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Czechoslovak Mathematical Journal, 47 (122) 1997, Praha 

GEODESICS AND STEPS IN A CONNECTED GRAPH 

LADISLAV NEBESKÝ, Praha 

(Received January 4, 1995) 

Let G be a connected (finite undirected) graph. By a step in G will mean an 
ordered triple (u, v,x) of vertices in G with the property that d(u,v) = 1 and 
d(u,x) = d(v,x) + 1, where d denotes the distance function of G. The concept 
of a step is closely related to that of a geodesic (or a shortest path). An axiomatic 
characterization of the set of all geodesies in a connected graph was given by the 
present author in [5]. A characterization of the set of all steps in a connected graph 
will be given here. 

The letters g, h, i, j , k, m and n will be reserved for denoting integers. 

Let V be a finite nonempty set. We denote by E(V) the set of all sequences 

(1) (vo,---,vn), 

where n ^ 0 and VQ, ... ,vn G V. 

By a graph we mean here a finite undirected graph with no loops or multiple 
edges, i.e. a graph in the sense of [1] or [2], for example. If G is a graph, then V(G) 
and E(G) denote its vertex set and its edge set, respectively. Let vo,..., vn G V(G), 
where n ^ 0; we say that (1) is a walk in G if {vi, U;+i} G E(G) for each i, 0 ^ i < n. 
Obviously, every walk in G is an element of E(V(G)). By a path in G we mean such 
a walk (1) in G that the vertices vo,.. •, vn are mutually distinct. 

Let G be a connected graph, and let d denote the distance function of G. (Note 
that in [3] a characterization of the distance function of a connected graph was given.) 
Obviously, if (1) is a walk in G, then d(vo,vn) ^ n. By a geodesic (or a shortest 
path) in G we mean such a walk (1) that d(v0,vn) = n. It is not difficult to see that 
every geodesic in G is a path. We now introduce the concept of a step in G. By a 
step in G we will mean an ordered triple (u,v,x), where u,v,x G V(G) and 

(2) d(u,v) = 1 and d(u,x) = d(v,x) + 1. 

149 



Obviously, (u, v, x) is a step in G if and only if there exists a geodesic (1) in G with 
the properties that n ^ 1, u = vo, v = v\ and x = vn. In the present paper a 
characterization of the set of all steps in a connected graph will be given. 

Let V be a finite nonempty set, and let T C V3. If u, v, x G V, then instead of 

(u,v,x) G T or (u,v,x) £ T 

we will write 

uv -^T x or uv non —>T %•> respectively. 

We denote by T(V,T) the graph H with V(H) = V and 

E(H) = {{u, v}; u, v G V, u ^ v and there exists x G V 

such that uv —>-r x or UH —»-r ;r}. 

Proposition 1. Let V be a finite nonempty set, and let T C V3. Assume that 

there exists a connected graph G with the properties that V(G) = V and T is the 

set of all steps in G. Then G = T(V, T). 

P r o o f . Let d denote the distance function of G. Since V(G) = V(T(V,T)), we 
see that G = T(V, T) if and only if E(G) = E(T(V, T)). 

Consider arbitrary u,v G V. 

Let {u,v} G E(G). Then d(u,v) = 1. Since d(v, v) = 0, we see that (u,v,v) is a 
step in G. This means that uv ->r v. Since u ^ v, we have {u,v} G E(T(V,T)). 

Conversely, let {u,v} G E(T(V,T)). Then w / U and there exists x G V such that 

i/U —>T # or vu - > T £. The fact that (w,n,x) or (i',H,;v) is a step in G implies that 

d(u,v) = 1. Hence {u,v} G E(G). 

We have G = T(V, T), which completes the proof. • 

Proposition 1 is an introduction to the next theorem, which is the main result of 

the present paper. 

