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Czechoslovak Mathematical Journal , 46 (121) 1996, P r aha 

ON HALF LATTICE ORDERED GROUPS 

JAN JAKUBIK, Kosice 

(Received October 7, 1994) 

The notion of half lattice ordered groups was introduced and studied by Giraudet 

and Lucas [3]; it is a generalization of tlie notion of a lattice ordered group. 

Each lialf lattice ordered group can be represented as a group of monotone trans

formations of a linearly ordered set [3]. 

We apply the same terminology and notation as in [3]. In particular, if G is a 

half lattice ordered group, then G t is the connected component of G containing the 

neutral element e of G. This substructure G t of G is a lattice ordered group. 

The half lattice ordered gump G fails to be uniquely determined by the lattice 

ordered group Gt- In [3] it was proved that there exist half lattice ordered groups G\ 

and G2 such that Gi is not isomorphic to G2 , G i t = G^t and G i t ^ G\, G 2 t / G2 . 

In the present paper we investigate congruence relations on and small direct prod

ucts of half lattice ordered groups. The motivation of introducing the latter concept 

is as follows. 

Let H be the class of all half lattice oroered groups and let H\ be the class of all 

elements of H which fail to be lattice ordered groups. If / is a nonempty set and if 

Gi e H for each i E / , then the direct product f ] G3 need not belong to H. 
iei 

Let Gi E Hi for each i E I. We construct a substructure G° of ]J Gi such that 
iei 

G° belongs to H\ and satisfies a certain maximality condition. G° will be said to be 
a small direct product of the system (Gf)? G / . 

The relations between direct product decompositions of the lattice ordered group 

G t and small direct product decompositions of G will be dealt with. 

Sample results: 

Each congruence relation on a half lattice ordered group G is determined by an 

(Mdeal of the lattice ordered group G t which is normal in G. 
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Let G G Hi. If G t = I I ^> *s s u c n that , for each / G I, A? is normal in G and 
iG1 

Az- 7̂  {e}, then G can be expressed as a small direct product of a system (G/) / t / 

with Gf t = -4; for each i G J. 

If G is a normal convex chain in G such that c G C and G has neither an upper 

bound nor a lower bound in G, then there exist G j . G 2 G %i such that (i) G is a 

small direct product of G\ and G2 , and (ii) G = Gi t -

We define a set SDr(G) of small direct product decompositions of G which will 

be called regular. Each small direct product decomposition of G is isomorphic to an 

element of SDr(G). It is proved that under a natural partial order the set SDr{G) 

is a meet-semilattice. 

It is shown tha t any two small direct product decompositions of G have isomorphic 

refinements. 

Let us recall tha t an analogous theorem for lexicographic product decompositions 

of linearly ordered groups was proved by Maltsev [G]: this result was generalized by 

Fuel is [2] and by the author [5]. 

1. P R E L I M I N A R I E S 

We recall the definition of a half lattice ordered group (cf. [3], Section 1). 

Let G be a group with the neutral element e. Further, suppose tha t G is a partially 

ordered set. 

We denote by G t and G | the set of all x G G such that , whenever y, z G G and 

y ^ z, then xy ^ xz or xy ^ xz, respectively 

G is said to be a half lattice ordered group if the following conditions are satisfied: 

1) the partial order ^ on G is nontrivial (i.e., there are x-i. T2 G G with xi < x-2); 

2) if x,y,z € G and y ^ c, then yx ^ zx\ 

3) G = G t U G t ; 

4) G t is a lattice. 

In what follows we assume that G is a half lattice ordered group. Let 7i be as 

above. Next let ri\ be the class of all elements G of H such that G ! / 0. 

It is obvious tha t ri \ 'rti is the class of all lattice ordered groups with more than 

one element. 

1 .1 . P r o p o s i t i o n . (Cf. [3]). LetGeUi. Then 

(i) G t is a subgroup of G having the index 2; 

(ii) the partially ordered sets G t and G | are isomorphic and, at the same time, 

dually isomorphic: 

(iii) if x G G t and y G G | , then x and y ai'e incomparable. 
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2 . S M A L L D I R E C T P R O D U C T S 

Let / be a nonempty set and for each i G / let Gi be a half lattice ordered group. 

Hence for each i G / we consider the structure 

(G,-;0, 

where ^ is a partial order on G7; and • is a group operation on Gi such that the 

conditions l)-4) are satisfied. 

We can construct the direct product 

G^ЦG, 
iei 

in the usual way (i.e., the partial order and the group opera t ion in G 1 are defined 

component-wise). 

For (j G G1 and i G / we denote by O; the component of g in Gi. 

2 . 1 . L e m m a . Let G 1 DO as above and let c a r d / ^ 2. Then the following 

conditions are equivalent: 

(i) GL is a lattice ordered group; 

(ii) G 1 is a half lattice ordered group; 

(iii) for each i G /, Gi is a lattice ordered group. 

P r o o f . The relations (i) o (iii) and (iii) => (ii) are obviously valid. Suppose 

that (iii) fails to hold. Hence there exists i(l) G / with G ^ ^ t / 0. Next there is 

/(2) G / such that /(2) / /( l ) . 

Choose y,z G G 1 such t h a t 

iji < Zi for each / G /. 

Tims y < z. There exists x G G l with 

*z(i) £ G.-(1) -I, :*:; G Git for each / G / \ { i ( l )} . 

Then 

• ' : 7 ( - ) & ' - ( - ) > : r * ' ( l ) ^ ' ( l ) ' 

Tig,- < .r,-Ci for each / G / \ {/(l)}. 

Hence the elements :r?v and xz are incomparable. Thus x £ G ' t U G J,. Therefore Gl 

is not a half lattice ordered group. • 
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Again, let G1 be as above. We denote by G° the set of all g G G1 such that either 

(1) g; e G,t for each i e L 

or 

(2) O? G Gi I for each i t / . 

