (ard $\bar{G}\left(\varrho_{\max }\right)=1, \operatorname{card} \bar{G}\left(\varrho_{2)} \leqslant 2\right.$ and the partial orders on both $\bar{G}\left(\varrho_{\max }\right), \bar{G}\left(\varrho_{(2)}\right)$ are trivial. Hence neither $\bar{G}\left(\varrho_{\max }\right)$ nor $\bar{G}\left(\varrho_{(2)}\right)$ is a half lattice ordered group.
3.4. Lemma. Let ϱ be a congruence relation on G such that $\varrho_{\text {max }} \neq \varrho \neq \varrho_{(2)}$. Then the partial order \leqslant on \bar{G} is non-trivial.

Proof. In view of the assumption there exist $x, y \in G$ such that (i) $\bar{x} \neq \bar{y}$, and (ii) either $x, y \in G \uparrow$ or $x, y \in G \downarrow$. Hence there exist

$$
u=x \wedge y . \quad v=x \vee y
$$

Thus $\bar{u} \leqslant \bar{v}$. If $\bar{u}=\bar{v}$, then 3.2 yields that $\bar{x}=\bar{y}$, which is a contradiction.
3.5. Lemma. Let ϱ be a congruence relation on G and let $\bar{x}, \bar{y}, \bar{z} \in \bar{G}, \bar{y} \leqslant \bar{z}$. Then $\bar{y} \cdot \bar{x} \leqslant \bar{z} \cdot \bar{x}$.

Proof. There are $y_{1} \in \bar{y}$ and $z_{1} \in \bar{z}$ such that $y_{1} \leqslant z_{1}$. Then $y_{1} x \leqslant z_{1} x$. Hence $\overline{y_{1} x} \leqslant \overline{z_{1} \cdot x}$ and $\overline{y_{1} x}=\bar{y}_{1} \cdot \bar{x}=\bar{y} \cdot \bar{x}, \overline{z_{1} \cdot x}=\bar{z} \cdot \bar{x}$.
3.6. Lemma. Let ϱ be a congruence relation on G. Then $\bar{G}=\bar{G} \uparrow \cup \bar{G} \downarrow$.

Proof. It is obvious that

$$
x \in G \uparrow \Longrightarrow \bar{x} \in \bar{G} \uparrow, \quad x \in G \downarrow \Longrightarrow \bar{x} \in \bar{G} \downarrow
$$

Now it suffices to apply the relation $G=G \uparrow \cup G \downarrow$.
3.7. Lemma. Let ϱ be a congruence relation on G, $\varrho_{\max } \neq \varrho \neq \varrho_{(2)}$. Then $\bar{G} \uparrow \cap \bar{G} \downarrow=\emptyset$.

Proof. By way of contradiction, suppose that $\bar{x} \in \bar{G} \uparrow \cap \bar{G} \downarrow$. Let $\bar{y}, \bar{z} \in \bar{G}$, $\bar{y} \leqslant \bar{z}$. In view of the assumption we have $\bar{x} \cdot \bar{y} \leqslant \bar{x} \cdot \bar{z}$ and, at the same time, $\bar{x} \cdot \bar{y} \geqslant \bar{x} \cdot \bar{z}$, whence $\bar{x} \cdot \bar{y}=\bar{x} \cdot \bar{z}$. Then $\bar{y}=\bar{z}$. Hence the partial order on \bar{G} is trivial, which contradicts 3.4.
3.8. Lemma. Let ϱ be a congruence relation on $G, \varrho_{\max } \neq \varrho \neq \varrho_{(2)}$. Then $\bar{G} \uparrow$ is a lattice.

Proof. Let $\varrho^{(1)}$ be as above. In view of 3.7, the partially ordered set $\overline{G_{i}} \uparrow$ coincides with $G \uparrow / \varrho^{(1)}$, whence it is a lattice.
3.9. Proposition. Let ϱ be a congruence relation on G such that $\varrho_{\max } \neq \varrho \neq$ $\varrho_{(2)}$. Then \bar{G} is a half lattice ordered group.

Proof. This is a consequence of 3.4, 3.5, 3.6 and 3.8.
The maximal equivalence relation on $G \uparrow$ will be denoted by $\tau_{\text {max }}$. Let τ be a congruence relation of the lattice ordered group $G \uparrow, \tau \neq \tau_{\max }$. For $u, v \in G$ we put $u \varrho v$ if and only if $u^{-1} v \in G \uparrow$ and $e \tau u^{-1} v$.

The definition of G implies that the relation $u^{-1} v \in G_{r} \uparrow$ is valid iff either $u, v \in G \uparrow$ or $u, v \in G \downarrow$. Next, for $u, v \in G \uparrow$ we have

$$
u \varrho v \Longleftrightarrow u \tau v .
$$

3.10. Lemma. ϱ is an equivalence relation on $(i$.

Proof. It is obvious that the relation ϱ is rettexive. Let $u \varrho v$, thus u^{-1} retr. Then $\left(u^{-1} v\right)^{-1} \tau e$, whence $u^{-1} u \tau e$ and v@u. Thus ϱ is symmetric.

Let $x, y, z \in G, x \varrho y, y \varrho z$. Hence $x^{-1} y \tau e$ and $y^{-1} z \tau$. We have either $x, y, z \in G_{i} \uparrow$ or $x, y, z \in G \downarrow$. This yields that $x^{-1} z \in G \uparrow$. Next. $r^{-1} z=\left(r^{-1} y\right)\left(y^{-1} z\right)$ Te, whence $x \varrho z$. Therefore ϱ is transitive.
3.11. Lemma. Let $x, y, z \in G, y \varrho z$. Then xy@ ${ }^{2}$.

Proof. We have ety $y^{-1} z$. From $y^{-1} z=\left(y^{-1} \cdot r^{-1}\right)(x z)=(x y)^{-1}(x z)$ we obtain that $x y \varrho x z$.
3.12. Lemma. The following conditions are erpuivalent:
(i) If $x, y, z \in G, y \varrho z$, then $y x \varrho z x$.
(ii) If $x \in G \downarrow, t \in G \uparrow$ and tre, then x^{-1} txte.
(iii) If x and t are as in (ii), then tx@x.

Proof. ((i) \Longrightarrow (ii)) Let (i) be valid. Let x and t be as in (ii). Then t@e, hence according to 3.11 we have $x^{-1} \varrho \varrho x^{-1}$ and thus (i) yields that x^{-1} tx@e. Thus x^{-1} trre
$((\mathrm{ii}) \Longrightarrow(\mathrm{iii}))$ Let (ii) be valid and let x, t be as in (ii). Then $t^{-1} \in G \uparrow$ and $t^{-1} \tau c$. Thus in view of (ii), $x^{-1} t^{-1} x \tau e$. Hence $(t x)^{-1} x \tau e$. This yields that $t x \varrho x$.
((iii) \Longrightarrow (i)) Let (iii) be valid and let x, y, z be as in (i). Then $e \varrho y^{-1} z$. Put $y^{-1} z=t$. Hence $t \in G \uparrow$ and ert.

