Czechoslovak Mathematical Journal

Ali A. Ali; Solar Y. Alsardary

New edge neighborhood graphs

Czechoslovak Mathematical Journal, Vol. 47 (1997), No. 3, 501-504

Persistent URL: http://dml.cz/dmlcz/127373

Terms of use:

© Institute of Mathematics AS CR, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

NEW EDGE NEIGHBORHOOD GRAPHS

Ali A. Ali, Mosul, and Salar Y. Alsardary, Philadelphia

(Received January 11, 1995)

Abstract. Let G be an undirected simple connected graph, and $e=u v$ be an edge of G. Let $N_{G}(e)$ be the subgraph of G induced by the set of all vertices of G which are not incident to e but are adjacent to u or v. Let \mathcal{N}_{e} be the class of all graphs H such that, for some graph $G, N_{G}(e) \cong H$ for every edge e of G. Zelinka [3] studied edge neighborhood graphs and obtained some special graphs in \mathcal{N}_{e}. Balasubramanian and Alsardary [1] obtained some other graphs in \mathcal{N}_{e}. In this paper we given some new graphs in \mathcal{N}_{e}.

1. Introduction

A problem concerning the neighborhood graphs of vertices of undirected graphs was proposed by Zykov in 1963. A problem analogous to that of Zykov, but concerning edge neighborhood graphs was studied by Zelinka [3].

We follow the notation and terminology of Harary [2]. Let G be an undirected simple connected graph, and let $e=u v$ be an edge of G. Let U be the set of all vertices of G that are adjacent to at least one of the two vertices u and v, and let $U_{e}=U-\{u, v\}$. Then, the induced subgraph $\left\langle U_{e}\right\rangle$ of G is called edge neighborhood graph of e in G and is denoted $N_{G}(e)$.

The edge neighborhood version of the problem of Zykov is the following. Characterize the graphs H with the property that there exists a graph G such that $N_{G}(e)$ is isomorphic to H, (i.e., $N_{G}(e) \cong H$) for each edge e of G.

Let \mathcal{N}_{e} be the class of all graphs H such that, for some graph $G, N_{G}(e) \cong H$ for every edge e of G. Such graph G is called a city [1] (or required [3]) graph containing H, and denoted by C_{H}.

Zelinka [3] has proved that \mathcal{N}_{e} includes the following graphs:
(i) K_{n}, for every positive integer n,
(ii) $K_{m, n}$, for every pair of positive integers m, n,
(iii) cycles C_{4}, C_{6}, C_{8},
(iv) cubes Q_{1}, Q_{2}, Q_{3},
(v) $K_{n, n}^{*}, n \geqslant 2$, where $K_{n, n}^{*}$ is obtained from $K_{n, n}$ by deleting edges a maximum matching.
Moreover, Balasubramanian and Alsardary [1] proved that \mathcal{N}_{e} also includes the following graphs:
(vi) $n K_{2},\left(n\right.$ copies of $\left.K_{2}\right)$,
(vii) the complete k-partite graph $K_{m-1, m-1, m, \ldots, m}, m \geqslant 2$, (viii) $4 K_{1}$ and $2 K_{1} \cup 2 K_{2}$.

In the present work, we obtain new edge neighborhood graphs.

2. New edge neighborhood graphs

First we shall present some simple propositions.

Proposition 1. $n K_{1} \in \mathcal{N}_{e}$.
Proof. The star S_{n+2} of $n+2$ vertices has the property that $N_{S_{n+2}}(e) \cong n K_{1}$ for each edge e of S_{n+2}.

Proposition 2. $K_{1} \cup 2 K_{2} \in \mathcal{N}_{e}$.
Proof. Let G be the covering of the plane by identical hexagons surrounded by six triangles. (See Figure 1.) It is clear that G is a city graph of $K_{1} \cup 2 K_{2}$.

Fig. 1

Remark. In view of (vi), (viii) and Propositions 1 and 2 we may propose the following conjecture.

Conjecture. $n K_{1} \cup m K_{2} \in \mathcal{N}_{e}$.
Let V_{1} and V_{2} be the partition of $V\left(K_{3, m}\right)$ into the independent subsets with $\left[V_{1}\right]=3$ and $\left[V_{2}\right]=m$. Let $K_{3, m}^{+}$be the graph obtained from $K_{3, m}$ by joining two vertices of V_{1}.

Theorem 1. The line graph $L\left(K_{3, m}^{+}\right)$belongs to \mathcal{N}_{e}.
Proof. We show that $L\left(K_{m+3}\right)$ is a city graph containing $L\left(K_{3, m}^{+}\right)$. Let $e=u v$ be an edge of $L\left(K_{m+3}\right)$. Label the vertices of K_{m+3} by $x_{1}, x_{2}, \ldots, x_{m+3}$ so that the edge $x_{1} x_{2}$ corresponds to the vertex u and the edge $x_{2} x_{3}$ corresponds to the vertex v of $L\left(K_{m+3}\right)$. It is clear that the set of edges adjacent with $x_{1} x_{2}$ or $x_{2} x_{3}$ in K_{m+3} is

$$
\left\{x_{1} x_{3}\right\} \cup\left\{x_{1} x_{i}, x_{2} x_{i}, x_{3} x_{i}: i=4,5, \ldots, m+3\right\}
$$