Then G° is a subgroup of the group G1 . The partial order on G° is inherited from 

that in G1 . 

2.2 . L e m m a . G° is a half lattice ordered group. 

P r o o f . We have to verify that the conditions 1) I) above are valid. Let i G I. 

Since G2 G % there exists x' G G; with e < a;\ Hence ./•' G G7 | - Let g € Gl be sucli 

that Oz- = x1 for each i G I. Tlien g > e. In view of the definition of G° we have 

O G G° and e G G ° . Hence 1) liolds. 

Since the multiplication in G° is performed component-wise we infer that 2) is 

valid. 

The set G ° t consists of those elements g of G() which satisfy (1); similarly G° j 

is the set of elements of G° satisfying (2). Thus the condition 3) holds. The validity 

of 4) is obvious. D 

2.3 . L e m m a . Let G2 be a subgroup of G1 and /er ^ be the partial order on 

G2 which is inherited from G1 . Suppose that G2 is a half lattice ordered group such 

thatG0 C G 2 . ThenG0 = G2 . 

P r o o f . We proceed similarly as in the proof of 2.1. By way of contradiction, 

suppose tha t G2 fails to be a subset of G°. Thus there are i(l) and ?'(2) in I and 

g G G2 such tha t 

<Ji(l) ^ ^ 7 ( 1 ) t , gi(2) € ( ^ ( 2 ) I • 

For each i G / we have G, / {e} and hence in view of I T , G ; t ^ {e}; thus there 

exists O* G G(\ with e < (/\ According to the definition of G° there exists z G G° 

such tha t zt- = Oz for each i G L Hence e,z G G2 and e < ^. Then 

g.-(i)et(i) < 9i(\)Zi(\)> 

fji(2)€i(2) > 9i(2)zi(2)-

Therefore the elements g = gc and gz are incomparable4 in G2 , which is a contradic

tion. • 
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The half lattice ordered group G° will be said to be the small direct product of 

half lattice ordered groups G, (i G I); we denote it by the symbol 

(*)ПG* 
iei 

It is obvious t h a t if G 1 is a lattice ordered group (i.e., if G 1 | = 0) then G° = Gv. 

In our construction, all G r are half lattice ordered groups, thus Gi ^ {e}. On 

the other hand, by considering direct product decompositions of a lattice ordered 

group, one-element direct factors can be taken into account (this occurs when forming 

common refinements of two direct decompositions.) In the case of lattice ordered 

groups the notions of a direct product with all factors distinct from {e} and a small 

direct product coincide. 

If v? is an isomorphism of a, half lattice ordered group H onto (s) \\ Gi, h G 
iei 

H, <p(h) = ( . . . , <f,. • .)ie/ and if no confusion can occur, then we can identify the 

elements h and </?(/i), and in this sense we write 

(3) H = (.s)JlG,-; 
iei 

the relation (3) is said to be a small direct product decomposition of H. In particular, 

if / G I and gl G Gt-, then the element gx is identified with the element g of G such 

that gi = gl and g ^ = e whenever i(l) G I and i(l) ^ i. 

If a more thorough description is needed then instead of (3) we apply the notat ion 

where the isomorphism under consideration is explicitly written. 

Let (3) be valid. If, moreover, for each i G I we have 

Gn = (s) f j Gih 

jeJ(i) 

then 

(4) H = (s) ] T G ij • 

The small direct product decomposition (4) will be called a refinement of (3). 

Throughout this paper we shall apply without further reference the known facts on 

direct product decompositions of lattice ordered groups (cf. , e.g. [1]). In particular, 

we apply the notion of internal direct decomposition as in [1], Section 5.3. Namely, 

if H is a lattice ordered group and if we have an isomorphism <p of H onto a direct 

product Yl Hi, then for each i(0) G I we can construct the set H?,Q) = {h G H: 
iei 
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(p(]i)i = e for each i e I \ {'(0)}}. Then H°(0) is an /'-subgroup of H which is 

isomorphic to H^0y, we call H°(1)
 a n internal direct factor of H. To simplify tlie 

notation, we use the following convention: 

2.4. Convent ion . Under the assumptions as above. H?(0) will be identified with 

3. C O N G R U E N C E RELATIONS 

Several results and methods from this section will be applied below for investigat

ing small direct product decompositions. 

In what follows we assume that G is a half lattice ordered group which fails to bo 

lattice ordered. Under the notation as above, G can bo viewed as a structure with a 

group operation and two binary partial operations V. A (partial lattice operations). 

From this point of view the following definition is a natural one. 

3 . 1 . Def in i t ion. An equivalence g on G is said to he a congruence relation if it 

satisfies the following conditions: 

(i) Q is a congruence relation with respect to the group operation; 

(ii) if o G {A, V}, x, y, z G G, XJQZ and if x o y exists in G. then x o z exists in G 

and (x o y)g(x o z). 

For u,v G Gf (or u,v G G | , respectively) we put uo{l)c (or UQ^V) iff UQC. Then 

from 3.1 we obtain 

3 .2 . L e m m a , (i) O(1^ is a congruence relation ou the lattice ordered group G\. 

(ii) O(2) is a congruence relation of the lattice G \. 

We apply the symbols GjQ. G'\/Q^ and G I /Q(~] in the usual sense. 

Let x G G. We denote X(Q) = {y G G: XQIJ}. Next we put G(Q) = {x(o): x G G}. 

If no misunderstanding can occur, then we write x and (/ instead of x(o) and G(o). 

For x,y G G we put x ^ y if there are x\ G x and ij\ G Tj with Ti ^ ij\. Next wo 

put x • y = xy. Then 

(i) G turns out to be a partially ordered set; 

(ii) G is a group with respect to the operation • and x • Tj = Ty. 