Theorem 1. Let V be a finite nonempty set, and let T C V3. Assume that 
T(V,T) is connected. Then the following statements (I) and (II) are equivalent: 

(I) T is the set of all steps in T(V,T); 
(II) T fulfils Axioms A-H (for arbitrary u,v,x,y G V): 

A if uv —>T x> then vu ->r u; 
B if uv - » T x and vu -^T y, then x 7-= y; 
C if uv -^T ^ and xy —>>T V, then xy -^T U; 
D if uv —>T x and xy ->T V, then uv —>T y\ 
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E if uv - » T x and uy - » T V, then y = v; 

F if uv - » T #> v w - ^ T y and xy —»T 2l> ^ e n xy —»T W; 

G LfHU —»T -c and xu - » T y, then either xy —»T U or yx —»T U or uv —>T y, 

H ifu^x, then there exists z € V such that uz - » T X. 

Combining Theorem 1 with Proposition 1, we get the following result: 

Corol lary 1. Let V be a finite nonempty set, and let T C V3. Then there exists 

a connected graph G with the properties that V(G) = V and T is the set of all steps 

in G if and only ifT(V,T) is connected and T fulfils Axioms A-H (for arbitrary 

u,v,x,y G V). 

For the proof of Theorem 1 we will need three remarks and three lemmas. 

In Remarks 1-3 and Lemmas 1-3 we will assume that V is a finite nonemp ty set, 

T C V3 and T fulfils Axioms A, B, C, D and H. 

R e m a r k 1. Let u,v,x G V be such that uv - » T X. Axiom B implies that H / U, 

and therefore, {u,v} G E(F(V,T)). 

Let uo,u\,... ,un,w\,... ,wn G V, where n ^ 1, and let 

UoU\ - » T W\,.. .,Un-\Un - » T Wn. 

It is clear that (uo,u\,..., un) is a walk in T(V, T). 

R e m a r k 2 . Let u,v,x G V be such tha t uv - » T #• Combining Axioms A and B 

we get u / x. 

L e m m a 1. Let uo,u\,v\,... ,Vi+\ G V, where i ^ 1, let 

V\V2 ~>T U0,..., ViVi+i - » T ^o 

and let u+uo —»T V\. Then 

vgVg+\ - » T u\ and U\u0 - » T vg+\ 

for each g, 1 ^ g ^ i. 

P r o o f . We proceed by induction on g. First, let g = 1. Since U1U2 - » T UQ 

and u\iio - » T V\, Axioms C and D imply that v\v>2 —>T U\ and U\Uo —>>T V-2- If 

7" = 1, then the proof is complete . Assume that 2 ^ g ^ i. According to the 

induction hypothesis, H1H0 —>T vg. Since vgvg+\ —>T U0, Axioms C and D imply 

that vgVg+\ - » T Hi and H1H0 —>T vg+i, which completes the proof. • 
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Lemma 2. Let xo,..., Xj, y i , . . . , y^+i G V, where j ^ 1, let 

2/12/2 - > T x 0 , . . . , y ^ y j + i - > T #o 

and 

#1^0 ~>T 2/l>- •• , ^ j ^ i - l ->T 2lr 

Then 

yhyh+i - > T # * , • • •, 2/72/7+1 ->T xh 

and 

xhxh-i - > T j/fc,.. .j^arfc-i ->r 2/7+1 

for each h, I ^ h ^ j . 

P r o o f . We proceed by induction on ft. Since xi^o —>T 2/I , the case when ft = 1 
is covered by Lemma 1. If j = 1, then the proof is complete. Assume that 2 -̂  ft ^ j . 
The induction hypothesis implies that 

yhyh+i ->T Xh-i,. • • , yjyj+i - • T £ / i - i • 

Recall that xhxh-i —>T yh- Applying Lemma 1, we get the result. • 

Lemma 3. Let V(V, T) be connected, let x 0 . . . . ,xn, y\ G V, where n ^ 2, let 

(.ro,.. •, xn) be a geodesic in T(V, T), and ier- xnyi —»T #0- Let d denote the distance 

function ofF(V,T). Then there exist k ^ 0 and : r n +i , . . . ,£n+fc+i G V such that 

# n + i = y i , 

(3) xn+gXn+g+i - > r cr0 for each O, 0 ^ g ^ k, 

(4) xhxh-i - > T ^n+/i for each ft, 1 ^ ft ^ k 

and 

(5) either (a) xn.Tn_i - > T #0 ^«d d(yi,xo) = n — 1, 

or (b) Xfe+î fc non ->T Xn+fc+i-

P r o o f . We distinguish two cases. 
Case 1. Assume that there exists an infinite sequence 