First suppose that x belongs to $G \uparrow$. Since τ is a congruence relation on $G \uparrow$ we obtain that $x \tau t x$, thus $e \tau x^{-1} y^{-1} z x$ yielding that $y x \varrho z x$.

Now assume that x belongs to $G \downarrow$. From tre we get, applying (iii), the relation $t x \varrho x$. Thus in view of 3.11 we obtain $x^{-1} t x \varrho e$. Therefore $x^{-1} y^{-1} z x \varrho e$ and hence $y x \varrho z x$.
3.13. Lemma. Let $\circ \in\{\wedge, \vee\}, x, y, z \in G, y \varrho z$ and suppose that $x \circ y$ exists in G. Then $x \circ z$ exists in G and $(x \circ y) \varrho(x \circ z)$.

Proof. Let o be the partial operation \wedge (for the partial operation \vee we proceed analogously).

From the relation $y \varrho z$ and from the fact that $x \wedge y$ exists we obtain that either

$$
\begin{equation*}
x, y, z \in G \uparrow \tag{i}
\end{equation*}
$$

or
(ii)

$$
x, y, z \in G \downarrow
$$

holds. Hence $x \circ z$ exists in G.
Assume that (i) is valid. Then, since ϱ coincides with τ on $G \uparrow$ and τ is a congruence relation on $G \uparrow$, we infer that $x \wedge y \varrho x \wedge z$ holds.

Next let us suppose that (ii) is valid. Choose a fixed element u in $G \downarrow$ and consider the mappings

$$
\begin{aligned}
& \varphi_{1}\left(t_{1}\right)=u t_{1} \quad\left(t_{1} \in G \downarrow,\right. \\
& \varphi_{2}\left(t_{2}\right)=u^{-1} t_{2} \quad\left(t_{2} \in C \uparrow\right) .
\end{aligned}
$$

Then φ_{1} is a dual isomorphism of the lattice $G \downarrow$ onto the lattice $G \uparrow$ and $\varphi_{2}=\varphi_{1}^{-1}$. Thus

$$
\begin{aligned}
& \varphi_{1}(x \wedge y)=\varphi_{1}(x) \vee \varphi_{1}(y), \\
& \varphi_{1}(x \vee z)=\varphi_{i}(x) \wedge \varphi_{1}(z) .
\end{aligned}
$$

According to 3.11,

$$
\varphi_{1}(y) \varrho \varphi_{1}(z)
$$

and hence (cf. the case (i) where \wedge is replaced by \vee)

$$
\begin{gathered}
\varphi_{1}(x) \vee \varphi_{1}(y) \varrho \varphi_{1}(x) \vee \varphi_{1}(z), \\
\varphi_{1}(x \wedge y) \varrho \varphi_{1}(x \wedge z) .
\end{gathered}
$$

If we apply the mapping φ_{2} then from the last relation we get (in view of 3.11)

$$
x \wedge y \varrho x \wedge z
$$

3.14. Proposition. Let ϱ be as above. Then the following conditions are equivalent:
(i) ϱ is a congruence relation on G.
(ii) Some of the conditions from 3.12 is satisfied.

Proof. The implication $(\mathrm{i}) \Longrightarrow$ (ii) is obvions. The inverse implication is a consequence of 3.10-3.13.

If τ and ϱ are as above, then ϱ will be said to be a G^{\prime}-extension of τ. It is obvious that if τ has a G-extension, then this G-extension is uniquely determined.

By using this term, Proposition 3.14 can be expressed as follows:
3.14.1. Proposition. Let τ be a congruence relation on the lattice ordered group $G \uparrow$. Then the following conditions are equivalent:
(i) The G-extension of τ is a congruence relation on G.
(ii) The set $\{x \in G \uparrow: x \tau e\}$ is normal in G.

It is easy to verify that if ϱ is a congruence relation on G, then ϱ is a G-extension of $\varrho^{(1)}$.

Let Con $G \uparrow$ and $\operatorname{Con} G$ be the systems of all congruence relations on $G \uparrow$ and on G. respectively; these systems are partially ordered in the usual way. Then Con $G \uparrow$ and Con G are complete lattices. Let $\operatorname{Con}_{1} G \uparrow$ be the system of all $\tau \in$ Con $G \uparrow$ satisfying the condition (i) from 3.14.1.

As an immediate consequence of 3.14 .1 we obtain
3.14.2. Proposition. Con $G \uparrow$ is a closed sublattice of the lattice Con $G_{\uparrow} \uparrow$.

Let φ be a mapping of $\operatorname{Con}_{1} G$ into $\operatorname{Con} G$ such that. for each $\tau \in \operatorname{Con}_{1} G, \varphi(\tau)$ is the G-extension of τ.
3.15. Proposition. φ is an isomorphism of $\mathrm{C}^{\prime} \mathrm{on}_{1} G$ onto $\operatorname{Con} G$.

Proof. If $\varrho \in \operatorname{Con} G$, then $\varphi\left(\varrho^{(1)}\right)=\varrho$; hence φ is an epimorphism. Let $\tau_{i} \in \operatorname{Con}_{1} G \uparrow, \varrho_{i}=\varphi\left(\tau_{i}\right)(i=1,2)$.

Let $\tau_{1} \leqslant \tau_{2}, y, z \in G, y \varrho_{1} z$. Then $y^{-1} z \tau_{1} e$. whence $y^{-1} z \tau_{2} e$ and thus y $\varrho_{2} z$. Therefore $\varrho_{1} \leqslant \varrho_{2}$.

Conversely, assume that $\varrho_{1} \leqslant \varrho_{2}$. We have $\tau_{1}=\varrho_{1}^{1}, \tau_{2}=\varrho_{2}^{1}$, thus $\tau_{1} \leqslant \tau_{2}$, which completes the proof.
3.16. Proposition. Let $\tau_{i} \in \operatorname{Con}_{1} G \uparrow, \varrho_{i}=\varphi\left(\tau_{i}\right)(i=1,2)$. Then τ_{1}, τ_{2} are permutable if and only if ϱ_{1}, ϱ_{2} are permutable.

Proof. Assume that τ_{1} and τ_{2} are permutable. Let $x, y, z \in G, x \varrho_{1} y, y \varrho_{2} z$. Then we have either (i) $x, y, z \in G \uparrow$, or (ii) $x, y, z \in G \downarrow$. If (i) is valid, then $x \tau_{1} y$, $y \tau_{2} z$, hence there is $u \in G \uparrow$ such that $x \tau_{2} u, u \tau_{2} z$. This yields that $x \varrho_{2} u, u \varrho_{2} z$. If (ii) holds, then we take any $t \in G \downarrow$ and obtain $t x \varrho_{1} t y, t y \varrho_{2} t z$ and $t x, t y, t z \in G \uparrow$. Hence $t r \tau_{1} t y, t y \tau_{2} t z$. Thus there is $v \in G \uparrow$ such that $t x \tau_{2} v, v \tau_{1} t z$. Then $t x \varrho_{2} v$ and ${ }^{\prime} \varrho_{1} t z$. There exists $w \in G \downarrow$ such that $v=t w$. We get $x \varrho_{2} w, w \varrho_{1} z$. Hence ϱ_{1} and ϱ_{2} are permutable.