In view of (i) and (ii) we can construct the sots G't and G I. Clearly G = G/o. 
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3 .3 . Remark. Let Omax be the largest equivalence relation on G. Next let O(2) 

be the equivalence on G such that for x,y G G we have XQ(2yy iff either x,y G G t 

or x,y G G | . Then both Omax and O(2) are congruence relations on G. Next, 

cardG(O m a x ) = I, cardG(O2) ^ 2 and the partial orders on both G(Om a x ) , G(O (2 )) 

are trivial. Hence neither G(Om a x) nor G(O(2)) is a half lattice ordered group. 

3.4 . L e m m a . Let O be a congruence relation on G such that Omax i~ Q ̂  Q(2)-

Then the partial order ^ on G is non-trivial. 

P r o o f . In view of the assumption there exist x, y G G such that (i) x^y, and 

(ii) either x,y G G t or x,y e G I. Hence there exist 

u = x A y. v = x V y. 

Thus 77 ^ 77. If 77 = 77, then 3.2 yields that x = y, which is a contradiction. D 

3.5 . L e m m a . Let O be a congruence relation on G and let x,y,z G G, y ^ 3. 

Then y -x ^z -x. 

P r o o f . There are y\ £y and z\ £ z such that y\ ^ z\. Then y\x ^ Z\X. Hence 

yix ^ z\x and y~~x = y{ -x = y-x, Z\X = z x . D 

3.6. L e m m a . Let O be a congruence relation on G. Then G = G t U G t-

P r o o f . It is obvious that 

x G G t = > x G G t , a- e G l=> xeG | . 

Now it suffices to apply the relation G -= G t U G | . D 

3.7. L e m m a . Let O be a congruence relation on G, Omax i~ Q ^ Q(2)- Then 

GtnG-i=0. 

P r o o f . By way of contradiction, suppose tha t x G G t fl G | . Let y,z G G, 

7 / ^ 3 . In view of the assumption we have IF - T/ < x • z and, at the same time, 

x • y ^ x • 3, whence if • 7/ = x • 3. Then y = z. Hence the partial order on G is trivial, 

which contradicts 3.4. D 

3.8 . L e m m a . Let Q be a congruence relation on G, Omax i~ Q ̂  Q(2)- Then G t 

is a lattice. 

P r o o f . Let Q^ be as above. In view of 3.7, the partially ordered set G t 

coincides with G t / O ^ , whence it is a lattice. D 
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3.9 . P r o p o s i t i o n . Let O be a congruence relation on G such that Qmax ¥" Q ?-" 

O(2). Then G is a half lattice ordered group. 

P r o o f . This is a consequence of 3.4, 3.5, 3.6 and 3.8. D 

Tlie maxima l equivalence relation on G t will be denoted by T„lax. Let T be a 

congruence relation of the lattice ordered group G t , T ^ r m a x . For v,v G G we put 

UQV if and only if u~1v G G t and eTH_1U. 

The definition of G implies that the relation u~lv G G t is valid iff either u, v G G t 

or u,v E G I. Next, for u, v G G t we have 

UQV <=> UTV. 

3.10 . L e m m a . O is an equivalence relation on G. 

P r o o f . It is obvious that the relation O is reliexive. Let UQV, thus U~1VTC. 

Then (H_ 1U) - 1Te, whence r~'//Te and VQU. Thus O is symmetric. 

Let x,y,z G G, xgy, IJQZ. Hence x~lyTe and y~[ zr<. We have either x,y.z G G't 

or x,y,z e G I. This yields that x~lz G Gt- Next, . r _ 1 : = (x~vy)(y~l z)Te, whence 

XQZ. Therefore O is transitive. D 

3 . 1 1 . L e m m a . Let x,y,z G G, yQZ. Then xyQxz. 

P r o o f . We have eTy~lz. From y~lz = (y~lx~ l){xz) = (xy)~1(xz) we obtain 

tha t xygxz. D 

3 .12 . L e m m a . The following conditions are eqm'va/ejifc: 

(i) Ifx,y,z G G,\JQZ, then IJXQZX. 

(ii) If x G G | , l G G t and /Te, then x~ltxre. 

(hi) If x and t are as in (ii), then txQx. 

P r o o f . ( ( i )=>(i i ) ) Let (i) be valid. Let x and / be as in (ii). Then lOe, hence 

according to 3.11 we have x~ltQx~l and thus (i) yields that x~ltxQe. Thus x~ltxTC. 

(( i i )=^(i i i ) ) Let (ii) be valid and let x,t be as in (ii). Then l_1 G G t and t~lTC 

Thus in view of (ii), x~lt~lXTe. Hence (tx)~lxTe. This yields tha t txgx. 

(( i i i )=>(i)) Let (iii) be valid and let x,y,z be as in (i). Then egy~lz. Put 

y~lz — t. Hence t G G t and eTl. 

First suppose tha t x belongs to Gt- Since T is a congruence relation on G t wre 

obtain tha t XTtx, thus erx~ly~lzx yielding that yxgzx. 

Now assume tha t x belongs to G J,. From lTe we get, applying (hi), the relation 

txgx. Thus in view of 3.11 we obtain x~ltxge. Therefore x~ly~lzxge and hence 

yxgzx. D 
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3 .13 . L e m m a . Let o G {A,V}, x,y,z G G, ygz and suppose that x o y exists 

in G. Then x o - exists in G and (x o g)D(x o z). 

P r o o f . Let o be the partial operation A (for the partial operation V we proceed 

analogously). 

From the relation ygz and from the fact tha t x A y exists we obtain that either 

(i) x.y,zeGj 

or 

(ii) x,y,z EG I 

liolds. Hence x o z exists in G. 

Assume tha t (i) is valid. Then, since g coincides with r on G t and T is a congruence 

relation on Gf, we infer tha t x A ygx A z holds. 

Next let us suppose tha t (ii) is valid. Choose a fixed element it in G I and consider 

the mappings 

tpi(ti) = uh (ti e G i), 

^•>(t2) = u-lt2 (t2 G C | ) . 