( x n + i , X n + 2 , X n + 3 , . . .) 
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of vertices in T( V, T) such that xn+i = Hi and 

xn+iXn+i+i —>T x0 for each i = 0,1,2, — 

Let 
XgXg-i - + T xn+g for each g = 1,2,3, 

Lemma 2 implies that 

XnXh-l -+T Xn+h,Xh%h-l ~+T Xn+h+l,XhXh-l ~>T #n+/i+2, • • • 

for each /_ = 1,2,3, 

As follows from Remark 2, 

Xh ^ xn+h,xn+h+i,xn+h+2,... for each h = 1,2,3, 

This implies that 
X\,Xn+\,X2n=\, • • • 

are mutually distinct, which is a contradiction to the fact that V is finite. Therefore, 
there exists k ^ 0 such that Xk+iXk non -+ - _rn+fc+i. We see that (3), (4) and (5) 
hold. 

Case 2. Let the assumption of Case 1 be not fulfilled. Since (x0,...,xn) is a 
geodesic in T(V, T) and n ̂  2, we have ?/i 7- _ro- It follows from Axiom H that there 
exist _ r n + i , . . . ,_cn+7-+i G V, where j• ^ 1, such that :rn+i = 2/1, _cn+_,-+i = x0 and 

_rn.rn+i - + T £0, • • •, xn +j_cn + J +i -»r ^o-

As follows from Remark 1, 

(_Tn+i, . . . , £ n + j + i ) 

is a walk in T(V,T). Thus d(_rn+i,:ro) ^ j . Since d(_rn,.ro) = n, we have 
d(xn+i,x0) ^ n - 1. 

First, let 
Xi+iXi -+T xn+i+\ for each i, 0 ^ i ^ j . 

Then Xj+iXj —>- X0. If j ^ n, we also have XjXj+i -+T #O, which is a contradiction 
to Axiom B. Hence c.(_rn+i,xo) = n — 1 and _cn_rn_i -+T X0. Put k = j . Then (3), 
(4) and (5) hold. 

Next, let there exist fc, 0 ^ k ̂  j , such that 

^ f c + l ^ n o n -^T Xn+k+1 

and (4) holds. We see that (3) and (5) hold, too. 
Thus the lemma is proved. • 
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R e m a r k 3. Let T(V, T) be connected, let x0,.. . ,xn, ui G V, where n ^ 2, let 
(x0, • • •, xn) be a geodesic in T(V, T), and let xnyi ->T xQ. Let d denote the distance 
function of T(V, T). Lemma 3 implies that there exist k ^ 0 and xn+i,. . . , xn+k+i 6 
V such that Tn+i = Hi and (3)-(5) hold. 

It follows from Remark 1 that 

(TO, X\ , . . . , Tn, . . . , Xn + k+i ) 

is a walk in T(V,T). Axiom A implies that 

(6) XgXg+i —>T Xg+i f° r each o, 0 ^ a -$ n + k. 

Combining (3) and (4) with Lemma 2, we see that if k ^ 1, then 

Xn+hXn+h+\ —>T #h> • • • , ^ n + ^ ' j + H l ~^T #/. 

and 

XhXh-l —>T Xn+h, • • • ,XhXh-l -*T Xn+k + 1 

for each h, 1 ^ h ^ k. 

Since xnxn+i - » T XO, w e have 

(7) Tn+iTn+7+i —>T #; for each i, 0 ^ i ^ k. 

P r o o f of T h e o r e m 1. Denote G = r(V, T). Recall that G is connected. 
We denote by d, D and S the distance function of G, the diameter of G and the set 

of all steps in G, respectively Obviously, 5 C V3. 
PART ONE (I =-> II). Let T = S. Consider arbitrary u,v,x,y e V. It is easy to 

see that T fulfils Axioms A, B, E and H. We will prove that T fulfils Axioms C D , 
F and G. 

(Verification of Axioms C and D). Let uv - > T X and xy ->T v. Then 

d(u,v) = 1 = d(x,y),d(u,x) = d(v,x) + 1 and d(x,v) — d(y,v) + 1. 

