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LATERAL AND DEDEKIND COMPLETIONS OF STRONGLY 

PROJECTABLE LATTICE ORDERED GROUPS 

JAN JAKUBIK, Kosice 

(Received February 22, 1995) 

For a lattice ordered group G we denote by GL and GD the lateral completion or 
the Dedekind completion of G, respectively. (For definitions, cf. Section 1 below.) 

The main result of [2] is the following theorem: 
(*) (Bernau) Let G be an archimedean lattice ordered group. Then the relation 

(1) GDL=GLD 

is valid. 
This solved a problem proposed by Conrad [4]. 
In the present paper the validity of (1) for strongly projectable lattice ordered 

groups will be proved. 

Let us remark that an archimedean lattice ordered group need not be strongly pro
jectable; also, a strongly projectable lattice ordered group need not be archimedean. 
Thus our result neither implies (*) nor is implied by (*). 

For each lattice ordered group G the lateral completion GL is defined uniquely up 
to isomorphism (cf. Conrad [4], Bernau [1]). Hence, in fact, the relation (1) is to be 
considered in the sense of isomorphism (leaving all the elements of G fixed). 

1. PRELIMINARIES 

In the whole paper G denotes a lattice ordered group. 
An indexed system (gi)i^i (I ^ 0) of elements of G is called disjoint if gi ^ 0 for 

each i G I, and g^2) = 0 whenever i(l) and i(2) are distinct elements of I. 
G is said to be laterally complete if each indexed disjoint system in G has the 

supremum in G. 
If G is an ^-subgroup of a lattice ordered group H such that for each h G H with 

0 < h there exists g G G with 0 < g ^ li, then G is called a dense ^-subgroup of H. 
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1.1. Definition. (Cf. Conrad [4].) A lattice ordered group H is said to be a 

lateral completion of G if the following conditions are satisfied: 

(i) H is laterally complete, 
(ii) G is a dense ^-subgroup of H. 

(iii) If Hi is an ^-subgroup of H such that G C Hi and Hi is laterally complete, 
then Hi = H. 

1.2. Theorem. (Bernau [1].) Each lattice ordered group possesses a lateral 

completion. If H and H' are lateral completions ofG, then there exists an isomor

phism <pofH onto H' such that ip(g) = g for each g E G. 

Thus, up to isomorphism, the lateral completion of G is uniquely determined; we 
denote it by GL. 

Let X C G. The system of all upper bounds (or lower bounds, respectively) of X 

in G will be denoted by U(X) (or (L(X)). A pair (A, B) of nonempty subsets A and 
B of G will be said to be a cut in G if A = L(B) and B = U(A). A cut (A, B) will 
be called a D-cut if the relations 

A (6-o) = 0, 
aeA,b€B 

f\ (-a + b) = 0 
a£A,b£B 

are valid in G. 

1.3. Definition. A lattice ordered group G is said to be D-complete if for each 

D-cut (A, B) in G there exists g E G such that the relation 

sup A = g = inf B 

is valid. 

1.4. Definition. A lattice ordered group H is called a Dedekind completion of 

G if the following conditions are satisfied: 

(i) H is D-complete. 
(ii) G is an ^-subgroup of H. 

(iii) For each h € H there are subsets X and Y of G such that the relations 

sup X = h = inf Y 

are valid in H. 
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Prom the results of Everett [5] (cf. also Puchs [5], Chap. V, §10) we obtain 

1.5. Theorem. Each lattice ordered group possesses a Dedekind completion. If 
H and H' are Dedekind completions of G, then there exists an isomorphism <p of H 
onto H' such that <p(g) = g for each g £ G. 

1.6. Theorem. (Conrad [4].) Let G be a dense t-subgroup of a laterally 

complete lattice ordered group H. Next, let H0 be the intersection of all t-subgroups 

H{ of H such that G C Hi and Hi is laterally complete. Then H0 is a lateral 

completion ofG. 

2. AUXILIARY RESULTS 

If G is a dense ^-subgroup of a lattice ordered group H, then we express this fact 

by writing G Cd H. 