Then ^ i is a dual isomorphism ol the lattice G I onto the lattice G\ and <+)2 = <P\l • 

Thus 

Vi(xAy) = ipx(x) V<^i (;//), 

#i(x V z) = <pi(x) Aipi(z). 

According to 3.11, 

v ? i ( y W i ( - ) 

and hence (cf. the case (i) where A is replaced by V) 

^iOO v<Pi(y)Q<pi(x) v ^ i ( 2 ) , 

<Pi(xAy)g(fi(xAz). 

If we apply the mapping (D2 then from the last relation we get (in view of 3.11) 

x A ygx A z. 

D 
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3 .14 . P r o p o s i t i o n . Let O be as above. Then the following conditions are 

equivalent: 

(i) O is a congruence relation on G. 

(ii) Some of the conditions from 3.12 is satisfied. 

P r o o f . The implication ( i )=>(i i ) is obvious. The inverse implication is a 

consequence of 3.10-3.13. • 

If T and O are as above, then O will be said to be a G-extension of T. It is obvious 

tha t if T has a G-extension, then this G-extension is uniquely determined. 

By using this term, Proposition 3.14 can be expressed as follows: 

3 . 1 4 . 1 . P r o p o s i t i o n . Let T be a congruence relation on the lattice ordered 

group Gf. Then the following conditions are equivalent: 

(i) The G-extension of T is a congruence relation on G. 

(ii) The set {x G Gf: XTC} is normal in G. 

It is easy to verify that if O is a congruence relation on G, then O is a G-extension 

of Q^. 

Let Con Gf and Con G be the systems of all congruence relations on Gf and on G. 

respectively; these systems are partially ordered in the usual way. Then C o n G f and 

ConG are complete lattices. Let Coni Gf be the system of all T G C o n G f satisfying 

the condition (i) from 3.14.1. 

As an immediate consequence of 3.14.1 we obtain 

3 .14 .2 . P r o p o s i t i o n . Coiii Gf is a closed sublattice of the lattice ConGf . 

Let (f be a mapping of Coni G into ConG such that , for each T G Coni G, <P(T) is 

the G-extension of T. 

3 .15 . P r o p o s i t i o n , (p is an isomorphism of Coiii G onto ConG. 

P r o o f . If Q G ConG, then (f(g^) = O; hence <p is an epimorphism. Let 

T{ G Con iGf , Qi = (f(Ti) (i = 1,2). 

Let Ti ^ T2, y,z G G, yg\z. Then y~lZT\e, whence y~lzT-2e and thus /yO2c. 

Therefore Oi ^ O2-

Conversely, assume that Oi ^ O2- We have TA = O], r2 = O2, thus Ti ^ T2, which 

completes the proof. • 

3.16 . P r o p o s i t i o n . Let T; G Coni Gf, O; = <P(TJ) (i = 1,2). Then Ti, T2 are 

permutable if and only if Oi, O2 are permutable. 
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P r o o f . Assume that Ti and T2 are permutab le. Let x,y,z G G, XQ\y, IJQ2Z. 

Tlien we have either (i) x,y,z G G t , or (ii) x, y,z G G | . If (i) is valid, then XT\y, 

//T2.r, hence there is u G G t such that XT2U, UT2Z. This yields that XQ2U, UQ2Z. If 

(ii) liolds, then we take any t G G t and obtain tx,Q\ty, tyQ2tz and tx,ty,tz G Gt-

Hence txT\ty, tijT2tz. Thus there is D G G t such that txT2v, vT\tz. Then t,XQ2v and 

vQ\tz. There exists 10 G G | such that v = tw. We get XQ2W, WQ\Z. Hence Q\ and 

O2 are permutab le. 

Conversely, suppose tha t Q\ and O2 are permutable. Let x,y,z G G t , XT\y, IJT2Z. 

Then TOi?/, uO2~- There exists u G G such that XQ2U, UQ\Z. We have u G G t and 

hence XT2U, UT\Z. D 

4. TWO-FACTOR SMALL DIRECT PRODUCTS 

For a two-factor small direct product decomposition of a half lattice ordered group 

G we apply the notation 

(1) G = (s)G\ x G 2 ; 

G\ and G2 are said to be s-factors of G. Let S(G) be the system of all s-factors 

of G. 

If g G G and i G {V 2}, then the component of g in G{ will be denoted by gi. 

4 . 1 . L e m m a . Let (1) be vaiid. Then 

(i) for the lattice ordered group G t we have a direct product decomposition 

Gt = G L t x G 2 t ; 

(ii) for the lattice G I we have a direct product decomposition 

G i=G{ I x G 2 I . 

P r o o f . This is an immediate consequence of the definition of the small direct 

product. • 

Let (1) be valid. For x, y G G we put xQ\ij if the following conditions are satisfied: 

(i) either x, y G G t or x, y G G t ; 

(ii) xY =y\. 



Similarly we define the binary relation O2 on G (the condition (ii) is replaced by 

X2 = 1 / 2 ) . 

The definitions of Oi and D2 imply 

4 . 2 . L e m m a . Let (1) be valid. Then 

(i) Oi and D2 are congruence relations on G; 

(ii) Oi and O2 are permutable; 

(hi) Oi A O2 = Omin; 

(iv) if either x,y G G t or T, g G G t , then tiiere is z G G sucii that ;rOi^ and cD2/y. 

4 . 3 . L e m m a . Suppose that Oi and O2 are congruence relations on G such that 

the conditions (i)-(iv) from 4.2 are satisfied and Omax ^ Ot- ^ O(2) (i = 1,2). Pu t 

Gi = GIQi (i = 1,2). Then the mapping 0 : G —•> GL x G2 defined by i'(x) = 

(X(QI),X(Q2)) gives a small direct product decomposition of G. 