We get 
d(n,u) ^ d(v,y) + 1 = d(a,,v) = d(u,x) - 1 ^ d(u,y). 

Therefore, d(u,y) — d(v,y) + 1 = d(u,ir) - 1. We see that xy - + T U and HU —>>T V-

(Verification of Axiom F.) Let uv - » T X, VU —>T ?j a i l (l 3?l ->T V- Then 

d(u,x) = d(n,:r) + l,d(U,H) = d(u,y) + 1 and d(x,y) — 1. 
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We get 
d(y,u) + 1 ^ d(x,u) = d(v,x) + 1 ^ d(v,y) = d(u,y) + 1. 

We see that xy - > T W. 
(Verification of Axiom G.) Let uv - > T X and xu - > T ?/• Assume that uv non - > T y 

and yx nOn - > T V. Then 

d(u,x) = d(v,x) + l,d(x,y) = l,d(v,y) ^ d(u,y) and d(x,v) ^ d(y,v). 

We get 

d(y,u) + 1 ^ d(x,u) = d(v,x) + 1 ^ d(y,v) + 1 ^ d(u,y) + 1. 

We see that xy - > T W-
Thus T fulfils Axioms A-H. 

PART TWO (II => I). Let T fulfil Axioms A - H. We will prove that 

(8n) if rs ->;5 £, then rs - > T £ for every r , s , t G F 

such that d(r, t) ^ n 

and 

(9n) if rs —>T £, then rs —>s £ for every r, s, r G V 

such that d(r, t) ^ n 

for each ?i, 0 ^ n ^ D. 

We proceed by induction on n. It is obvious that both (8o) and (9o) hold. If 
D = 0, then the theorem is proved. Assume that D ^ 1. 

Consider arbitrary r i , r 2 , r 3 G V such that r i r2 ->s r3 and d(r i , r3) = 1. Then 
{r\,r2} £ -̂ (GO and r2 = r3. Since G = F(V,T), there exists z G V such that 
n r 2 —>T 2 or r2r i —>T 2. It follows from Axiom A that r\r2 —>T r2. Since r2 = r3, 
we get r i r 2 —>T ^3- Thus (81) holds. 

Consider arbitrary Si , s 2 , s 3 G V such that s is2 —>T S3 and d(si,s3) = 1. Then 
5is3 —>s s3. According to (81), s i s 3 —>T S3. Since sis2 —>T ^3, Axiom E implies 
that s3 = s2 and therefore, Sis2 ->s s3. Thus (9i) holds. 

If D = 1, then the theorem is proved. Let 2 ^ n ^ D. The remainder of the proof 
will be divided into two sections. In Section 1 we will show that (8n_i) and (9n_i) 
imply (8n). In Section 2 we will show that (8n) and (9n_i) imply (9n). 

Section 1. Consider arbitrary xo,x,y G V such that xox —>s y and d(xo,y) = n. 
Clearly, there exist x\,... ,xn G V such that x\ = x, xn = y and (xo,X\,... ,xn) is a 
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geodesic in G. We have x0x\ -»s :rn. We want to prove that x0x\ —>T xn. Suppose, 
to the contrary, that x0x\ non —>T xn. 

First, let xnxn-i - + T -CO- Clearly, x0xi -»s x n _i . Since d(x0 ,xn_i) = n - 1, it 
follows from (8n_i) that x0xi - » T x n - i - According to Axiom C, x0x\ - » T xn, which 
is a contradiction. 

We get xnxn-i non —>T #O- According to Axiom H, there exists Hi G V such that 
#n2/i - > T #0- As follows from Lemma 3, there exist k ^ 0 and x n + i , . . . , :rn+fc+i G V 

such that xn+i = Hi, Xfc+iXfc non - » T Xn+fc+i, and (3) and (4) hold. Recall that 
x0x\ non —>T xn and d(x0,xn) = n. There exists ra, 0 ^ m ^ k, such that 

(10) xmxm+i non - » T xn+m and 

^\Xin 5 Xn+m) — ^ 

and 

(11) either :rm+i:rm non - > T xn+m+\ or Xm+i^m+2 - » T xn+m+i 

or d(a:m+i,xn+m+i) < n. 