It is obvious that if H' is a Dedekind completion of G, then G Cd H'. 

2.1. Lemma. Let G Cd G'. Suppose that H' is a lateral completion of G'. 

Then there is a lateral completion H of G such that H Cd H'. 

P r o o f . We have G' Cd H', hence G CdH'. Now it suffices to apply 1.6. D 

2.2. Lemma. Let H be a lattice ordered group such that G Cd H. Next, let 
Ho be the set of all h G H such that there exist X, Y C G having the property that 
the relation 

sup X = h = inf Y 

is valid in H. Then Ho is an t-subgroup of H. 

P r o o f . Let h G H and let X,Y be as above. Further, let h' G H, X' C G, 

Y' C G be such that supK ' = h' = inf Y' is valid in H. Then we have 

sup{x + x'}xex,x'ex' =h + h' = ini{y + y'}yeY,y'eY' 

in H. Analogous relations remain valid if + is replaced by V or by A. Also, 

sup{-y} y € y = -h = ini{-x}xeX. 

Hence Ho is an ^-subgroup of H. D 
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2.3. Lemma. Let H be a lattice ordered group, {xi}i^j C H, {yj}j^j C H. 

ZiGH, 

sup{xt}i€/ = h = mf{yj}jej. 

Then 

A (yj~Xi)=0= f\ ( -£ ; +</,)• 
ieijeJ ieijeJ 

P r o o f . We have 

0 = A yJ ~ v ^ 1 ^ t = f\Vj + f\(~xi) = 
jeJ jeJ iei 

= A (Vj-Xi)' 

jeJ,iei 

The other relation can be verified analogously. • 

An ^-subgroup Hi of a lattice ordered group H2 will be called regular if, whenever 

X C H!, Y C H!, x G Hi, y G Hi and the relations 

supK = x, inf Y = y 

are valid in Hi, then these relations are valid also in H2. 

2.4. Lemma. (Bernau [1].) Let Hi be a dense t-subgroup of H2. Then Hi is a 

regular (.-subgroup of H2. 

2.5. Lemma. Let G,H and Ho be as in 2.2. Assume that H is D-complete. 

Then Ho is D-complete as well. 

P r o o f . Let (A,B) be a D-c\it in Ho. We denote by Hi the set of all upper 
bounds of A in H, and by A\ the set of all lower bounds of Hi in H. Then (A\,B\) 
is a cut in H and A C Ai, B C Bi. The relations 

A (b-a)=0= / \ (-a + b) 
aeA,beB aeA,beB 

are valid in Ho. In view of 2.4, these relations are valid also in H (since, obviously, 
Ho is a dense ^-subgroup of H). Then the inclusions A C A\, B C B\ imply 

A ( 6 i - a i ) = A (~ai+bl)=Q. 
aieAiMeBi ai€Ai,6iGBi 
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Thus (Ai ,Hi) is a D-cut in H. Since H is D-complete, there exists he H with 

sup A\=h = inf Hi. 

From the definition of Hi and from h = inf Hi we see that the relation 

h = sup A 

is valid in H. Since A C H0, for each a € A there exists a subset K(a) of G such 
that the relation 

a = supX(a) 

holds in H0. Thus according to the definition of H0 this relation holds also in 
H. Similarly, there exists Y C G such that h = inf Y is valid in H. Denote 
X = |J X(a). Then we have 

aeA 

h = sup A = sup{supX(a)}aG,4 = supX 

in H. This yields that h £ H0. Now, since (-4,H) is a cut in Ho, we obtain that 
h £ A n H and 

1i = inf H 

in Ho. Therefore in view of 1.3, Ho is .D-complete. D 

2.6. Lemma. Let G, H and H0 be as in 2.2. Then H0 is a Dedekind completion 
ofG. 

P r o o f . We apply the conditions (i), (ii) and (hi) from 1.4. In view of 2.2, Ho is 
an ^-subgroup of H and clearly G C H0; thus G is an ^-subgroup of Ho. According 
to 2.5, Ho is .D-complete. Hence (i) and (ii) from 1.4 are satisfied. The definition of 
Ho yields that (iii) from 1.4 also holds. D 