P r o o f . According to 3.9, Gi and G2 are half lattice ordered groups. In view 

of (iii), </> is a monomorphism. If x G G t , then X(Q\) G G L t and x(D2) G G 2 t , hence 

y(x) G G i t x G 2 t - Similarly, if x £ G I, then iM.r) G G\ | x G 2 t- Thus v is a 

mapping of G into ( G i t x G 2 t ) U (G'i I x G 2 t ) . 

Let (<T(Oi),^(O2)) G G i t x ^ t - According to (iv) there exists ; G G | such that 

XQIZ and ~O2u. Then •</>(::) -= (T(Oi), ?7(D2))- An analogous consideration can be 

performed for Gi | x G 2 | . Thus xl) is an epimorphism of G onto ( G i t x G2^) U (Gi | 

xG 2 t ) . 
Let ;r,H G G, a: ^ y. Since Oi and D2 are congruence relations on G we have 

^(^1) ^ y(Qi) a r-d ^(£2) ^ Tj(Q2), thus V'(x) ^ </'(//)- Conversely, assume that 

'tlj(x) <J </>(?/)• This means that X(QI) ^ y(Qi) and 3r(O2) ^ y(Q2)- Hence either 

x,y G G t or x,y e G I. We first suppose tha t x,y G G't- Let us denote by Q\ the 

relation Qi reduced to G t (i = 1.2). From (i) — (iv) and from 3.16 we obtain that the 

mapping (D reduced to G t is an isomorphism of the lattice G t onto G i t x G 2 t - A 

similar result holds for the lattice G t- Hence */' is an isomorphism with respect to 

the par t ial order. 

From the fact that '</' is an injective mapping of G onto ( G i t x ^ 2 t ) u ( C i I X G 2 | ) 

and from the condition (i) in 4.2 we obtain that */' is an isomorphism with respect 

to the group operation. • 

Combining 4.2 and 4.3 we obtain 

4 .4 . T h e o r e m . Let Q\ and O2 be congruence relations on G with Omax ^ Qi ^ 

Q{2) (i — V2)- Then the following conditions are equivalent: 

(i) The conditions (i) —(iv) from 4.2 are satisfied. 
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(ii) The mapping ip(x) = (X(Q\),X(Q2)) is an isomorphism ofG onto (S)(G/QI) X 

(o/02). 

Now let us investigate the relations between two-factor direct product decompo

sitions of the lattice ordered group G t and two-factor small direct product decom

positions of G. 

Let us have a direct product decomposition 

(2) G t = - 4 x B , A?-{e}/H 

of the lattice ordered group Gt-

For x G G t we denote by x(A) and x(B) the components of x on A and in B, 

respectively. 

Let x, y G Gt- We put xTXy (xT2y) if x(A) = y(A) (or x(B) = y(B), respectively). 

4 . 5 . L e m m a . r\ and T2 are congruence relations on G t satisfying the conditions 

(i), (ii), (iii) of 4.2, and also the condition 

(ivi) if x,y G G t , then there is z G G t with x.T\Z,ZT2y. 

P r o o f . The validity of these conditions is a consequence of (2). D 

Let us construct binary relations D? and Q2 by means of Ti and T2 by the same 

method as we did in Section 3 for T and O. 

4 .6 . L e m m a . Assume that A is a normal subset ofG. Then O? is a congruence 

relation on G. 

P r o o f . This is a consequence of 3.14.1. D 

4.7. L e m m a . If A is a normal subset ofG, then B is a normal subset ofG as 

well. 

P r o o f . Assume that A is a normal subset of G. The relation (2) yields tha t 

B = A6 = {x G G t : |x| A \a\ = e for each a G A}. 

Let z G G. If z G G t , then from (2) we obtain that z~lBz = B. Let z G G | . 

Then the mapping tp: G t —> G t defined by (f(t) = z _ 1 l z for each t G G t is a dual 

automorphism of the lattice G t with (D(e) = e. Thus tp(A5) = A5, which completes 

the proof. D 
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4 . 8 . L e m m a . Let (2) be valid and suppose that A is a normal subset of G. 

Then Q® and Q2 are congruence relations on G satisfying the conditions (i) —(iv) from 

4.2. 

P r o o f . This is a consequence of 4.7, 4.6 and 3.14.1. • 

4 . 9 . T h e o r e m . Let (2) be valid and let O?, g?2 be as above. Then G = {s)G/o°[ x 

G/QI 

P r o o f . This result is valid in view of 4.4 and 4.8. • 

4 . 10 . P r o p o s i t i o n . Under the assumptions and notation as in 4.9, the lattice 

ordered groups (G/O^)t and A are isomorphic; moreover, under the convention as in 

2.4, ( G / £ ° ) t = A 

P r o o f . We have 

(G/??)t={j(??):s6Ct}. 

whence (G/O°) t = (Gt ) /T i , where Ti is as above. Next, (Gt)/Ti is isomorphic to A. 

Under the convention as in 2.4 we clearly have (G/O (/)t — A. • 

5. T H E GENERAL CASE 

Consider the relation 

(1) G = {s)l[Gi. 
iei 

Let i(0) be a fixed element of I. We put 

G'i{o) = {9 £ G: gi{0) = c}. 

From the definition of the small direct product we immediately obtain 

5 .1 . L e m m a . Let (1) be valid and let i(0) G I. Then G = (s)G / ( 0 ) x G ' ( 0 ) . 

5.2. L e m m a . Let I be a nonempty set and for each i G I let G\ be an s- fact or 

of G. For g G G and i G I let //, be the component of g in G;. Put p{g) = (g/)/e/-

Then <p is a mapping of G into {s) Yl G\. 
iei 

P r o o f . Let g G Gt- Then for each i G I we have gt G G;t- Similarly, if g G G | , 

then gi G G; 4 for each i G I. Hence (D(g) G (5) fj G\. • 
/ € / 

758 



5.3 . P r o p o s i t i o n . Let I,(Gi)iei and p be as in 5.2. Then the following 

conditions are equivalent: 

(i) p is an isomorphism of G onto (s) Y\ G?. 
iei 

(ii) p is a bijection. 

