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For a lattice ordered group G we denote by G and GP the lateral completion or
the Dedekind completion of G, respectively. (For definitions, cf. Section 1 below.)
The main result of [2] is the following theorem:
(*) (Bernau) Let G be an archimedean lattice ordered group. Then the relation

(1) GDL =GLD

is valid.

This solved a problem proposed by Conrad [4].

In the present paper the validity of (1) for strongly projectable lattice ordered
groups will be proved.

Let us remark that an archimedean lattice ordered group need not be strongly pro-
jectable; also, a strongly projectable lattice ordered group need not be archimedean.
Thus our result neither implies (*) nor is implied by ().

For each lattice ordered group G the lateral completion G* is defined uniquely up
to isomorphism (cf. Conrad [4], Bernau [1]). Hence, in fact, the relation (1) is to be
considered in the sense of isomorphism (leaving all the elements of G fixed).

1. PRELIMINARIES

In the whole paper G denotes a lattice ordered group.

An indexed system (g;)icr (I # @) of elements of G is called disjoint if g; > 0 for
each i € I, and g;2) = 0 whenever i(1) and i(2) are distinct elements of I.

G is said to be laterally complete if each indexed disjoint system in G has the
supremum in G.

If G is an ¢-subgroup of a lattice ordered group H such that for each h € H with
0 < h there exists g € G with 0 < g < h, then G is called a dense £-subgroup of H.
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1.1. Definition.  (Cf. Conrad [4].) A lattice ordered group H is said to be a
lateral completion of G if the following conditions are satisfied:
(i) H is laterally complete.
(ii) G is a dense ¢-subgroup of H.
(iii) If H, is an £-subgroup of H such that G C H; and H; is laterally complete,
then H, = H.

1.2. Theorem. (Bernau [1].) Each lattice ordered group possesses a lateral
completion. If H and H' are lateral completions of G, then there exists an isomor-
phism ¢ of H onto H' such that ¢(g) = g for each g € G.

Thus, up to isomorphism, the lateral completion of G is uniquely determined; we
denote it by GT.

Let X C G. The system of all upper bounds (or lower bounds, respectively) of X
in G will be denoted by U(X) (or (L(X)). A pair (A, B) of nonempty subsets A and
B of G will be said to be a cut in G if A = L(B) and B = U(A). A cut (A, B) will
be called a D-cut if the relations

A (b_a)=01

a€EAbEB

N\ (—a+b)=0

a€AbeEB

are valid in G.
1.3. Definition. A lattice ordered group G is said to be D-complete if for each
D-cut (A, B) in G there exists g € G such that the relation
supA =g =infB

is valid.

1.4. Definition. A lattice ordered group H is called a Dedekind completion of
G if the following conditions are satisfied:

(i) H is D-complete.
(ii) G is an ¢-subgroup of H.
(iii) For each h € H there are subsets X and Y of G such that the relations
supX =h=infY
are valid in H.
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From the results of Everett [5] (cf. also Fuchs [5], Chap. V, §10) we obtain

1.5. Theorem. Each lattice ordered group possesses a Dedekind completion. If
H and H' are Dedekind completions of G, then there exists an isomorphism ¢ of H
onto H' such that ¢(g) = g for each g € G.

1.6. Theorem. (Conrad [4].) Let G be a dense {-subgroup of a laterally
complete lattice ordered group H. Next, let Hy be the intersection of all £-subgroups
H; of H such that G C H; and H; is laterally complete. Then Hy is a lateral
completion of G.

2. AUXILIARY RESULTS

If G is a dense f-subgroup of a lattice ordered group H, then we express this fact
by writing G Cq4 H.
It is obvious that if H' is a Dedekind completion of G, then G C4 H'.

2.1. Lemma. Let G Cy4 G'. Suppose that H' is a lateral completion of G'.
Then there is a lateral completion H of G such that H Cy4 H'.

Proof. We have G' C4 H', hence G C4 H'. Now it suffices to apply 1.6. ]
2.2. Lemma. Let H be a lattice ordered group such that G C4 H. Next, let
Hy be the set of all h € H such that there exist X,Y C G having the property that

the relation
supX =h=infY

is valid in H. Then Hy is an ¢-subgroup of H.

Proof. Let h € H and let X,Y be as above. Further, let h’ € H, X' C G,
Y’ C G be such that sup X’ = A’ = inf Y’ is valid in H. Then we have

sup{z + z'}sex,orex’ = h+ b =inf{y + ¥’ }yev,yey
in H. Analogous relations remain valid if + is replaced by V or by A. Also,
sup{—y}yey = —h = inf{—-z}.ex.