2.7. Corollary. Let G be a dense ^-subgroup of a lattice ordered group H and 
let H' be a Dedekind completion ofH. Then there exists a Dedekind completion H0 

ofG such that 

(i) H0 Cd H'; 

(ii) if Ho is a dense i-subgroup of H' such that G C H^ and if Ho is D-complete, 
then H0 CHQ1. 
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3. STRONG PROJECTABILITY 

For X C G we denote by Xs the polar of X in G; i.e., 

Xs = {g G G|#| A |rr| = 0 for each x G X} . 

A lattice ordered group H is said to be strongly projectable if each polar of H is 

a direct factor of H. 

If we have a direct product decomposition 

G = l[Gi 
iei 

and if g G G, i G /, then the component of # in G t will be denoted by g(Gi) or by g(i). 

We identify the element g(Gt) with the element g' of G such that g'(G{) = g(Gi) 

and g'(Gi^) = 0 for each i(l) G I with i(l) ?- i. 

It is well-known that if 0 < g G G, then #(i) is the greatest element of the set 

Gt-n[o,<?]. 

3.1. Lemma. Let G be laterally complete and strongly projectable. Let (Ai)iej 

be an indexed system of direct factors of G such that A^ n A^2) = {0} whenever 

i(l) and i(2) are distinct elements of I. Put 

B 
X І Є /

 7 

ThenG = Bx JJAi. 
iei 

P r o o f . G is strongly projectable and hence B is a direct factor of G. Consider 

the mapping 

(D : G -> B x J J A{ 

iei 

such that 

(f(x)(Ai) = x(Ai) for each i G I, 

<p(x)(H)=a;(H). 

Then <D is a homomorphism of G into H x f] Ai. 
iei 

Let x G G, < (̂x) = 0. Then ip(\x\) = 0. Thus \x\ A a, = 0 whenever i G I and 

0 -̂  a, G .4,. Hence \x\ G I? yielding that \x\(B) = \x\. But |z|(-B) = 0 and therefore 

\x\ = 0 = x. Hence <D is an isomorphism of G into B x J] A;. 
-6/ 
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For proving that tp is surjective it suffices to verify that if 0 < x% G Ai for i G I and 
0 < 6 G B, then there exists g G G such that <p(g)(i) = xl for i G I and (f(g)(B) = b. 

Choose 0 ^ x{ e Ai (i G I) and 0 -̂  b G B. Since G is laterally complete there 
exists g G G such that 

^ 6 / ' 

It is easy to verify that 
x{ =max([0,fl]n.A<) 

for i G I and that 
b = ma:x([0,£]nH). 

Hence <p(g)(i) = x% for £ G I and (p(g)(B) = b. Therefore (̂  is an isomorphism of G 
onto B x Y\ A{, which completes the proof. • 

ie1 

3.2. Lemma. Let G be laterally complete and strongly protectable. Next, let 

H be a Dedekind completion ofG. Then H is laterally complete. 

P r o o f . Let (hi)iei be a disjoint indexed system of elements of H. Let i G I. 
There exists X{ C G + such that 

hi = sup Xi 

is valid in H. Then 

3t( l ) A «Ti(2) = 0 

whenever Xj(i) G Ki(i), a ^ j G -X"i(2) anc* *(1)»*(2) a r e distinct elements of I. Put 

Ai=Xfs for i G I , 

* = ( ( > ) • 

We have 

^r(l) n Ai(2) = {0} 

if i(l) and i(2) are distinct elements of I. Thus according to 3.1 we obtain 

G = Bx Y[A{. 
iei 

In [10] it was proved that if an abelian lattice ordered group G1 is a direct product 
of lattice ordered groups G\ (i G I) and if G2 is a Dedekind completion of G1, then 
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there are Dedekind completions G2 of G\ (i G I) such that G2 is a direct product of 
G2 (i G I). It is easy to verify that this result remains valid for the non-abelian case 
as well. 