P r o o f . The relation ( i )=>(i i ) obviously holds. Let (ii) be valid. From the def

inition of p we infer that p> is a homomorphism with respect to the group operation. 

Thus, in view of (ii), p is an isomorphism with respect to the group operation. Put 

pY = (D|Gt, p2 = v\G i . 

In view of 5.2, p\ is a bijection of G t onto ]\ (G; t ) = ((s) Y\ G ; ) t and, similarly, p>2 

iei iei 
is a bijection of G | onto ((s) Y\ Gi) | . We have to verify that p\ is an isomorphism 

iei 
of the lattice G t onto the lattice \\ G ? t , and that an analogous result is valid for 

iei 
p2. 

Let g,g' G G t , g < g'. Then we have O? ^ g\ for each i G / , thus p\(g) ^ <£i (.</')• 

Since p\ is a bijection we obtain tha t g\(g) < g\(g'). 

Conversely, suppose tha t p(g) < p(g'). Then g' < g cannot hold. By way of 

contradiction, assume that g and g' are incomparable. Pu t u = g A g'. Then u / g. 

In view of the definition of p\ we conclude that p\ is a homomorphism with respect 

to the operation A, whence 

P\(u) = ipi(gAg') = (g, f\g'i)iei = (ji)iei = <Pi(tf), 

which is a contradiction. Therefore g < g'. 

For p2 we can apply analogous arguments. • 

5.4 . L e m m a . Let p\ and p2 be as in the proof of 5.3. Then the following 

conditions are equivalent: 

(i) p is a bijection. 

(ii) pi is a bijection. 

P r o o f . The implication (i)^=^(ii) is obvious. Let (ii) be valid. We have to 

prove that p2 is a bijection. 

Let O,o' e G t , g / g'. Choose any x £ G I. Then xg, xg' G G t and xg / xg'. 

Thus p(xg) 7̂  p(xg'). Since 

p(xg) = p(x)p(g) = p(x)p2(g), p(xg') = p>(x)p2(g') 
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we obtain tha t (D2(g) 7̂  V?2(g')-

For each i G I let gl G G, | . Choose X E G | . Hence T? e Gi I for each i G I. 

Next, XiO" G G , t for e a c n i G I. Hence there exists Oi G G t such that 

(gi); = Xig1 for each i G 1. 

Pu t g2 = £ - 1 g i - Then g2 G G and 

(g2)i = Cr-1)z-CT;OZ) = O, 

for each z G I. Thus p2 is a bijection. • 

5.5. T h e o r e m . Assume that G t = Yi ^i and that all Ai are normal in G. 
iei 

Ai ^ {e}. Then there are half ordered groups Gi such that G \ t = Ai for each i G I 

andG = (s) [I G{. 
iei 

P r o o f . Let i(0) G I. There exists a direct factor A'(0) of G t such that G't = 

Ai{0) x Af^0y Since Ai{0) is normal in G, in view of 4.7 the set A'^ is also normal 

in G. Hence according to 4.9 and 4.10 there exists a small direct decomposition 

G = (s)Gi{0) x G-(0) 

such tha t G t-(0)t = Ai{0). 

Let (p, (pi and <D2 be as above. In view of G t = \\ Ah we obtain that <pi is a 
iei 

bijection. Thus according to 5.4, ip is a bijection as well. Therefore 5.3 yields that 

G=(s)YlGi. • 
2 6 / 

The following example shows that a direct factor of G t need not be, in general, a 

normal subset of the group G. 

Let Hi be the additive group of all integers with the natural linear order and 

H2 = Hi. P u t H = Hi x H2. Next, let F and F' be as in [3], p. 87. By applying 

[3], Lemma III.3 we construct the half ordered groups GH,F a i-d GH,F'- Then 

GH,F1~ — GH,F'1 — H 

It can be easily verified that neither Hi nor H2 are normal subgroups of GH,F' • On 

the other hand, both Hi and H2 are normal in GH.F-

5.6. T h e o r e m . Let G be a half lattice ordered group and let C C G, c G C. 

Suppose that 

(i) C is a convex chain in G which has no upper bound and no lower bound; 

(ii) the set c~lC is normal in G. 
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Then there exists an s-factor G\ of G such that G i t — c lC. 

P r o o f . The set c~lC is a convex chain in Gt which has no upper bound and 
no lower bound in Gt- Thus in view of [2], c~lC is a direct factor of the lattice 
ordered group Gt- Hence according to 5.5, there is an s-factor G\ of G such that 
G 1 t = O"1G. • 

6. REGULAR DECOMPOSITIONS 

Consider a small direct product decomposition 

(a) G = (s)'[[Gl. 
i£l 

Let i G I. For x,y e G we put xgly if x\ = yi. Then gl is a congruence relation 
on G. 

Let gl G Gr and let <Pi(gl) be the set of all x G G such that Xi = gx. Then ipi is an 
isomorphism of Gi onto G/gl. 

For each x G G we put 

<p(x) = (x(gi))ieI. 

The mapping (D determines a sm.ll direct product decomposition 

(a) G = (s)l[Gu 
iei 

where Gi = Gjg1 for each i G / . We will say that 57 is a regular decomposition 

corresponding to the small direct decomposition a. 

A small direct product decomposition (} of G will be called regular if there exists 
a small direct product decompositions fi\ of G such that (3 = (3\. 

Let us have another small direct decomposition 

(/?) G = (s)l[Gj. 
jeJ 

The small direct product decompositions a and /3 are called isomorphic if there 
exists a bijection rp: I —•> J such that for each i G / the half lattice ordered groups 
Gi and G ^ ) are isomorphic. 

Next, a and /3 are said to be equivalent (notation: a « /3) if o7 = /3; in other words, 
if there exists a bijective mapping T/>: I —•> J such that Ol = D^^^ for each i G I. It 
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is obvious that a « a. Tlie relation « is an equivalence on the class SD(G) of all 

small direct produc t decompositions of G. Pu t SDr(G) — [a: a G SD(G)}. 