Hence Hj is an ¢-subgroup of H. O
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2.3. Lemma. Let H be a lattice ordered group, {z;}ic; C H, {y;j}jes C H,
heH,

Sup{.’Ei}iGI =h= inf{yj}jej.
Then

/\ (yj —x:) =0 /\ (=i +yj5).

iel,jeJ iel,jeJ

Proof. We have

0= /\ Yj — VielT; = /\ y; + /\(—ﬁi) =

jeJ j€J i€l
= N @-=)
jeJiel
The other relation can be verified analogously. a

An /-subgroup H; of a lattice ordered group H» will be called regular if, whenever
X CH,,YCH;,z€ Hy, y€ H, and the relations

supX =z, infY =y
are valid in Hy, then these relations are valid also in Hs.

2.4. Lemma. (Bernau [1].) Let H; be a dense ¢-subgroup of H,. Then H, is a
regular {-subgroup of Hs.

2.5. Lemma. Let G,H and Hy be as in 2.2. Assume that H is D-complete.
Then Hg is D-complete as well.

Proof. Let (A,B) be a D-cut in Hy. We denote by B; the set of all upper
bounds of A in H, and by A; the set of all lower bounds of B; in H. Then (A;, By)
isacutin H and A C A,, B C B;. The relations

N (b-a)=0= A (-a+b)

a€AbEB a€AbEB

are valid in Hy. In view of 2.4, these relations are valid also in H (since, obviously,
Hy is a dense ¢-subgroup of H). Then the inclusions A C A;, B C B; imply

A Gi-a)= A (—a+b)=0

a1€A;,b1€EB a1€EA1,b1EB
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Thus (A;, B;) is a D-cut in H. Since H is D-complete, there exists h € H with
sup A; = h =inf B;.
From the definition of B; and from h = inf B; we see that the relation
h=supA

is valid in H. Since A C Hy, for each a € A there exists a subset X (a) of G such
that the relation
a = sup X (a)

holds in Hp. Thus according to the definition of Hy this relation holds also in
H. Similarly, there exists Y C G such that h = infY is valid in H. Denote

X = |J X(a). Then we have
a€A

h = sup A = sup{sup X(a)}eea = sup X

in H. This yields that h € Hy. Now, since (A4, B) is a cut in Hp, we obtain that
h€ ANB and
h=inf B

in Hy. Therefore in view of 1.3, Hy is D-complete. a

2.6. Lemma. LetG,H and Hy be as in 2.2. Then Hy is a Dedekind completion
of G.

Proof. We apply the conditions (i), (ii) and (iii) from 1.4. In view of 2.2, Hy is
an ¢-subgroup of H and clearly G C Hp; thus G is an ¢-subgroup of Hy. According
to 2.5, Hp is D-complete. Hence (i) and (ii) from 1.4 are satisfied. The definition of
H) yields that (iii) from 1.4 also holds. O

2.7. Corollary. Let G be a dense ¢-subgroup of a lattice ordered group H and
let H' be a Dedekind completion of H. Then there exists a Dedekind completion Hy
of G such that

(i) Ho Ca H';
(ii) if H} is a dense €-subgroup of H' such that G C H} and if H} is D-complete,
then Ho C H}.
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3. STRONG PROJECTABILITY
For X C G we denote by X° the polar of X in G; i.e.,
X% ={g€G|g|A|z| =0 for each z € X}.

A lattice ordered group H is said to be strongly projectable if each polar of H is
a direct factor of H.
If we have a direct product decomposition

G=]]ec:

i€l

andif g € G, i € I, then the component of g in G; will be denoted by g(G;) or by ¢(7).
We identify the element g(G;) with the element ¢’ of G such that ¢'(G;) = g(G:)
and g'(G;1)) = 0 for each i(1) € I with i(1) # .

It is well-known that if 0 < g € G, then g¢(¢) is the greatest element of the set
G;NnJ0,g].

3.1. Lemma. Let G be laterally complete and strongly projectable. Let (A;)c1
be an indexed system of direct factors of G such that A;qy N Ay2) = {0} whenever
i(1) and i(2) are distinct elements of I. Put

Bz(U&Y.

i€l
Then G = B x [] Ai.
i€l
Proof. GG is strongly projectable and hence B is a direct factor of G. Consider
the mapping
¢:G - Bx[]A
i€l
such that
p(z)(A;) = z(A;) foreachiel,

¢(z)(B) = z(B).
Then ¢ is a homomorphism of G into B x [] 4.

i€l
Let z € G, ¢(z) = 0. Then ¢(|z|) = 0. Thus |z| A a; = 0 whenever ¢ € I and
0 < a; € A;. Hence |z| € B yielding that |z|(B) = |z|. But |z|(B) = 0 and therefore
|z| = 0 = z. Hence ¢ is an isomorphism of G into B x [] A;.
i€l
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For proving that ¢ is surjective it suffices to verify that if 0 < z* € A; fori € I and
0 < b € B, then there exists g € G such that ¢(g)(¢) =z for ¢ € I and ¢(g)(B) =b.
Choose 0 < z* € A; (i € I) and 0 < b € B. Since G is laterally complete there

exists g € G such that
g=bv ( \/ xi).
iel

It is easy to verify that
z* = max([0, 9] N A

for ¢ € I and that
b = max([0, g] N B).