Hence there exists a direct product decomposition 

H = B°xY[A°i 
iei 

such that B° is a Dedekind completion of B and A° is a Dedekind completion of Ai 

(i e / ) . 

Since hi G .4? for i G I, we infer that there exists h G H such that 

h(B°) = 0, h(A°{) = hi fori el. 

Then the relation h = Vie/hi is valid in H and therefore H is laterally complete. • 

3.3. Lemma. Let G be strongly projectable and let H be a lateral completion 

ofG,0^heH. Then there exists a disjoint indexed system (xi)iei in G such that 

the relation h = ViejXi is valid in H. 

This was proved in [8]. 

3.4.1. Lemma. Let G be strongly projectable and let H be a lateral completion 
ofG. Then H is strongly projectable. 

P r o o f . Let 0 ?- X C H. The polar of X in H will be denoted by X^. There 

exists Xi C H+ such that 

x± = xt, x ± ± = x1
±±. 

In view of 3.3, for each x\ G X\ there exists a subset Y(x\) of G + such that the 
relation 

x\ = supY(xi) 

is valid in H. Put 

Y= |J Y(xi). 
xiEXi 

Then we have 

YX = x r 

and hence Y-1-1- = X^-1-. Since G is strongly projectable, we obtain 

G = Y65 xYs. 
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It is easy to verify that Y1- and YL1- are Dedekind completions of Y6 or of Y66, 

respectively. Then according to [9] (cf. the quotation in the proof of 3.2) we get 

H = Y±± xY-L. 

Hence H is strongly project able. • 

3.4.2. Lemma. Let G be strongly projectable and let H be a Dedekind com

pletion ofG. Then H is strongly projectable. 

The proof is as in 3.4.1 with the following distinction: the existence of Y(x\) with 

the desired properties is a consequence of the definition of the Dedekind completion 

(i.e., we need not apply 3.3). 

3.5. Lemma. Suppose that G is strongly projectable and D-complete. Let H 

be a lateral completion ofG. Assume that 0<heH,beG,h^b. Then h G G. 

P r o o f . We have 0 ̂  —h + b. Since G is strongly projectable, according to 3.3 

there are disjoint indexed systems (g})iei arid (g2)jej in G such that the relations 

(1) h=\fgl 
iei 

(2) -h + b= \l g] 
jeJ 

are valid in H. From (2) we infer that the following relations hold in H: 

-h=\f(g]-b), 

(3) h = /\ g: ,3 
i ' 

ЄJ 

where gz- = b — g2-. Hence <?| G G for each j G J. Next, (1) and (3) yield by simple 

calculation that the relations 

(4) A (9*-g}) = o= A (-9\+g)) 
ieijeJ ieijeJ 

are valid in H. Hence these relations hold in G as well. 
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Denote 

Bi = U({g\}i€l), A, = L(BX), 

where the symbols U and L are taken with respect to G. Then (Ai,B{) is a cut in 
G. Clearly 

(5-1) {g\Ui c Au 

(5-2) {g)}j€J C BL 

From (4) we obtain that the relations 

A ( b i - a i ) = 0 = / \ ( - a i + b i ) 
a i€A i , 6 i€B i aiGAi,6iEBi 

hold in G. Hence (Ai,Bi) is a D-cut in G. Now we apply the assumption that G is 
D-complete. Thus there is g° G G such that 

(6) sup^ i =g° = i n f £ i 

is valid in G. Since G is dense in H (this is a consequence of 3.3), the relations (6) 
hold also in H. Then from (5.1) we get h -̂  g° and from (5.2) we obtain h ^ g°. 
Therefore h = g°, which completes the proof. D 

3.6. Lemma. Let G be strongly protectable and D-complete. Suppose that H 

is a lateral completion ofG. Then H is D-complete. 

P r o o f . Let Hi be a Dedekind completion of H. We have to show that Hi = H. 