According to (6), xm:rm+i - > T Xm+i- As follows from (7), xn+mxn+m+i - > T xm. 

We distinguish Cases 1.1 and 1.2. 

Case 1.1. Let xm+ixm - » T .Tn+m+i. 
Assume that d(xm+i,x n+m+i) < n. According to (9n_i) we have xm+\xm -+s 

xn+m+i, and thus d(.rm,.2;n+m+i) = d(xm+i,xn+m+i) - 1 < n- 1. This implies that 
d(xm , .rn+m) < n, which contradicts (10). Thus d(:rm+i , xn+m+i) = n. This means 
that 

V^'tt + ra+l i ' • • , Xm+2, Xm+\ / 

is a geodesic in G. We have d(:rn+m+i,xm+2) = n — 1 and d(xn+m ,xm+2) = n — 2. 
Therefore, x n + m +i£ n + m -»s :rm+2. It follows from (87l_i) that .rn+m+ixn+m - > T 

Xm+2-

Let x m + i x m + 2 - » T xn+m+i. Axiom C implies that . r n + m +ix n + m - » T xm+\. 'We 
have seen that xn+mxn+m+\ —>T xm. Since xm.rm+i —>T #m+i> it follows from 
Axiom F that :rm:rm+i - > T xn+m, which is a contradiction to (10). Thus x m + i x m + 2 
non - » T x n + m + i . Since xm+\xm - + T xn+m+i and d(;rm+i,xn+m+i) = n, we get a 
contradiction to (11). 

Case 1.2. Let xm+\xm non - > T x n + m + i . Recall that x n + m x n + m +i - > T xm. 

According to (10), x m x m +i non - » T xn+m. Since :rm:rm+i - » T xm+i, Axiom G 
implies that 

^7i + m ^ n + m + l ' T ^ m + 1 -
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Since d(xm,xn+m) = n, d(xm+\,xn+m) = n- 1. According to (9n_i), xn+mxn+m+\ 

->s xm+\. Hence d(a;m + i ,a ; n + m + i ) = n - 2. Since xmxm+\ -+s xn+m, we get 
xmxm+\ -•_ xn+m+\. Clearly, d(o; m ,x n + m + i ) = n - 1. According to (8n_i), 
xmxm+\ -+T ^n+m+i- Recall that xn+mxn+m+\ -+T xm. Axiom C implies that 
a;ma;m+i —>T xn+m, which contradicts (10). 

We proved that xoX\ -+T xn. Hence (8n) holds. 

Section 2. Consider arbitrary y,y\,xo G V such that yy\ —>- XO and d(y,xo) = n. 

Clearly, there exist x\,... ,xn G V such that xn = y, and (xo, x\,..., xn) is a geodesic 
in G. We have xny\ -+T XQ. Obviously, d(y\,xo) ^ n — 1. We want to prove that 
xny\ ->5 xo- We see that xny\ -+$ xo if and only if d(y\,xo) = n — 1. Suppose, to 
the contrary, that d(y\,x0) ^ n. 

As follows from Lemma 3, there exist k ^ 0 and xn+\,..., xn+k+i G V such that 
xn+\ = 2/1, Xk+iXk non -+T xn+k+\, and (3) and (4) hold. Recall that d(xo,xn) = n. 
There exists m, 0 ^ m ^ k, such that 

(12) d(xm,xn+m) = n 

and 

(13) either xm+\xm non ->T xn+m+\ or d( .T m + i ,x n + m + i ) < n. 

According to (6), xmxm+\ -+T xm+\. Axiom A implies that .rm+i:rm - > T xm. As 
follows from (7), x n + m a ; n + m + i -+T xm. 

We distinguish Cases 2.1 and 2.2. 

Case 2.1. Let d (a ; m + i , x n + m + i ) = n. Then 

l^7i+m+l i Xn+m, . . . , Xm+\ ) 

is a geodesic in G. Hence xn+m+\xn+m —>s xm+\. It follows from (8n) that 
^n+m + l^n+m ^T Xm+\. rvecail tUat Xn+mXn+m+\ rj1 ^m- oince Xm+\Xm 7"p Xm, 

Axiom F implies that xm+\xrn -+T xn+m+\, which contradicts (13). 