Hence ¢(g)(i) = z* for i € I and ¢(g)(B) = b. Therefore ¢ is an isomorphism of G

onto B x [] A:, which completes the proof. O
i€l

3.2. Lemma. Let G be laterally complete and strongly projectable. Next, let
H be a Dedekind completion of G. Then H is laterally complete.

Proof. Let (h;)icr be a disjoint indexed system of elements of H. Let i € I.
There exists X; € Gt such that

hi = sup X,:
is valid in H. Then
Ti(1) A Tyz) = 0

whenever ;1) € Xi(1), Ti2) € Xj(2) and i(1),i(2) are distinct elements of I. Put
Ai=X3 for i€l

B=<UA,~)6.

i€l

‘We have
A1) N Aye) = {0}

if (1) and i(2) are distinct elements of I. Thus according to 3.1 we obtain

G=BxHA,-.

i€l

In [10} it was proved that if an abelian lattice ordered group G! is a direct product
of lattice ordered groups G} (i € I) and if G? is a Dedekind completion of G*, then
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there are Dedekind completions G? of G} (i € I) such that G? is a direct product of
G? (i € I). Tt is easy to verify that this result remains valid for the non-abelian case
as well.

Hence there exists a direct product decomposition

H=B"x]]4?
el

such that B° is a Dedekind completion of B and A? is a Dedekind completion of A;
(tel).
Since h; € A? for i € I, we infer that there exists h € H such that

h(B°) =0, h(A9)=h; foriel.
Then the relation h = V;erh; is valid in H and therefore H is laterally complete. O

3.3. Lemma. Let G be strongly projectable and let H be a lateral completion
of G, 0 < h € H. Then there exists a disjoint indexed system (x;):cs in G such that
the relation h = V;crx; is valid in H.

This was proved in [8].

3.4.1. Lemma. Let G be strongly projectable and let H be a lateral completion
of G. Then H is strongly projectable.

Proof. Let® # X C H. The polar of X in H will be denoted by X*. There
exists X; € H* such that

Xt=Xi, XH=xit

In view of 3.3, for each z; € X there exists a subset Y (z;) of G such that the
relation
zy =supY(z;)

is valid in H. Put

Then we have

and hence Y1+ = Xj+. Since G is strongly projectable, we obtain
G=Y%xY?.
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It is easy to verify that Y+ and Y4+ are Dedekind completions of Y4 or of Y9,
respectively. Then according to [9] (cf. the quotation in the proof of 3.2) we get

H=Y'*xY*
Hence H is strongly projectable. a
3.4.2. Lemma. Let G be strongly projectable and let H be a Dedekind com-

pletion of G. Then H is strongly projectable.

The proof is as in 3.4.1 with the following distinction: the existence of Y (z;) with
the desired properties is a consequence of the definition of the Dedekind completion
(i.e., we need not apply 3.3).

3.5. Lemma. Suppose that G is strongly projectable and D-complete. Let H
be a lateral completion of G. Assume that 0 < h€ H,b€ G, h<b. Then h € G.

Proof. We have 0 < —h + b. Since G is strongly projectable, according to 3.3
there are disjoint indexed systems (g )ier and (93)jes in G such that the relations

(1) h=\/dl,
i€l
(2) —h+b= \/ g?
jedJ

are valid in H. From (2) we infer that the following relations hold in H:

~h=\/ (g5 - b),

jed
(3) h=N\ ¢,
jEJ

where gjs- =b- gj?. Hence g]3. € G for each j € J. Next, (1) and (3) yield by simple
calculation that the relations

(4) N @-g)=0= A (-g!+3)

iel,jeJ i€l,jeJ
are valid in H. Hence these relations hold in G as well.
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Denote
B1 =U({g}}ier), A1 =L(By),

where the symbols U and L are taken with respect to G. Then (A;, B;) is a cut in
G. Clearly

(5.1) {9} }ier € Aq,

(5.2) {g?}jeJ C B;.