It is clear that if a, (3 are regular and if a » /J, then n -= /J. 

If a G SD(G), then o; and a are isomorphic (in view of the isomorphisms y\ 

above). This yields that if a and (5 are equivalent, then they are isomorphic. 

On the other hand, if a and (5 are isomorphic, then they need not be equivalent. 

Let H be a lattice ordered group, H ^ {e}. We denote by D(H) the class of all 

direct produc t decompositions of H. Next, let D\(H) he the subclass of H containing 

those direct product decompositions all factors in which are distinct from {e}. We 

can introduce an analogous equivalence on Di(H) as we did for SD(G) above; this 

equivalence on D\(H) will be denoted by the same symbol « . 

Assume that G,G{ and Ai (i G I) are as in 5.5. We apply the no ta t ion a as above 

and denote 

(cYi) ot=n^-

iei 

Let us put /(cYi) = a. 

6.1 . P r o p o s i t i o n . Let a{,a2 G .Di(Gt). Then 

Q'l « cY2 <^=> / ( e n ) « / ( a 2 ) . 

P r o o f . This is a consequcTice of the construction performed in Section 5. • 

The definition of 5 implies that SD(G)/ « is a set, and so is D i ( G t ) . For 

a G SD(G) we denote by a (w) the class of all f1 G SD(G) with a w /J. For 

<̂ i G D i ( G t ) the symbol a i ( « ) has an analogous meaning. 

Let a i ( « ) G -Oi (Gt) / «• Wre put 7 ( « i ( « ) ) = / ( ^ i ) ( ~ ) . Then 7 is a correctly 

defined mapping of £>i(Gt) / « into SD(G)/ « . 

From 5.5 and 6.1 we obtain 

6.2 . Corol lary. J is a hijection of the set Di(Gt)/ « onfo SD(G)/ w. 

Let a and /? be as above. We put a ^ /3 if for each /' G I there exists j G J such 

that 

Analogously we define the relation ^ on the class D j (G t ) . From these definitions 

we ob tain 
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6.3. L e m m a . The relation ^ is a quasiorder on the class SD(G). If a i , a 2 G 

£>i(G), then 

a i ^ a 2 <=> f(oL\) < / ( a 2 ) . 

Next, if a,/3 e SD(G), then 

a ^ (3 «=r> a ^ /3. 

6.4 . L e m m a . Let a and /3 be as above, i G I, j G J. Then the following 

conditions are equivalent: 

(i) c(OODe(O^'). 

(ii) G i t .= G,-t. 

P r o o f . Let e(gl) 2 e(OJ). In view of 5.1, 

G = (s)Gi xG[. 

Analogously we have 

G = (s)Gj xG'j. 

Hence 

Gt = ^ t x c ; t , 

Gt = G,-t x G^t-

Next, e(O?) n G t = G;-t and e(gj) n G t = G^t- From (i) we obtain G'-t 5 G^t and 

this yields that G ; t C Gjt-

Tlie proof of the implication (ii)=->(i) is similar. D 

6 .4 . 1 . Corollary. Let a, /J G SD(G). Then the following conditions are equiv

alent: 

(i) a ^ /3; 

(ii) for each i G J there exists j G J such that G*t C Gj t -

6.5. L e m m a . Let a, ft be as above. Then the following conditions are equivalent: 

(i) a ^ (3 and /3 ^ a; 

(ii) a « 13. 

P r o o f . Let (i) be valid. Choose i G I. In view of the relation a ^ /3 and of G.4 

there exists j G J such tha t G / t C Gjt- Since G, / {e} we have G , t ^ {e}. Let 

j ( l ) G J, i ( l ) 7- j . If G , t C G j ( 1 ) t , then G j t H G j ( l ) t ^ {<?}, which is impossible. 

Hence we obtain a mapping '</>: 7 -» J defined by V;(l) = j (where i, j are as above). 
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Similarly, {3 ^ a yields that there is i(l) G I with Gjt £ (7;(i)T- Then Git n 
Gi(i)t 7̂  {e} an-d thus i = i(l). From this we obviously infer that ip is a bijection; 
moreover, G;t = G ^ t for each i G L Thus G-t = 6>(i)T f° r e a c n * £ I- Hence 
ai « »2- According to 6.1 we obtain that a « /3. 

Conversely, suppose that (ii) holds. Hence according to 6.1, a\ « /?i. Let ^ be as 
in the definition of « . Then 

G;. = e(^) = e ( ^ ) = G',(,) 

for each i G I. Thus 

G'it = ^V;(i)t, 

Git = <3i/,(;)t 

for each i G I. Hence in view of 6.4 we obtain that (i) holds. • 

6.6. Theorem. Let a, 0 G SD(G). There exists 7 G SD(G) such that 

(i) 7 ^ a and 7 ^ /3; 

(ii) if 7' G 5D(G) and 7' ^ a, 7' ^ /?, then 7' ^ 7 . 

P r o o f . Let a± G Di(Gt), a = / ( a i ) . Suppose that /ii has an analogous 

meaning. Without loss of generality we can suppose that a\ and j3\ are internal 

direct decompositions of Gt- There exists a common refinement of cYi and f3\, namely 

(cf-, e.g., [1]) 

Gt= I I (GitnGyt). 
ieijeJ 

Let K = {(i, j ) : i G I,J G J and G < t n G ; t / {<?}}• Then K ^ 0 and 

(71) G?t= I I (G, tnG ; t ) . 
(i.j)eA' 

All Git H Gj t a r e normal in G. Hence there exists 7 G SD(G) with 7 = /(71). 
Clearly 71 ^ ai and 71 ^ #1. Thus in view of 6.3 ~) < a and 7 ^ j3. 