Case 2.2. Let d(xm+\,xn+ni+\) < n. 
Assume that d(.Tm,.xn+m+i) = n. Then d(xm+\,xn+m+\) = n — 1. There

fore, xrnxm+\ -+s x n + m + i . According to (8n), xmxm+\ ->T x n + m + i . Since 
.Tn+mxn+m+i -+T xm, Axiom D implies that x n + m x n + m + i —>T xm+\. Since 
d (x m + i , xn+m) = n - 1, it follows from (9n_i) that .Tn+m.i;n+m+i -+s xm+\. 
Therefore, d ( x m + i , x n + m + i ) = n — 2, which is a contradiction. 

Thus d(xm,xn+m+\) < n. It follows from (12) that 

d(xm,Xn+m+\) = 7 7 , - 1 . 
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Recall that x n + i = y\. If m = 0, then cl(xo,xn+i) = n — 1, which is a contradiction. 
Let m ^ 1. Since m ^ k, Remark 3 implies that 

X\XQ ~^T ^ n + m + 1 , • • • , ^ m ^ m - l ~^T ^ n + m + 1 • 

Consider an arbitrary i, 1 ^ i ^ m. If d(xi,xn+i+i) < n, then (9n_i) implies that 

XiXi-i ->5 a : n + m + i , and therefore, d(x,_i ,o:n + m + i) = d(x;,£n +m+i) - 1. Since 

d(£m,£n+m+l) = 72 - 1, We get 

d(:7:0,Xn+m+i) = n - 777 - 1. 

This means that m ^ n — 1. As follows from Remark 3, 

V^n+l 5 • • • , ^ n + m + 1 ) 

is a walk in G. Thus c?(x n + i ,x n + m + i ) ^ ?n. This means that 

d(x0,xn+i) ^ d(.r0,xn+m+i)-fd(xn+m+i,xn+i) ^ n - 1 , 

which is a contradiction. 

We have proved that xny\ ->s x0. Hence (9n) holds. 
Thus T = S, which completes the proof of Theorem 1. • 

Remark 4. Let V be a finite nonempty set, and let T C V3. As we will show, 
the fact that T fulfils Axioms A-H does not imply that T(V, T) is connected. 

Assume that V = { n , . . . , r n , s i , . . . , s n } , where n ^ 3 and \V\ = 2n. Put r n + i = 
ri and s n + i = s\. Assume that T is the subset of V3 with the property that uv —>T r 
if and only if one of the following cases a) and b) holds: 

a) there exist distinct g and /i, 1 ^ g ^ n and 1 ^ h ^ n, such that 

either (u = rg, v = r^ and x = r/J 

or (u = sg, v = sh, x = 5/,); 

b) there exist i and j , 1 $J i ^ n and 1 ^ i ^ ?i, such that 

either (u = rt-, U = r l + i and x — Sj) 

or (u — S{, v = 5z+i and ;r = r7). 

It is not difficult to see that T fulfils Axioms A-H and that V(V,T) has exactly two 

components. 
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Let V be a finite nonempty set, and let R C E(V) . We denote by [R] the subset 

T of V 3 defined as follows: 

uv -»-r x if and only if there exist n ^ 1 and Ho,^i, 

. . . , un G V such tha t (Ho, ui, • • •, un) G R, H = Ho, 

v = Hi and x' = Hn 

for any u,v,x G V. 

P r o p o s i t i o n 2. Let V be a finite nonempty set, and let R C E(V) . Put T = [It]. 

Assume that there exists a connected graph G with the properties that V(G) — V 

and R is the set of all geodesies in G. Then G = T(V,T). 

P r o o f . Since V(G) = V(T(V,T)) , we see tha t G = T(V,T) if and only if 

E(G) = E(T(V,T)). 

Consider arbitrary u, v G V. 

Let {u,v} G E(G). Then (u,v) is a geodesic in G. Thus (u,v) G ft. Clearly, 

uv —>T v. Since u ^ U, we see tha t {u,v} G F?(V(V, T) ) . 