From (4) we obtain that the relations

/\ (by —a1)=0= /\ (a1 +b1)

a1€A1,01€B; a1€A;,b1€B)

hold in G. Hence (A;, B;) is a D-cut in G. Now we apply the assumption that G is
D-complete. Thus there is g° € G such that

(6) supA; = ¢° =inf By

is valid in G. Since G is dense in H (this is a consequence of 3.3), the relations (6)
hold also in H. Then from (5.1) we get h < ¢° and from (5.2) we obtain h > ¢°.
Therefore h = g°, which completes the proof. a

3.6. Lemma. Let G be strongly projectable and D-complete. Suppose that H
is a lateral completion of G. Then H is D-complete.

Proof. Let H; be a Dedekind completion of H. We have to show that H; = H.
It suffices to verify that H;" C H.
Let 0 € h; € H;. There exist subsets A; and B; of H such that the relations

(1) sup A1 = h1 = inf Bl

are valid in H;. Choose b; € B;. There exists a disjoint indexed system (b;);c; of
elements of G such that the relation

(2) b = Vierb;

holds in H.

It follows from the Axiom of Choice that there exists a disjoint indexed system
(b;)ier of elements of G such that I' C I and, whenever 0 < g € G, then gA b; >0
for somei e I'.
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Let the symbol L have the same meaning as above (i.e., it is applied for denoting
polars in H). For each ¢ € I' we put

C; = {b;}*+t.

Since H is laterally complete it is strongly projectable and hence in view of 3.1 we
have

(3.1) H=]] ¢

el

Hence according to [9] (cf. the quotation in the proof of 3.2),

(3.2) H =[] ci,

el’

where C} is a Dedekind completion of C; (i € I').
From (2) we obtain that if ¢ € I, then

b:(C;) = b;, b,-(l)(Ci) =0 fori(l)e r \ {i}.

These relations remain valid if C; is replaced by C} (i € I).
Since H Cq4 Hi, the relation (2) holds in H; as well. Then

(4) hl = hl A b1 = V,‘e](hl A b,)

is valid in H;.
Let ¢ € I be fixed. From (4) we obtain that

hl(Cll) :hl Abi 20

Thus hy Ab; € C}.
There exist A;, B; C C; such that the relations

sup A; = h; A b; = inf B;
are valid in C}. Denote
Al =A;NG, B!=B;NG.

Since b; € A, in view of 3.5 we have h € H for each h € H with 0 < h < b;. This
yields that the relations
sup A} = hy A b; = inf B}
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hold in C}. Thus

() AN w-2)=0= A (-z+y).

z€EA},yEB? T€EA?,yEB;

However, A}, B} C G and thus, since G is D-complete, we infer from (5) in the
obvious way that there exists z € G such that

(6) sup A} =z =inf B}

is valid in G.

Since G Cy4 H (cf. 3.3) we get G C4 H; and thus (6) holds also in H;. We obtain
z = hy A b;. Therefore hy Ab; € G for each i € I.

The indexed system (h; A b;);cr of elements of G is disjoint, hence there exist
ho € H such that

(7) ho = Viel(h A bi)

is valid in H. Since H C4 Hj, the relation (7) holds also in H;. Then (4) yields that
hy1 = hg € H, which completes the proof. O

4. IsoMORPHISMS OF GPL anp GLD

Let G be a lattice ordered group. We denote by
H—a lateral completion of G;

H;—a Dedekind completion of H;

K—a Dedekind completion of G;

K;—a lateral completion of I.

H—2>H
L

G—L>Kk—LtsK,

D
K —t> K]
Figure 1
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4.1. Theorem. Let G be a strongly projectable lattice ordered group and let
H, H,, K, K, be as above. Then there exists an isomorphism ¢ of K; onto Hy such
that ©(g) = g for each g € G.

Proof. (Cf. Fig.1.) Since G C4 H and H C4 Hj, in view of 2.7 there exists a
Dedekind completion K’ of G such that K’ C4 H;. In view of 3.4.2, K' is strongly
projectable.

According to 3.2 and 3.4.1, H; is laterally complete. Then 2.1 yields that there is
a lateral completion K of K’ such that K] Cq4 Hj.

Since G Cq K' C4q Hy we get G Cq K' Cq K. This and the lateral completeness
of K yield (cf. 2.1) that H C4 K].

By applying the definition of K| and 3.6 we obtain that H; C K]. Therefore we
have

(1) H, = K}.

There exists an isomorphism ¢; of K onto K’ such that ¢(g) = g for each g € G.
Next, there exists an isomorphism ¢ of K; onto K; such that ¢(z) = z for each
z € K. In particular, ¢(g) = g for each g € G. To complete the proof it suffices to
apply the relation (1). O
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