It suffices to verify that H+ C H. 
Let 0 < hi € Hi. There exist subsets A\ and Hi of H such that the relations 

(1) sup Ai = h\ = inf Hi 

are valid in Hi. Choose b\ E Hi. There exists a disjoint indexed system (bi)iej of 

elements of G such that the relation 

(2) 6, = VieIbi 

holds in H. 
It follows from the Axiom of Choice that there exists a disjoint indexed system 

(bi)iei> of elements of G such that / ' C / and, whenever 0 < g G G, then g A b» > 0 
for some i € / ' . 
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Let the symbol J_ have the same meaning as above (i.e., it is applied for denoting 

polars in H). For each i G I' we put 

Ci = {&.}x x . 

Since H is laterally complete it is strongly projectable and hence in view of 3.1 we 
have 

(3.1) H=Y[d. 
ier 

Hence according to [9] (cf. the quotation in the proof of 3.2), 

(3.2) ir^n^1' 
ier 

where C\ is a Dedekind completion of Ci (i e I'). 
From (2) we obtain that if i G I, then 

bi(Ci) = bh bi{l)(Ci) = 0 for t(l) G I' \ {i}. 

These relations remain valid if Ci is replaced by C\ (i G I). 
Since H Cd Hi, the relation (2) holds in Hi as well. Then 

(4) /ii = / n Abi =Viei(hiAbi) 

is valid in Hi. 

Let i G I be fixed. From (4) we obtain that 

h1(C\) = hlAbi^0. 

Thus /ii Abi G C\. 

There exist Ai,Bi C d such that the relations 

sup Ai = hi A bi = inf Bi 

are valid in C\. Denote 

A* =Aif)G, B\ = B{nG. 

Since bi G A, in view of 3.5 we have h G H for each h G H with 0 -$ h ^ bi. This 
yields that the relations 

sup Ai = hi A bi = inf B* 
521 



hold in C\. Thus 

(5) /\ (y-x)=0= /\ (-x + y). 
xeA?,yeB? xeA?,yeB* 

However, -4*,H* C G and thus, since G is D-complete, we infer from (5) in the 

obvious way that there exists z G G such that 

(6) sup ,4* = z = infH* 

is valid in G. 

Since G Cd H (cf. 3.3) we get G Cd H\ and thus (6) holds also in H\. We obtain 

z = h\ A b{. Therefore h\ A 6; G G for each i G I. 

The indexed system (/ii A bi)iei of elements of G is disjoint, hence there exist 

ho G H such that 

(7) h0 = VieI(hAbi) 

is valid in H. Since H Cd H\, the relation (7) holds also in Hi. Then (4) yields that 

h\ = ho G H, which completes the proof. • 

4. ISOMORPHISMS OF GDL AND G L D 

Let G be a lattice ordered group. We denote by 

H—a lateral completion of G; 

Hi—a Dedekind completion of H; 

K—a Dedekind completion of G; 

Ifi—a lateral completion of K. 

H-^Hг 

G — ^ K — ^ K І 

K'—^K[ 

Figure 1 

522 



4.1. Theorem. Let G be a strongly projectable lattice ordered group and let 

H, H\, K, K\ be as above. Then there exists an isomorphism <p of K\ onto H\ such 

that (p(g) = g for each g G G. 

P r o o f . (Cf. Fig. 1.) Since G Cd H and H Cd H\, in view of 2.7 there exists a 
Dedekind completion K' of G such that K' Cd H\. In view of 3.4.2, K' is strongly 
projectable. 

According to 3.2 and 3.4.1, H\ is laterally complete. Then 2.1 yields that there is 
a lateral completion K[ of K' such that K[ Cd H\. 

Since G Cd K' Cd H\ we get G Cd K' Cd K[. This and the lateral completeness 
of K[ yield (cf. 2.1) that H Cd K[. 

By applying the definition of K[ and 3.6 we obtain that H\ C K[. Therefore we 
have 

(1) Hr=K[. 

There exists an isomorphism ip\ of K onto K' such that tp(g) = g for each g G G. 

Next, there exists an isomorphism </? of K\ onto K[ such that (p(x) = x for each 
x G K. In particular, (p(g) = g for each g G G. To complete the proof it suffices to 
apply the relation (1). • 
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