Conversely, suppose that ϱ_{1} and ϱ_{2} are permutable. Let $x, y, z \in G \uparrow, x \tau_{1} y, y \tau_{2} z$. Then $r \varrho_{1} y, y \varrho_{2} z$. There exists $u \in G$ such that $x \varrho_{2} u, u \varrho_{1} z$. We have $u \in G \uparrow$ and hence $r \tau_{2} u, u \tau_{1} z$.

4. Two-factor small direct products

For a two-factor small direct product decomposition of a half lattice ordered group G we apply the notation

$$
\begin{equation*}
G=(s) G_{1} \times G_{2} \tag{1}
\end{equation*}
$$

G_{1} and G_{2} are said to be s-factors of G. Let $\mathcal{S}(G)$ be the system of all s-factors of G.

If $g \in G$ and $i \in\{1,2\}$, then the component of g in G_{i} will be denoted by g_{i}.
4.1. Lemma. Let (1) be valid. Then
(i) for the lattice ordered group $G \uparrow$ we have a direct product decomposition

$$
G \uparrow=G_{1} \uparrow \times G_{2} \uparrow
$$

(ii) for the lattice $G \downarrow$ we have a direct product decomposition

$$
G \downarrow=G_{1} \downarrow \times G_{2} \downarrow .
$$

Proof. This is an immediate consequence of the definition of the small direct product.

Let (1) be valid. For $x, y \in G$ we put $x \varrho_{1} y$ if the following conditions are satisfied:
(i) either $x, y \in G \uparrow$ or $x, y \in G \downarrow$;
(ii) $x_{1}=y_{1}$.

Similarly we define the binary relation ϱ_{2} on G (the condition (ii) is replaced by $x_{2}=y_{2}$)

The definitions of ϱ_{1} and ϱ_{2} imply
4.2. Lemma. Let (1) be valid. Then
(i) ϱ_{1} and ϱ_{2} are congruence relations on G;
(ii) ϱ_{1} and ϱ_{2} are permutable;
(iii) $\varrho_{1} \wedge \varrho_{2}=\varrho_{\text {min }}$;
(iv) if either $x, y \in G \uparrow$ or $x, y \in G \downarrow$, then there is $z \in G$ such that $x \varrho_{1} z$ and $z \varrho_{2}!y$.
4.3. Lemma. Suppose that ϱ_{1} and ϱ_{2} are congruence relations on G such that the conditions (i)-(iv) from 4.2 are satisfied and $\varrho_{\text {max }} \neq \varrho_{i} \neq \varrho_{(2)}(i=1,2)$. Put $G_{i}=G / \varrho_{i}(i=1,2)$. Then the mapping $\psi: G \longrightarrow G_{1} \times G_{2}$ defined by $\psi(x)=$ $\left(\bar{x}\left(\varrho_{1}\right), \bar{x}\left(\varrho_{2}\right)\right)$ gives a small direct product decomposition of G.

Proof. According to 3.9, G_{1} and G_{2} are half lattice ordered groups. In view of (iii), ψ is a monomorphism. If $x \in G \uparrow$, then $\bar{x}\left(\varrho_{1}\right) \in\left(\dot{r}_{1} \uparrow\right.$ and $\bar{x}\left(\varrho_{2}\right) \in G_{2} \uparrow$, hence $\psi(x) \in G_{1} \uparrow \times G_{2} \uparrow$. Similarly, if $x \in G \downarrow$, then $\psi(x) \in G_{1} \downarrow \times G_{2} \downarrow$. Thus ψ is a mapping of G into $\left(G_{1} \uparrow \times G_{2} \uparrow\right) \cup\left(G_{1} \downarrow \times G_{2} \downarrow\right)$.

Let $\left(\bar{x}\left(\varrho_{1}\right), \bar{y}\left(\varrho_{2}\right)\right) \in G_{1} \uparrow \times\left(r_{2} \uparrow\right.$. According to (iv) there exists $z \in G \uparrow$ such that $x \varrho_{1} z$ and $z \varrho_{2} y$. Then $\psi(z)=\left(\bar{x}\left(\varrho_{1}\right), \bar{y}\left(\varrho_{2}\right)\right)$. An analogous consideration can be performed for $G_{1} \downarrow \times G_{2} \downarrow$. Thus ψ is an epimorphism of G onto $\left(G_{1} \uparrow \times G_{2} \uparrow\right) \cup\left(G_{1} \downarrow\right.$ $\times G_{2} \downarrow$).

Let $x, y \in G, x \leqslant y$. Since ϱ_{1} and ϱ_{2} are congruence relations on G we have $\bar{x}\left(\varrho_{1}\right) \leqslant \bar{y}\left(\varrho_{1}\right)$ and $\bar{x}\left(\varrho_{2}\right) \leqslant \bar{y}\left(\varrho_{2}\right)$, thus $\psi(x) \leqslant \psi^{\prime}(y)$. Conversely, assume that $\psi(x) \leqslant \psi(y)$. This means that $\bar{x}\left(\varrho_{1}\right) \leqslant \bar{y}\left(\varrho_{1}\right)$ and $\bar{x}\left(\varrho_{2}\right) \leqslant \bar{y}\left(\varrho_{2}\right)$. Hence either $x, y \in G \uparrow$ or $x, y \in G \downarrow$. We first suppose that $x, y \in C_{i} \uparrow$. Let us denote by ϱ_{i}^{1} the relation ϱ_{i} reduced to $G \uparrow(i=1.2)$. From (i)-(iv) and from 3.16 we obtain that the mapping φ reduced to $G \uparrow$ is an isomorphism of the lattice $C_{1} \uparrow$ onto $G_{1} \uparrow \times G_{2} \uparrow$. A similar result holds for the lattice $G \downarrow$. Hence ψ^{\prime} is an isomorphism with respect to the partial order.

From the fact that ψ is an injective mapping of G onto $\left(C_{1} \uparrow \times G_{2} \uparrow\right) \cup\left(G_{1} \downarrow \times G_{r_{2}} \downarrow\right)$ and from the condition (i) in 4.2 we obtain that ψ is an isomorphism with respect to the group operation.