Conversely, let {u,v} G B?(r(V, T) ) . Then H 7- U and there exists x G V such tha t 

HU —>T £ or vu -^T x. Since T = [It], there exist n ^ 1 and Ho, Hi,..., Hn G V such 

that (i/o,Hi, • • . ,H n ) £ R,x = un and either (i) H = H0 and H = Hi or (ii) H = Hi and 

v = Ho- The fact tha t (UQ,UI,. • • , Hn) is a geodesic in G implies tha t {H,H} G E(G). 

We have G = T(V, T ) , which completes the proof. • 

T h e o r e m 2. Let V be a finite nonempty set, and let It C E(V) . Put T = [H]. 

Assume that T( V, T) is connected. Then the following statements (III) and (IV) are 

equivalent: 

(III) R is the set of all geodesies in T(V,T); 

(IV) T fulfils Axioms A-H (for arbitrary (u,v,x,y G V) and moreover, R fulfils 

the following Axioms X, Y and Z (for arbitrary m,n ^ 1 and H, Ho,..., H?n, 

w0, ...,wn G V): 

X (H) G ft; 

Y if (u, um,..., Ho) G f?, tiien ( H m , . . . , Ho) G 1t; 

Z if (u,um,... ,u0), (ivn,...,w0) G R, wo — H0 and w n = Hm, then 

(u,ivn,. ..,w0)eR. 

P r o o f . Denote G = T(V,T). Recall that G is connected. We denote by d the 

distance function of G. 

PART ONE (III =» IV). Let III hold. It is easy to see that It fulfils Axioms X, 

Y and Z. Since T = [R], we see that T is the set of all steps in G. According to 

Theorem 1, T fulfils Axioms A-H. Hence IV holds. 
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PART TWO (IV => III). Let IV hold. Consider arbitrary v0,... ,vn € V, where 

n ^ 0. We will prove that 

(14n) (vn,..., v0) G R if and only if (vn,..., v0) is a geodesic in G. 

We proceed by induction on n. Let first n = 0. It is obvious that (v0) is a geodesic. 
According to Axiom X, (v0) G R. Thus (140) holds. We now assume that n ^ 1. 

Let (vn,vn-i,..., v0) G R. Since T = [R], vnvn-\ —>T V0. Theorem 1 implies that 
(vn,vn-i,v0) is a step in G. Hence 

(15) d(vn,vn-i) = 1 and d(vn,v0) = d(vn-i,v0) + 1. 

As follows from Axiom Y, (vn-i,...,v0) G R. According to (14n_i), (v n _ i , . . . ,v0) 

is a geodesic in G. It follows from (15) that (vn,vn-\,..., v0) is a geodesic in G. 

Conversely, let (vn,vn-\,... ,v0) be a geodesic in G. Then (15) holds. Hence 
(vn,vn-i,v0) is a step in G. According to Theorem 1, vnvn-\ —>T V0. Recall that 
T = [R]. It follows from the definition of [R] that there exist m ^ 0, u0,..., n m £ V 

such that (vn, w m , . . . ,u 0 ) _ R, u0 = v0 and um = vn-i. Since (vn, vn-\,..., v0) is a 
geodesic, ( u n _ i , . . . ,t;0) is also a geodesic. According to (14n_i), (vn-i> •.. ,v0) e R. 

Axiom Z implies that (vn,vn-\,..., v0) G R. 

Thus (14n) holds. The proof of the theorem is complete. • 

Combining Theorem 2 with Proposition 2 we get the following characterization of 
the set of all geodesies in a connected graph. 

Corollary 2. Let V be a finite nonempty set, and let R C E(17). Put T = [R]. 

Then there exists a connected graph G with the properties that V(G) = V and R 

is the set of all geodesies in G if and only ifT(V,T) is connected, T fulfils Axioms 

A-H (for arbitrary u,v,x,y G V) and moreover, R fulfils Axioms X. Y and Z (for 

arbitrary m,n ^ 1 and u,u0,...,ixm, w0,... ,wn G V). 

Another characterization of the set of all geodesies in a connected graph can be 
found in [5] (cf. also [7] or [8]). 

Remark 5. The concept of the set of all geodesies in a connected graph is closely 
connected to that of the interval function (in the sense of [4]) of a connected graph. 
A characterization of the interval function of a connected graph was given in [6]. 
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