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NEW EDGE NEIGHBORHOOD GRAPHS 

A LI A. ALI, Mosul, and SALAR Y. ALSARDARY, Philadelphia 

(Received January 11, 1995) 

Abstract. Let G be an undirected simple connected graph, and e = uv be an edge of G. 
Let No(e) be the subgraph of G induced by the set of all vertices of G which are not incident 
to e but are adjacent to u or v. Let Me be the class of all graphs H such that, for some 
graph G, NQ(C) = H for every edge e of G. Zelinka [3] studied edge neighborhood graphs 
and obtained some special graphs in Me. Balasubramanian and Alsardary [l] obtained some 
other graphs in Me. In this paper we given some new graphs in yVe. 

1. INTRODUCTION 

A problem concerning the neighborhood graphs of vertices of undirected graphs 
was proposed by Zykov in 1963. A problem analogous to that of Zykov, but con
cerning edge neighborhood graphs was studied by Zelinka [3]. 

We follow the notation and terminology of Harary [2]. Let G be an undirected 
simple connected graph, and let e = uv be an edge of G. Let U be the set of all 
vertices of G that are adjacent to at least one of the two vertices u and v, and let 
Ue — U — {u,v}. Then, the induced subgraph (Ue) of G is called edge neighborhood 
graph of e in G and is denoted NQ(C). 

The edge neighborhood version of the problem of Zykov is the following. Charac
terize the graphs H with the property that there exists a graph G such that Nc(e) 
is isomorphic to H, (i.e., Nc(e) = H) for each edge e of G. 

Let Me be the class of all graphs H such that, for some graph G, Nc(e) = H for 
every edge e of G. Such graph G is called a city [1] (or required [3]) graph containing 
H, and denoted by CH> 

Zelinka [3] has proved that Me includes the following graphs: 
(i) Kn, for every positive integer n, 

(ii) Km,n, for every pair of positive integers m, n, 
(iii) cycles C4, C6, C8, 
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(iv) cubes QXl Q2, Q3, 

(v) Kn^n, n ^ 2, where Jf * n is obtained from Kn,n by deleting edges a maximum 
matching. 

Moreover, Balasubramanian and Alsardary [1] proved that J\fe also includes the 
following graphs: 
(vi) 7iIf2, {n copies of If2), 

(vii) the complete k-partite graph ICm-i,m-i,m,...,m, m ^ 2, 
(viii) 4I\"i and 2K iU2iv2 . 

In the present work, we obtain new edge neighborhood graphs. 

2. N E W EDGE NEIGHBORHOOD GRAPHS 

First we shall present some simple propositions. 

Propos i t ion 1. nK\ G.Ve. 

P r o o f . The star 5 n + 2 of n -f 2 vertices has the property that Nsn+2 (e) = nKi 
for each edge e of 5n+2 . • 

Propos i t ion 2. I\i U 2K2 G JVC. 

P r o o f . Let G be the covering of the plane by identical hexagons surrounded 
by six triangles. (See Figure 1.) It is clear that G is a city graph of K\ U 2I\"2. • 

Fig. 1 

Remark . In view of (vi), (viii) and Propositions 1 and 2 we may propose the 

following conjecture. 
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Conjecture. nK\ U mK2 G JVC. 

Let Vi and V2 be the partition of V(K3iTn) into the independent subsets with 
[V\] = 3 and [V2] = m. Let K£ be the graph obtained from IG,™ by joining two 
vertices of Vi. 

Theorem 1. The line graph L(K£ ) belongs to Me. 

P r o o f . We show that L(Ifm+3) is a city graph containing L(IC^m). Let e = uv 

be an edge of L(I.Tm+3). Label the vertices of I\Tm+3 by x\, x2, ..., xm+3 so that the 

edge x\x2 corresponds to the vertex u and the edge x2X3 corresponds to the vertex 

v of L(Iv"m+3). It is clear that the set of edges adjacent with x\x2 or x2X3 in Km+3 

is 

{x\X3} U {xiXi,x2Xi,X3Xi: i = 4 , 5 , . . . ,m + 3}. 

Thus, the set of all vertices, other than u and v, which are adjacent with u or v in 
L(Km+3) is 

Ue = {f (x\x3), f(x\x{), f(x2x{), f(x3Xi): i = 4,5, . . . , m + 3}, 

where f(xiXj), i ^ j , is the vertex of L(Km+3) which corresponds to the edge XiXj 

of ICn+3. It is clear that 

{x\X3,X\Xi, x2Xi,X3Xi: i = 4, 5 , . . . , m + 3} 

is the edge set of IC^m whose vertex set is partitioned into {x\,x2,X3} and 

{#4,2:5,... ,xm + 3}. Hence, the induced subgraph (Ue) of L(Km+3) is isomor

phic to L(I\"^~m). Therefore, L(Km+3) is a city graph containing L(K^m). 

• 

Theorem 2. Kn U (If 2 x Km) belongs to J\fe for any positive integers m, n, where 
Kn is disjoint from K2 x Km, and K2 x Km is the cartesian product of K2 and Km. 

P r o o f . We shall prove that L(Km+i5n+2) is a city graph containing KmU(K2 x 
Kn). Let the vertex set of I^n+i^+2 be partitioned into the independent subsets 
{xi,x2,...,xm+i} and {2/1,2/2, ••• ,2/n+2}- Let e be any edge of L(1vm + i ) n + 2) . We 
may assume, with loss of generality, that e = f (x\y\)f (x\y2), where f(x\yj) is the 
vertex of L(km + i> n + 2 ) which corresponds to the edge Xiyj of I\"m-t-i,n-i-2- The set of 
edges adjacent with x\y\ is 

{xiyi,xiyj: i = 2, 3 , . . . ,m + 1, j = 2, 3 , . . . ,n + 2}, 
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and the set of edges adjacent with x\y2 is 

{xiy2,xiyj: i = 2,3, . . . ,m + 1, j = 1,3,4,... ,n + 2}, 

Thus, the set of vertices, other than f(x\y\), f{x\y2)) which are adjacent with 
f(xxy\) or f(xxy2) in FtK^+i,^) is 

Ue = {f(xiyi)J(xiy2)J(x1yj): i = 2 , 3 , . . . ,m + 1, j = 3 ,4 , . . . ,n + 2}. 

Let us partition Ue into 5i , 52 and 5 3 such that 

5i = {/(xij/ i): j = 3 ,4 , . . . ,n + 2}, 

52 = {/(x^yi): z = 2,3,. . . ,7n + l } , 

and 

53 = {f(xiy2): i = 2,3, . . . , m + l } . 

It is clear that the induced subgraphs (5i), (52) and (53) of L(Km+2?n+i) are com
plete graphs of orders n, m and m, respectively. For each i = 2 , 3 , . . . , m + 1, /(xiHi) 
is adjacent with f(xiy2). Thus, (52 U 53) = K2 x Iim. 

Moreover, no vertex of 5i is adjacent with a vertex of 52 U 5 3 . Therefore 

(Ue)^KnU(K2xKm). 

• 
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