Combining 4.2 and 4.3 we oltain
4.4. Theorem. Let ϱ_{1} and ϱ_{2} be congruence relations on G with $\varrho_{\max } \neq \varrho_{i} \neq$ $\varrho_{(2)}(i=1,2)$. Then the following conditions are equivalent:
(i) The conditions (i)-(iv) from 4.2 are satisfied.
(ii) The mapping $\psi(x)=\left(\bar{x}\left(\varrho_{1}\right), \bar{x}\left(\varrho_{2}\right)\right)$ is an isomorphism of G onto $(s)\left(G / \varrho_{1}\right) \times$ $\left(G / \varrho_{2}\right)$.

Now let us investigate the relations between two-factor direct product decompositions of the lattice ordered group $G \uparrow$ and two-factor small direct product decompositions of G.

Let us have a direct product decomposition

$$
\begin{equation*}
G \uparrow=A \times B, \quad A \neq\{e\} \neq B \tag{2}
\end{equation*}
$$

of the lattice ordered group $G \uparrow$.
For $x \in G \uparrow$ we denote by $x(A)$ and $x(B)$ the components of x on A and in B, respectively.

Let $x, y \in G \uparrow$. We put $x \tau_{1} y\left(x \tau_{2} y\right)$ if $x(A)=y(A)($ or $x(B)=y(B)$, respectively).
4.5. Lemma. τ_{1} and τ_{2} are congruence relations on $G \uparrow$ satisfying the conditions (i), (ii), (iii) of 4.2, and also the condition
(iv ${ }_{1}$) if $x, y \in G \uparrow$, then there is $z \in G \uparrow$ with $x \tau_{1} z, z \tau_{2} y$.
Proof. The validity of these conditions is a consequence of (2).
Let us construct binary relations ϱ_{1}^{0} and ϱ_{2}^{0} by means of τ_{1} and τ_{2} by the same method as we did in Section 3 for τ and ϱ.
4.6. Lemma. Assume that A is a normal subset of G. Then ϱ_{1}^{0} is a congruence relation on G.

Proof. This is a consequence of 3.14.1.
4.7. Lemma. If A is a normal subset of G, then B is a normal subset of G as well.

Proof. Assume that A is a normal subset of G. The relation (2) yields that

$$
B=A^{\delta}=\{x \in G \uparrow:|x| \wedge|a|=e \text { for each } a \in A\} .
$$

Let $z \in G$. If $z \in G \uparrow$, then from (2) we obtain that $z^{-1} B z=B$. Let $z \in G \downarrow$. Then the mapping $\varphi: G \uparrow \longrightarrow G \uparrow$ defined by $\varphi(t)=z^{-1} t z$ for each $t \in G \uparrow$ is a dual automorphism of the lattice $G \uparrow$ with $\varphi(e)=e$. Thus $\varphi\left(A^{\delta}\right)=A^{\delta}$, which completes the proof.
4.8. Lemma. Let (2) be valid and suppose that A is a normal subset of $(\underset{r}{ }$. Then ϱ_{1}^{0} and ϱ_{2}^{0} are congruence relations on G satisfiving the conditions (i) - (iv) from 4.2 .

Proof. This is a consequence of 4.7, 4.6 and 3.14.1.
4.9. Theorem. Let (2) be valid and let $\varrho_{1}^{0}, \varrho_{2}^{0}$ be as above. Then $G=(s) G / \varrho_{1}^{0} \times$ G / ϱ_{2}^{0}.

Proof. This result is valid in view of 4.4 and 4.8.
4.10. Proposition. Under the assumptions and notation as in 4.9, the lattice ordered groups $\left(G / \varrho_{1}^{0}\right) \uparrow$ and A are isomorphic; moreover, under the convention as in $2.4,\left(G / \varrho_{1}^{0}\right) \uparrow=A$.

Proof. We have

$$
\left(G_{i} / \varrho_{1}^{0}\right) \uparrow=\left\{\bar{g}\left(\varrho_{1}^{0}\right): g \in G_{i} \uparrow\right\}
$$

whence $\left(G / \varrho_{1}^{0}\right) \uparrow=(G \uparrow) / \tau_{1}$, where τ_{1} is as above. Next, $(G \uparrow) / \tau_{1}$ is isomorphic to A. Under the convention as in 2.4 we clearly have $\left(G / \varrho_{1}^{0}\right) \uparrow=A$.

5. The general Case

Consider the relation

$$
\begin{equation*}
G=(s) \prod_{i \in I} G_{i} \tag{1}
\end{equation*}
$$

Let $i(0)$ be a fixed element of I. We put

$$
C_{i(0)}^{\prime}=\left\{g \in G: g_{i(0)}=\iota^{\prime}\right\} .
$$

From the definition of the small direct product we immediately obtain
5.1. Lemma. Let (1) be valid and let $i(0) \in I$. Then $G=(s) G_{i(0)} \times G_{i(0)}^{\prime}$.
5.2. Lemma. Let I be a nonempty set and for cach $i \in I$ let G_{i} be an s-factor of G. For $g \in G$ and $i \in I$ let y_{i} be the component of $!$ in G_{i}. Put $\varphi(g)=\left(g_{i}\right)_{i \in I}$. Then φ is a mapping of G into $(s) \prod_{i \in I} G_{i}$.

Proof. Let $g \in G \uparrow$. Then for each $i \in I$ we have $g_{i} \in G_{i} \uparrow$. Similarly, if $g \in C_{r} \downarrow$. then $g_{i} \in G_{i} \downarrow$ for each $i \in I$. Hence $\varphi(g) \in(s) \prod_{i \in I} G_{i}$.
5.3. Proposition. Let $I,\left(G_{i}\right)_{i \in I}$ and φ be as in 5.2. Then the following conditions are equivalent:
(i) φ is an isomorphism of G onto $(s) \prod_{i \in I} G_{i}$.
(ii) φ is a bijection.

Proof. The relation (i) \Longrightarrow (ii) obviously holds. Let (ii) be valid. From the definition of φ we infer that φ is a homomorphism with respect to the group operation. Thus, in view of (ii), φ is an isomorphism with respect to the group operation. Put

$$
\varphi_{1}=\varphi\left|G \uparrow, \quad \varphi_{2}=\varphi\right| G \downarrow
$$

In view of 5.2, φ_{1} is a bijection of $G \uparrow$ onto $\prod_{i \in I}\left(G_{i} \uparrow\right)=\left((s) \prod_{i \in I} G_{i}\right) \uparrow$ and, similarly, φ_{2} is a bijection of $G \downarrow$ onto $\left((s) \prod_{i \in I} G_{i}\right) \downarrow$. We have to verify that φ_{1} is an isomorphism of the lattice $G \uparrow$ onto the lattice $\prod_{i \in I} G_{i} \uparrow$, and that an analogous result is valid for ψ_{2}.

Let $g, g^{\prime} \in G \uparrow, g<g^{\prime}$. Then we have $g_{i} \leqslant g_{i}^{\prime}$ for each $i \in I$, thus $\varphi_{1}(g) \leqslant \varphi_{1}\left(g^{\prime}\right)$. Since φ_{1} is a bijection we obtain that $g_{1}(g)<g_{1}\left(g^{\prime}\right)$.