Thus, the set of all vertices, other than u and v, which are adjacent with u or v in $L\left(K_{m+3}\right)$ is

$$
U_{e}=\left\{f\left(x_{1} x_{3}\right), f\left(x_{1} x_{i}\right), f\left(x_{2} x_{i}\right), f\left(x_{3} x_{i}\right): i=4,5, \ldots, m+3\right\}
$$

where $f\left(x_{i} x_{j}\right), i \neq j$, is the vertex of $L\left(K_{m+3}\right)$ which corresponds to the edge $x_{i} x_{j}$ of K_{m+3}. It is clear that

$$
\left\{x_{1} x_{3}, x_{1} x_{i}, x_{2} x_{i}, x_{3} x_{i}: i=4,5, \ldots, m+3\right\}
$$

is the edge set of $K_{3, m}^{+}$whose vertex set is partitioned into $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\left\{x_{4}, x_{5}, \ldots, x_{m}+3\right\}$. Hence, the induced subgraph $\left\langle U_{e}\right\rangle$ of $L\left(K_{m+3}\right)$ is isomorphic to $L\left(K_{3, m}^{+}\right)$. Therefore, $L\left(K_{m+3}\right)$ is a city graph containing $L\left(K_{3, m}^{+}\right)$.

Theorem 2. $K_{n} \cup\left(K_{2} \times K_{m}\right)$ belongs to \mathcal{N}_{e} for any positive integers m, n, where K_{n} is disjoint from $K_{2} \times K_{m}$, and $K_{2} \times K_{m}$ is the cartesian product of K_{2} and K_{m}.

Proof. We shall prove that $L\left(K_{m+1, n+2}\right)$ is a city graph containing $K_{m} \cup\left(K_{2} \times\right.$ K_{n}). Let the vertex set of $K_{n+1, n+2}$ be partitioned into the independent subsets $\left\{x_{1}, x_{2}, \ldots, x_{m+1}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{n+2}\right\}$. Let e be any edge of $L\left(K_{m+1, n+2}\right)$. We may assume, with loss of generality, that $e=f\left(x_{1} y_{1}\right) f\left(x_{1} y_{2}\right)$, where $f\left(x_{1} y_{j}\right)$ is the vertex of $L\left(k_{m+1, n+2}\right)$ which corresponds to the edge $x_{i} y_{j}$ of $K_{m+1, n+2}$. The set of edges adjacent with $x_{1} y_{1}$ is

$$
\left\{x_{i} y_{1}, x_{1} y_{j}: i=2,3, \ldots, m+1, j=2,3, \ldots, n+2\right\}
$$

and the set of edges adjacent with $x_{1} y_{2}$ is

$$
\left\{x_{i} y_{2}, x_{1} y_{j}: i=2,3, \ldots, m+1, j=1,3,4, \ldots, n+2\right\}
$$

Thus, the set of vertices, other than $f\left(x_{1} y_{1}\right), f\left(x_{1} y_{2}\right)$, which are adjacent with $f\left(x_{1} y_{1}\right)$ or $f\left(x_{1} y_{2}\right)$ in $L\left(K_{m+1, n+2}\right)$ is

$$
U_{e}=\left\{f\left(x_{i} y_{1}\right), f\left(x_{i} y_{2}\right), f\left(x_{1} y_{j}\right): i=2,3, \ldots, m+1, j=3,4, \ldots, n+2\right\}
$$

Let us partition U_{e} into S_{1}, S_{2} and S_{3} such that

$$
\begin{aligned}
& S_{1}=\left\{f\left(x_{1} y_{j}\right): j=3,4, \ldots, n+2\right\}, \\
& S_{2}=\left\{f\left(x_{i} y_{1}\right): i=2,3, \ldots, m+1\right\}
\end{aligned}
$$

and

$$
S_{3}=\left\{f\left(x_{i} y_{2}\right): i=2,3, \ldots, m+1\right\}
$$

It is clear that the induced subgraphs $\left\langle S_{1}\right\rangle,\left\langle S_{2}\right\rangle$ and $\left\langle S_{3}\right\rangle$ of $L\left(K_{m+2, n+1}\right)$ are complete graphs of orders n, m and m, respectively. For each $i=2,3, \ldots, m+1, f\left(x_{i} y_{1}\right)$ is adjacent with $f\left(x_{i} y_{2}\right)$. Thus, $\left\langle S_{2} \cup S_{3}\right\rangle \cong K_{2} \times K_{m}$.

Moreover, no vertex of S_{1} is adjacent with a vertex of $S_{2} \cup S_{3}$. Therefore

$$
\left\langle U_{e}\right\rangle \cong K_{n} \cup\left(K_{2} \times K_{m}\right) .
$$

References

[1] K. Balasubramanian, Salar Y. Alsardary: On edge neighborhood graphs (Communicated, Dirasat J. of Science).
[2] F. Harary: Graph Theory. Addison Wesley, Reading, Mass., 1969.
[3] B. Zelinka: Edge neighborhood graphs. Czech. Math. J. 36(111) (1986), 44-47.
Authors' addresses: Department of Mathematics, College of Science, Mosul University, Mosul, Iraq; Department of Mathematics, Physics, and Computer Science, Philadelphia College of Pharmacy and Science, 600 South 43rd Street, Philadelphia, PA 19104-4495, USA.