Let 7' G SD(G), 7' ^ a, 7' ^ /?. There is 7 i E F>i(G) with /(7O = 7'. Then 
7i ^ a i and 7J ^ /3i. Again, without loss of generality we can suppose that 7J is 
an internal direct product decomposition of Gt- Hence 7̂  is a refinement of both 
a i and 71. Thus 7J is a refinement of 71. This yields that 7J ^ a\ and 7J ^ 'd\. 
Therefore 7' ^ a and 7' ^ /J. • 

On the set SDr(G) we consider the relation ^ which is inherited from SD(G). 

6.7. Lemma. The relation ^ is a partial order on SDr(G). 

P r o o f . This is a consequence of 6.1 and of the fact that for a, (3 G SDr(G) we 
have a ^ / 3 = > a = /3. • 
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6.8. Corollary. With respect to the relation ^ , SDr(G) is a meet-semilattice. 

P r o o f . This follows from 6.6 and 6.7. D 

7. COMMON REFINEMENTS 

In the present section we prove that any two small direct product decompositions 
of a half lattice ordered group G have isomorphic refinements. 

Let a and ft be as in Section 6. 

7.1. Lemma. Suppose that a and ft are regular and that a ^ ft. For j G J let 

I(j) = {i G I: e(Q{) D e(oj)}. Then I(j) ^ 0 for each j G J. 

P r o o f . Let j G J. By way of contradiction, suppose that I(j) — 0. Let i G I. 

In view of 6.4, G{\ C G^t for each i G I. This yields that Gt C G'ft and thus 

Gjt = {e}, which is impossible. D 

7.2. Lemma. Let a, ft be as in 7.1 and let j G J, g G G. We put 

xiUie3)) = ( • • •>0( -? ' ) , - - - ) . e / ( j ) -

Then \ is a mapping of Gj into (s) f] G{. 
iel(j) 

P r o o f . If a, g' G G such that g(^') = g'(o^), then for each i G J(g) we have 
£((?') = Q'(Ql), whence \ is a correctly defined mapping on Gj. 

For ~g(gj) G Gjt the relation g G Gt is valid and hence g(Qx) G Git f° r e a c n 

i G I(j). Analogously, if g(D^) G Gj t , then g(O2) G Gz- | for each i G J(j). Thus 
\ ( G i ) C ( 5 ) [I Gi. D 

-G/ ) i ) 

7.3. Lemma. \ is a homomorphism with respect to the group operation and 
also with respect to the partial lattice operations A and V. 

P r o o f . This is an immediate consequence of the definition of the mapping \ . 
D 

7.4. Lemma. Gj t = Yi G *t for each j G J. 
iei(j) 

P r o o f . Let j € J and i G I(j). In view of 6.4.1 we have G{\ C Gjt, whence 

G,t H Gjt = Git- Since Gt is a lattice ordered group, the relation 

Gjt = 11 (^tnGjt) 
iei 
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is valid. If i(l) e I \ I(j), then there exists j(l) G J with j(l) ^ j such that 
Gj(i) C Gj(i), whence 

Gi{l)nGj QGj{1)nGj = {e\. 

Therefore 

Git= n G*t-
-G/( j ) 

• 

7.5. Lemma. Tiie mapping \ is a niononiorpijLsnj. 

P r o o f . Let O, O' G G and suppose that \(g(gJ)) — \(g'(gj))- Hence we have 
either (i) O, g' G Gt, o r (n) ^ // € G ±. If (i) holds. then g(gj) and ^(D-7) belong to 
Gjt and hence in view of 7.4 we obtain that g(gJ) — g'(gJ)- Let (ii) be valid. Then 
e, O~V G C?t and 

\ W ) ) = x(rV(^')]. 

This yields that e(gJ) — g~{g'(gJ), whence g(gJ) = g'(gJ)- • 

7.6. Lemma. \ is an epimorphism. 

P r o o f . Let 

(<7V))iGI(j) € (s) j ] G/. 
i'G1(j) 

Then either 

(i) gl G Gt for each i G I (./'), 

or 

(h) g{ G G I for each I G I(j). 

First assume that (i) is satisfied. Then in view of 7.4 there is O G Gt such that 

x(g(oj)) = (7(Qi))i€iuy 
Next suppose that (ii) is valid. Choose g G G | . Hence g(gJ) G Gj | and 

gig1 G Git f° r each i G I(j). Therefore there exists g' G G such that 

\(fj'(gJ)) = (gi(f)ien;i)-

Then 

\(Fr(^)g7(^)) = (g?)^/(,) 

which completes the proof. • 
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7 .7. P r o p o s i t i o n . Let a ^ ft. Then the mapping \ determines a small direct 

product decomposition 

Gj=(s) n °-

P r o o f . This is a consequence of 7.1-7.6. • 

7.8. Coro l lary. Let a and ft be regular and a ^ ft. Then a is a refinement 

of ft. 

The definition of an isomorphism of small direct product decompositions implies 

7.9. L e m m a , Let a, ft be small direct decompositions of G and suppose that a 

is isomorphic to ft. Let 7 be a refinement of a. Then there exists a refinement 7 ' of 

ft such that 7 is isomorphic to 7 ' . 

7.10. T h e o r e m . Let a and ft be small direct product decompositions of a half 

lattice ordered group G. Then a and ft have isomorphic rehnements. 

P r o o f . Let 7 be as in 6.6. Then 7 ^ a and ^ ^ ft. In view of 6.3 we have 7 ^ a 

and 7 ^ ft. Since a7, ft and 7 are regular, from 7.8 we obtain that 7 is a refinement 

of both a and ft. Next, a « a and ft « ft, thus by applying 7.9 we get tha t there 

exist 7 ' , 7" G SD{G) such that 

7 ' is a refinement of a and 7 ' is isomorphic to 7; 

7" is a refinement of ft and 7 " is isomorphic to 7. 

Hence 7 ' and 7" are isomorphic. • 
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