Conversely, suppose that $\varphi(g)<\varphi\left(g^{\prime}\right)$. Then $g^{\prime}<g$ cannot hold. By way of contradiction, assume that g and g^{\prime} are incomparable. Put $u=g \wedge g^{\prime}$. Then $u \neq g$. In view of the definition of φ_{1} we conclude that φ_{1} is a homomorphism with respect to the operation \wedge, whence

$$
\varphi_{1}(u)=\varphi_{1}\left(g \wedge g^{\prime}\right)=\left(g_{i} \wedge g_{i}^{\prime}\right)_{i \in I}=\left(g_{i}\right)_{i \in I}=\varphi_{1}(g),
$$

which is a contradiction. Therefore $g<g^{\prime}$.
For φ_{2} we can apply analogous arguments.
5.4. Lemma. Let φ_{1} and φ_{2} be as in the proof of 5.3. Then the following conditions are equivalent:
(i) φ is a bijection.
(ii) φ_{1} is a bijection.

Proof. The implication $(\mathrm{i}) \Longrightarrow(\mathrm{ii})$ is obvious. Let (ii) be valid. We have to prove that φ_{2} is a bijection.

Let $g, g^{\prime} \in G \downarrow, g \neq g^{\prime}$. Choose any $x \in G \downarrow$. Then $x g, x g^{\prime} \in G \uparrow$ and $x g \neq x g^{\prime}$. Thus $\varphi(x g) \neq \varphi\left(x g^{\prime}\right)$. Since

$$
\varphi(x g)=\varphi(x) \varphi(g)=\varphi(x) \varphi_{2}(g), \varphi\left(x g^{\prime}\right)=\varphi(x) \varphi_{2}\left(g^{\prime}\right)
$$

we obtain that $\varphi_{2}(g) \neq \varphi_{2}\left(g^{\prime}\right)$.
For each $i \in I$ let $g^{i} \in G_{i} \downarrow$. Choose $x \in G \downarrow$. Hence $x_{i} \in G_{i} \downarrow$ for each $i \in I$. Next, $x_{i} g^{i} \in G_{i} \uparrow$ for each $i \in I$. Hence there exists $g_{1} \in G \uparrow$ such that

$$
\left(g_{1}\right)_{i}=x_{i} g^{i} \quad \text { for each } \quad i \in I .
$$

Put $g_{2}=x^{-1} g_{1}$. Then $g_{2} \in G$ and

$$
\left(y_{2}\right)_{i}=\left(x^{-1}\right)_{i}\left(x_{i} g^{i}\right)=y_{i}
$$

for each $i \in I$. Thus φ_{2} is a bijection.
5.5. Theorem. Assume that $G \uparrow=\prod_{i \in I} A_{i}$ and that all A_{i} are normal in G_{r}. $A_{i} \neq\{e\}$. Then there are half ordered groups G_{i} such that $C_{i} \uparrow=A_{i}$ for each $i \in I$ and $G=(s) \prod_{i \in I} G_{i}$.

Proof. Let $i(0) \in I$. There exists a direct factor $A_{i(0)}^{\prime}$ of $G \uparrow$ such that $G \uparrow=$ $A_{i(0)} \times A_{i(0)}^{\prime}$. Since $A_{i(0)}$ is normal in G, in view of 4.7 the set $A_{i(0)}^{\prime}$ is also normal in G. Hence according to 4.9 and 4.10 there exists a small direct decomposition

$$
G=(s) G_{i(0)} \times G_{i(0)}^{\prime}
$$

such that $G_{i(0)} \uparrow=A_{i(0)}$.
Let φ, φ_{1} and φ_{2} be as above. In view of $G \uparrow=\prod_{i \in 1} A_{i}$ we obtain that φ_{1} is a bijection. Thus according to $5.4, \varphi$ is a bijection as well. Therefore 5.3 yields that $G=(s) \prod_{i \in I} G_{i}$.

The following example shows that a direct factor of $C \uparrow$ need not be, in general, a normal subset of the group G.

Let H_{1} be the additive group of all integers with the natural linear order and $H_{2}=H_{1}$. Put $H=H_{1} \times H_{2}$. Next, let F and F^{\prime} be as in [3], p. 87. By applying [3], Lemma III. 3 we construct the half ordered groups $G_{H, F}$ and $G_{H, F^{\prime}}$. Then

$$
G_{H, F} \uparrow=G_{H, F^{\prime}} \uparrow=H
$$

It can be easily verified that neither H_{1} nor H_{2} are normal subgroups of $G_{H, F^{\prime}}$. On the other hand, both H_{1} and H_{2} are normal in $G_{H, F}$.
5.6. Theorem. Let G be a half lattice ordered group and let $C \subseteq G, c \in C$. Suppose that
(i) C is a convex chain in G which has no upper bound and no lower bound;
(ii) the set $c^{-1} C$ is normal in G.

Then there exists an s-factor G_{1} of G such that $G_{1} \uparrow=c^{-1} C$.
Proof. The set $c^{-1} C$ is a convex chain in $G \uparrow$ which has no upper bound and no lower bound in $G \uparrow$. Thus in view of [2], $c^{-1} C$ is a direct factor of the lattice ordered group $G \uparrow$. Hence according to 5.5 , there is an s-factor G_{1} of G such that $G_{1} \uparrow=c^{-1} C$.

6. REGULAR DECOMPOSITIONS

Consider a small direct product decomposition
(α)

$$
G=(s) \prod_{i \in I} G_{i}
$$

Let $i \in I$. For $x, y \in G$ we put $x \varrho^{i} y$ if $x_{i}=y_{i}$. Then ϱ^{i} is a congruence relation on G.

Let $g^{i} \in G_{i}$ and let $\varphi_{i}\left(g^{i}\right)$ be the set of all $x \in G$ such that $x_{i}=g^{i}$. Then φ_{i} is an isomorphism of G_{i} onto G / ϱ^{i}.

For each $x \in G$ we put

$$
\varphi(x)=\left(\bar{x}\left(g^{i}\right)\right)_{i \in I} .
$$

The mapping φ determines a smill direct product decomposition

$$
G=(s) \prod_{i \in I} \bar{G}_{i}
$$

where $\bar{G}_{i}=G / \varrho^{i}$ for each $i \in I$. We will say that $\bar{\alpha}$ is a regular decomposition corresponding to the small direct decomposition α.

A small direct product decomposition β of G will be called regular if there exists a small direct product decompositions β_{1} of G such that $\beta=\overline{\beta_{1}}$.

Let us have another small direct decomposition

$$
G=(s) \prod_{j \in J} G_{j}
$$

The small direct product decompositions α and β are called isomorphic if there exists a bijection $\psi: I \longrightarrow J$ such that for each $i \in I$ the half lattice ordered groups G_{i} and $G_{\psi(i)}$ are isomorphic.

Next, α and β are said to be equivalent (notation: $\alpha \approx \beta$) if $\bar{\alpha}=\bar{\beta}$; in other words, if there exists a bijective mapping $\psi: I \longrightarrow J$ such that $\varrho^{i}=\varrho^{\psi(i)}$ for each $i \in I$. It
is obvious that $\alpha \approx \bar{\alpha}$. The relation \approx is an equivalence on the class $S D(G)$ of all small direct product decompositions of G. Put $S D\left(C_{i}\right)=\{\bar{a}: a \in S D(G)\}$.

It is clear that if α, β are regular and if $\alpha \approx \beta$, then $1=\beta$.
If $\alpha \in S D(G)$, then α and $\bar{\alpha}$ are isomorphic (in view of the isomorphisms ψ_{i} above). This yields that if α and β are equivalent, then they are isomorphic.

On the other hand, if α and β are isomorphic, then they need not be equivalent.
Let H be a lattice ordered group, $H \neq\{e\}$. We denote by $D(H)$ the class of all direct product decompositions of H. Next, let $D_{1}(H)$ be the subclass of H containing those direct product decompositions all factors in which are distinct from $\{e\}$. We can introduce an analogous equivalence on $D_{1}(H)$ as we did for $S D(G)$ above; this equivalence on $D_{1}(H)$ will be denoted by the same symbol \approx.

Assume that G, G_{i} and $A_{i}(i \in I)$ are as in 5.5. We apply the notation α as above and denote

$$
\begin{equation*}
G \uparrow=\prod_{i \in I} A_{i} . \tag{1}
\end{equation*}
$$

Let us put $f\left(\alpha_{1}\right)=\alpha$.
6.1. Proposition. Let $a_{1}, \alpha_{2} \in D_{1}(G \uparrow)$. Then

$$
\alpha_{1} \approx \alpha_{2} \Longleftrightarrow f\left(\alpha_{1}\right) \approx f\left(\alpha_{2}\right)
$$

Proof. This is a consequence of the construction performed in Section 5.
The definition of $\bar{\alpha}$ implies that $S D(G) / \approx$ is a set, and so is $D_{1}(G \uparrow)$. For $\alpha \in S D(G)$ we denote by $\alpha(\approx)$ the class of all $\beta \in S D(G)$ with $\alpha \approx \beta$. For $\alpha_{1} \in D_{1}(G \uparrow)$ the symbol $\alpha_{1}(\approx)$ has an analogous meaning.

Let $\alpha_{1}(\approx) \in D_{1}(G \uparrow) / \approx$. We put $\bar{f}\left(\alpha_{1}(\approx)\right)=f\left(\alpha_{1}\right)(\approx)$. Then \bar{f} is a correctly defined mapping of $D_{1}(G \uparrow) / \approx$ into $S D(G) / \approx$.

From 5.5 and 6.1 we obtain
6.2. Corollary. \bar{f} is a bijection of the set $D_{1}(G \uparrow) / \approx$ onto $S D(G) / \approx$.

Let α and β be as above. We put $\alpha \leqslant \beta$ if for each $i \in I$ there exists $j \in J$ such that

$$
\bar{e}\left(\varrho^{i}\right) \supseteq \bar{e}\left(\varrho^{j}\right)
$$

Analogously we define the relation \leqslant on the class $D_{1}(G \uparrow)$. From these definitions we obtain
6.3. Lemma. The relation \leqslant is a quasiorder on the class $S D(G)$. If $\alpha_{1}, \alpha_{2} \in$ $D_{1}(G)$, then

$$
\alpha_{1} \leqslant \alpha_{2} \Longleftrightarrow f\left(\alpha_{1}\right) \leqslant f\left(\alpha_{2}\right)
$$

Next, if $\alpha, \beta \in S D(G)$, then

$$
\alpha \leqslant \beta \Longleftrightarrow \bar{\alpha} \leqslant \bar{\beta}
$$

6.4. Lemma. Let α and β be as above, $i \in I, j \in J$. Then the following conditions are equivalent:
(i) $\bar{c}\left(\varrho^{i}\right) \supseteq \bar{e}\left(\varrho^{j}\right)$.
(ii) $G_{i} \uparrow \subseteq G_{j} \uparrow$.

Proof. Let $\bar{e}\left(\varrho^{i}\right) \supseteq \bar{e}\left(\varrho^{j}\right)$. In view of 5.1,

$$
G=(s) G_{i} \times G_{i}^{\prime} .
$$

Analogously we have

$$
G=(s) G_{j} \times G_{j}^{\prime}
$$

Hence

$$
\begin{aligned}
G \uparrow & =G_{i} \uparrow \times G_{i}^{\prime} \uparrow \\
G \uparrow & =G_{j} \uparrow \times G_{j}^{\prime} \uparrow .
\end{aligned}
$$

Next, $\bar{e}\left(\varrho^{i}\right) \cap G \uparrow=G_{i}^{\prime} \uparrow$ and $\bar{e}\left(\varrho^{j}\right) \cap G \uparrow=G_{j}^{\prime} \uparrow$. From (i) we obtain $G_{i}^{\prime} \uparrow \supseteq G_{j}^{\prime} \uparrow$ and this yields that $G_{i} \uparrow \subseteq G_{j} \uparrow$.

The proof of the implication (ii) \Rightarrow (i) is similar.
6.4.1. Corollary. Let $\alpha, \beta \in S D(G)$. Then the following conditions are equivalent:
(i) $\alpha \leqslant \beta$;
(ii) for each $i \in I$ there exists $j \in J$ such that $G_{i} \uparrow \subseteq G_{j} \uparrow$.
6.5. Lemma. Let α, β be as above. Then the following conditions are equivalent:
(i) $\alpha \leqslant \beta$ and $\beta \leqslant \alpha$;
(ii) $\alpha \approx \beta$.

Proof. Let (i) be valid. Choose $i \in I$. In view of the relation $\alpha \leqslant \beta$ and of 6.4 there exists $j \in J$ such that $G_{i} \uparrow \subseteq G_{j} \uparrow$. Since $G_{i} \neq\{e\}$ we have $G_{i} \uparrow \neq\{e\}$. Let $j(1) \in J, j(1) \neq j$. If $G_{i} \uparrow \subseteq G_{j(1)} \uparrow$, then $G_{j} \uparrow \cap G_{j(1)} \uparrow \neq\{e\}$, which is impossible. Hence we obtain a mapping $\psi^{\prime}: I \rightarrow J$ defined by $\psi(i)=j$ (where i, j are as above).

Similarly, $\beta \leqslant \alpha$ yields that there is $i(1) \in I$ with $G_{j} \uparrow \subseteq G_{i(1)} \uparrow$. Then $G_{i} \uparrow \cap$ $G_{i(1)} \uparrow \neq\{e\}$ and thus $i=i(1)$. From this we obviously infer that ψ is a bijection; moreover, $G_{i} \uparrow=G_{\psi(i)} \uparrow$ for each $i \in I$. Thus $G_{i}^{\prime} \uparrow=G_{\psi(i)}^{\prime} \uparrow$ for each $i \in I$. Hence $\alpha_{1} \approx \alpha_{2}$. According to 6.1 we obtain that $\alpha \approx \beta$.

Conversely, suppose that (ii) holds. Hence according to $6.1, \alpha_{1} \approx \beta_{1}$. Let ψ be as in the definition of \approx. Then

$$
G_{i}^{\prime}=\bar{e}\left(\varrho^{i}\right)=\bar{e}\left(\varrho^{\psi(i)}\right)=G_{\psi(i)}^{\prime}
$$

for each $i \in I$. Thus

$$
\begin{aligned}
G_{i}^{\prime} \uparrow & =G_{\psi(i)}^{\prime} \uparrow \\
G_{i} \uparrow & =G_{\psi(i)} \uparrow
\end{aligned}
$$

for each $i \in I$. Hence in view of 6.4 we obtain that (i) holds.
6.6. Theorem. Let $\alpha, \beta \in S D(G)$. There exists $\gamma \in S D(G)$ such that
(i) $\gamma \leqslant \alpha$ and $\gamma \leqslant \beta$;
(ii) if $\gamma^{\prime} \in S D(G)$ and $\gamma^{\prime} \leqslant \alpha, \gamma^{\prime} \leqslant \beta$, then $\gamma^{\prime} \leqslant \gamma$.

Proof. Let $\alpha_{1} \in D_{1}\left(G_{r} \uparrow\right), \alpha=f\left(\alpha_{1}\right)$. Suppose that β_{1} has an analogous meaning. Without loss of generality we can suppose that α_{1} and β_{1} are internal direct decompositions of $G \uparrow$. There exists a common refinement of α_{1} and β_{1}, namely (cf., e.g., [1])

$$
G \uparrow=\prod_{i \in I, j \in J}\left(G_{i} \uparrow \cap G_{j} \uparrow\right)
$$

Let $K=\left\{(i, j): i \in I, j \in J\right.$ and $\left.G_{i} \uparrow \cap G_{j} \uparrow \neq\{e\}\right\}$. Then $K \neq \emptyset$ and

$$
\begin{equation*}
G_{i} \uparrow=\prod_{(i, j) \in K^{\prime}}\left(G_{i} \uparrow \cap G_{j} \uparrow\right) \tag{1}
\end{equation*}
$$

All $G_{i} \uparrow \cap G_{j} \uparrow$ are normal in G. Hence there exists $\gamma \in S D(G)$ with $\gamma=f\left(\gamma_{1}\right)$.
Clearly $\gamma_{1} \leqslant \alpha_{1}$ and $\gamma_{1} \leqslant \beta_{1}$. Thus in view of 6.3 , \leqslant and $\gamma \leqslant \beta$.
Let $\gamma^{\prime} \in S D(G), \gamma^{\prime} \leqslant \alpha, \gamma^{\prime} \leqslant \beta$. There is $\gamma_{1} \in D_{1}(G)$ with $f\left(\gamma_{1}^{\prime}\right)=\gamma^{\prime}$. Then $\gamma_{1}^{\prime} \leqslant \alpha_{1}$ and $\gamma_{1}^{\prime} \leqslant \beta_{1}$. Again, without loss of generality we can suppose that γ_{1}^{\prime} is an internal direct product decomposition of $G \uparrow$. Hence γ_{1}^{\prime} is a refinement of both α_{1} and γ_{1}. Thus γ_{1}^{\prime} is a refinement of γ_{1}. This yields that $\gamma_{1}^{\prime} \leqslant \alpha_{1}$ and $\gamma_{1}^{\prime} \leqslant \beta_{1}$. Therefore $\gamma^{\prime} \leqslant \alpha$ and $\gamma^{\prime} \leqslant \beta$.

On the set $S D_{r}(G)$ we consider the relation \leqslant which is inherited from $S D(G)$.
6.7. Lemma. The relation \leqslant is a partial order on $S D_{r}(G)$.

Proof. This is a consequence of 6.1 and of the fact that for $\alpha, \beta \in S D_{r}(G)$ we have $\alpha \approx \beta \Rightarrow \alpha=\beta$.
6.8. Corollary. With respect to the relation $\leqslant, S D_{r}(G)$ is a meet-semilattice. Proof. This follows from 6.6 and 6.7.

7. COMMON REFINEMENTS

In the present section we prove that any two small direct product decompositions of a half lattice ordered group G have isomorphic refinements.

Let α and β be as in Section 6.
7.1. Lemma. Suppose that α and β are regular and that $\alpha \leqslant \beta$. For $j \in J$ let $I(j)=\left\{i \in I: \bar{e}\left(\varrho^{i}\right) \supseteq \bar{e}\left(\varrho^{j}\right)\right\}$. Then $I(j) \neq \emptyset$ for each $j \in J$.

Proof. Let $j \in J$. By way of contradiction, suppose that $I(j)=\emptyset$. Let $i \in I$. In view of $6.4, G_{i} \uparrow \subseteq G_{j}^{\prime} \uparrow$ for each $i \in I$. This yields that $G \uparrow \subseteq G_{j}^{\prime} \uparrow$ and thus $G_{j} \uparrow=\{e\}$, which is impossible.
7.2. Lemma. Let α, β be as in 7.1 and let $j \in J, g \in G$. We put

$$
\chi\left(\bar{g}\left(\varrho^{j}\right)\right)=\left(\ldots, \bar{g}\left(\varrho^{i}\right), \ldots\right)_{i \in I(j)} .
$$

Then χ is a mapping of G_{j} into $(s) \prod_{i \in I(j)} G_{i}$.
Proof. If $g, g^{\prime} \in G$ such that $\bar{g}\left(\varrho^{j}\right)=\overline{g^{\prime}}\left(\varrho^{j}\right)$, then for each $i \in I(g)$ we have $\bar{\varrho}\left(\varrho^{i}\right)=\overline{\varrho^{\prime}}\left(\varrho^{i}\right)$, whence χ is a correctly defined mapping on G_{j}.

For $\bar{\varrho}\left(g^{j}\right) \in G_{j} \uparrow$ the relation $g \in G \uparrow$ is valid and hence $\bar{g}\left(\varrho^{i}\right) \in G_{i} \uparrow$ for each $i \in I(j)$. Analogously, if $\bar{g}\left(\varrho^{j}\right) \in G_{j} \downarrow$, then $\bar{g}\left(\varrho^{i}\right) \in G_{i} \downarrow$ for each $i \in I(j)$. Thus $\backslash\left(G_{j}\right) \subseteq(s) \prod_{i \in I) j)} G_{i}$.
7.3. Lemma. χ is a homomorphism with respect to the group operation and also with respect to the partial lattice operations \wedge and \vee.

Proof. This is an immediate consequence of the definition of the mapping χ.
7.4. Lemma. $\quad G_{j} \uparrow=\prod_{i \in I(j)} G_{i} \uparrow$ for each $j \in J$.

Proof. Let $j \in J$ and $i \in I(j)$. In view of 6.4 . we have $G_{i} \uparrow \subseteq G_{j} \uparrow$, whence $G_{i} \uparrow \cap G_{j} \uparrow=G_{i} \uparrow$. Since $G \uparrow$ is a lattice ordered group, the relation

$$
G_{j} \uparrow=\prod_{i \in I} \quad\left(G_{i} \uparrow \cap G_{j} \uparrow\right)
$$

is valid. If $i(1) \in I \backslash I(j)$, then there exists $j(1) \in J$ with $j(1) \neq j$ such that $G_{i(1)} \subseteq G_{j(1)}$, whence

$$
G_{i(1)} \cap G_{j} \subseteq G_{j(1)} \cap G_{j}=\{r\} .
$$

Therefore

$$
G_{j} \uparrow=\prod_{i \in I(j)} G_{i} \uparrow
$$

7.5. Lemma. The mapping χ is a monomorphism.

Proof. Let $g, g^{\prime} \in G$ and suppose that $\chi\left(\bar{g}\left(\varrho^{j}\right)\right)=\chi\left(\overline{g^{\prime}}\left(\varrho^{j}\right)\right)$. Hence we have either (i) $g, g^{\prime} \in G \uparrow$, or (ii) $g, g^{\prime} \in G \downarrow$. If (i) holds. then $\bar{g}\left(\varrho^{j}\right)$ and $\overline{g^{\prime}}\left(\varrho^{j}\right)$ belong to $G_{j} \uparrow$ and hence in view of 7.4 we obtain that $\bar{g}\left(\varrho^{j}\right)=\overline{g^{\prime}}\left(\varrho^{j}\right)$. Let (ii) be valid. Then $e, g^{-1} g^{\prime} \in G \uparrow$ and

$$
\backslash\left(\bar{e}\left(\varrho^{j}\right)\right)=\chi\left(\overline{g^{-1} g^{\prime}}\left(\varrho^{i}\right)\right)
$$

This yields that $\bar{e}\left(\varrho^{j}\right)=\overline{g^{-1} g^{\prime}}\left(\varrho^{j}\right)$, whence $\bar{g}\left(\varrho^{j}\right)=\overline{g^{\prime}}\left(\varrho^{j}\right)$.
7.6. Lemma. χ is an epinorphism.

Proof. Let

$$
\left(\overline{g^{i}}\left(\varrho^{i}\right)\right)_{i \in I(j)} \in(s) \prod_{i \in I(j)} G_{i}
$$

Then either
(i) $g^{i} \in G \uparrow$ for each $i \in I(. j)$.
or
(ii) $g^{i} \in G \downarrow$ for each $i \in I(j)$.

First assume that (i) is satisfied. Then in view of 7.4 there is $g \in G \uparrow$ such that $\chi\left(\bar{g}\left(\varrho^{j}\right)\right)=\left(\overline{g^{i}}\left(\varrho^{i}\right)\right)_{i \in I(j)}$.

Next suppose that (ii) is valid. Choose $g \in G \downarrow$. Hence $\bar{g}\left(\varrho^{j}\right) \in G_{j} \downarrow$ and $g_{i} g^{i} \in G_{i} \uparrow$ for each $i \in I(j)$. Therefore there exists $g^{\prime} \in G$ such that

$$
\backslash\left(\overline{g^{\prime}}\left(\varrho^{j}\right)\right)=\left(g_{i} g^{i}\right)_{i \in I(j)}
$$

Then

$$
\backslash\left(\overline{g^{-1}}\left(\varrho^{j}\right) \overline{g^{\prime}}\left(\varrho^{j}\right)\right)=\left(g^{i}\right)_{i E l(. j)}
$$

which completes the proof.
7.7. Proposition. Let $\alpha \leqslant \beta$. Then the mapping χ determines a small direct product decomposition

$$
G_{j}=(s) \prod_{i \in I(j)} G_{i}
$$

Prgof. This is a consequence of 7.1-7.6.
7.8. Corollary. Let α and β be regular and $\alpha \leqslant \beta$. Then α is a refinement of β.

The definition of an isomorphism of small direct product decompositions implies
7.9. Lemma. Let α, β be small direct decompositions of G and suppose that α is isomorphic to β. Let γ be a refinement of α. Then there exists a refinement γ^{\prime} of β such that γ is isomorphic to γ^{\prime}.
7.10. Theorem. Let α and β be small direct product decompositions of a half lattice ordered group G. Then α and β have isomorphic refinements.

Proof. Let γ be as in 6.6. Then $\gamma \leqslant \alpha$ and $\gamma \leqslant \beta$. In view of 6.3 we have $\bar{\gamma} \leqslant \bar{\alpha}$ and $\bar{\gamma} \leqslant \bar{\beta}$. Since $\bar{\alpha}, \bar{\beta}$ and $\bar{\gamma}$ are regular, from 7.8 we obtain that $\bar{\gamma}$ is a refinement of both $\bar{\alpha}$ and $\bar{\beta}$. Next, $\alpha \approx \bar{\sigma}$ and $\beta \approx \bar{\beta}$, thus by applying 7.9 we get that there exist $\gamma^{\prime}, \gamma^{\prime \prime} \in S D(G)$ such that
γ^{\prime} is a refinement of α and γ^{\prime} is isomorphic to $\bar{\gamma}$;
$\gamma^{\prime \prime}$ is a refinement of β and $\gamma^{\prime \prime}$ is isomorphic to $\bar{\gamma}$.
Hence γ^{\prime} and $\gamma^{\prime \prime}$ are isomorphic.

References

[1] A. Bigard, K. Keimel, S. Wolfenstein: Groupes et anneaux réticulés. Springer Verlag, Berlin-Heidelberg-New York, 1977.
[2] L. Fuchs: Partially ordered algebraic systems. Pergamon Press, Oxford-London-New York-Paris, 1963.
[3] M. Giraudet, F. Lucas: Groupes à moitié ordonnés. Fundamenta Math. 139 (1991), 75-89.
[4] J. Jakubik: Konvexe Ketten in ℓ-Gruppen. C'asopis pěstov. matem. 83 (1958), 53-6;3.
[5] J. Jakubik: The mixed product decompositions of partially ordered groups. Czechoslovak Math. J. 20 (1970), 184-206.
[6] A. I. Maltsev: On ordered groups. Izv. Akad. Nauk SSSR, ser. matem., 38 (1951), 473-482. (In Russian.)

Author's address: Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia.

