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Czechoslovak Mathematical Journal, 47 (122) (1997), Praha 

THE THIRD BOUNDARY VALUE PROBLEM IN POTENTIAL 

THEORY FOR DOMAINS WITH A PIECEWISE SMOOTH 

BOUNDARY 

DAGMAR MEDKOVA,* P r a h a 

(Received February 8, 1995) 

Abstract. The paper investigates the third boundary value problem ^± + Xu = a for the 
Laplace equation by the means of the potential theory. The solution is sought in the form of 
the Newtonian potential (1), (2), where v is the unknown signed measure on the boundary. 
The boundary condition (4) is weakly characterized by a signed measure SFv. Denote by 
SF: v —y ZTv the corresponding operator on the space of signed measures on the boundary 
of the investigated domain G. If there is a ^ 0 such that the essential spectral radius of 
(aI — &) is smaller than \a\ (for example, if G C R is a domain "with a piecewise smooth 
boundary" and the restriction of the Newtonian potential ^ A o n dG is a finite continuous 
functions) then the third problem is uniquely solvable in the form of a single layer potential 
(1) with the only exception which occurs if we study the Neumann problem for a bounded 
domain. In this case the problem is solvable for the boundary condition a G *&' for which 
Li(dG) = 0. 

MSC 1991: 31B20, 35J05, 35J25 

0. INTRODUCTION 

Let G be a Borel set in the Euclidean ra-space IR™, ra ^ 2, and suppose that the 
boundary B of G is compact and B / f l . For every v e <€' (= the Banach space 
of all finite signed Borel measures with support in B), the corresponding Newtonian 
potential Wv is defined by 

(1) Wv(x) = [ hx(y)dv(y), xGKm 

JB 

* Support by the grant No. 11957 in the Academy of Sciences of the Czech Republic is 
gratefully acknowledged. 
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where 

(2) fcx(y) = IlogrJ—- form = 2, 
A \x-y\ 

\x - 2/|2_m for m > 0 
A(m - 2) 

and A is the area of the unit m-sphere. 
Further, if there is a unit vector 6 such that the symmetric difference of G and 

the half-space {x G (Rm; (x — z) • 6 > 0} has m-dimensional density zero at z then 
nG(z) = 9 is termed the interior normal of G at z in Federer's sense. If there is no 
interior normal of G at z in this sense, we denote by nG(z) the zero vector in lRm. 
The set {y G lRm; \nG(y)\ > 0} is called the reduced boundary of G and will be 
denoted by dG. 

Denote for z G IRm, r > 0 

vG(z) = J \nG(y) • gmdhz(y)\dJrm-i(y), 
JdGD<?/ (z\r) 

VG = supvg(y), 
yeB 

VG= lim sup^G(y). 
r~>0+ yeB 

Here ^ is the k-dimensional Hausdorff measure and <?/(z;r) = {y G (Rm; \z—y\ < r}. 
Throughout this paper we shall assume that VG < oo. We may define for x G IRm, 
/ G ̂ , where *& is the space of all bounded continuous functions on B equipped with 
the maximum norm, 

(3) WGf(x) = da(x)f(x) - [ f(y)nG(y) • gradt.-(y) d^m- i (y ) , 
JB 

where 
, . . .. Jffm(^(x;r)nG) 

dG{x) = rlX jrm(V(x;r)) 

is the m-dimensional density of G at the point x. The double layer potential WGf is 
a function harmonic on (Rm — B and continuous on B. Besides that WG is a bounded 
operator on <€. If WGf = g on B then TVG/ is a solution of the Dirichlet problem 
on Rm — clG with the boundary condition g. For v G ^ ' we define a signed measure 
NG^.v 

NGWv(M) = [ [dG(x)XM(x) - f nG(y)'gv^dhx(y)dJffrn.1(y)]dv(x), 
JB JBDM 

where XM is the characteristic function of the set M. If NG6l/v = /x then Wv is a 
solution of the Neumann problem on int G with the boundary condition fi. 
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If WG is a Predholm operator on ^ then Fredholm's theorems hold for dual equa­
tions 

WGf = g, 

NGWv = ii. 

If dG is Lipschitz, then WG is a Predholm operator in the space L2(dG). (For the 
Lp-theory of double layer potentials and its connection to boundary value problems 
see the papers [60], [13], [25], [26], [35], [38].) The operator WG for a polyhedral 
boundary dG and certain Sobolev spaces is studied in [51]. If G is convex or if 
\70

G < \ then WG is Predholm in the space <e (see [28], [35]). If G C R2 and B 
is piecewise smooth without cusps then VG < \ and WG is a Predholm operator. 
If G C U3 and B is piecewise smooth then it may happen that V£ > \ (see [33]). 
If G C IR3 is a rectangular domain then WG is a Predholm operator with index 0 
(cf. [33], [1]). The same holds for a polyhedral cone in IR3 (cf. [50]). 

The aim of the section 2 is to prove that WG is a Predholm operator with index 0 
under assumption that G C IR3 has a piecewise smooth boundary. We use a method 
which was proposed in [10], [40], [41] in connection with investigation of changes of 
the Predholm radius of the Neumann operator (2WG — I) under a deformation. Here 
I is the identical operator. 

In section 1 we study the third boundary value problem for open G C lRm, where 
m > 2. Fix a nonnegative element A of *&' and suppose that ^ A is bounded on B. 

For each v £ #" we define the distribution 2fv by 

(<p,5V)= / g r a d e s ) -grad^i/(x)dx-f- / ip(x)<frv(x) dA(z), 
JG JB 

(f G ^ , @ being the class of all infinitely differentiable functions with compact 
support in Um (see [44], [55]). The distribution £fv is representable by a unique 
element of *&' and the operator ST \ v —> f?v acting on *€* is a bounded linear 
operator (see [44], theorem 5). 

If B is a smooth hypersurface and A is absolutely continuous with respect to 
the area measure H on B, then, under suitable conditions concerning 9/v, (<p, Sfv) 
transforms into 

f f 39/v \ 

where q = - ^ , which shows that &v is a natural weak characterization of 

(4) - £ + •*" 
The operator & is studied in [43], [44], [45], [46], [55]. In [46] the following theorem 

is proved: 
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Assume G to be a domain with do(y) ^ 0 for every y € B and suppose that 

(5) inf - ^ < 1. 
â O |a| 

Then SFi^?') = <&' with the only exception which occurs if G is bounded and A = 0. 
In this case the range of 2? consists precisely of those v e *€' with v(B) = 0. 

Here 5« = & — aJ, I is the identity operator and 

u,^a = ini\\£ra-Q\\ 
w 

Q ranging over the class of all operators acting on <€' of the form 

3 = 1 

where n is a positive integer, vrij G #" and / js are bounded Baire functions on B. 

However in [33] an example is given of a rectangular domain G in IR3 such that 
the condition (5) is not fulfilled even for A = 0. We shall substitute the condition 
(5) by a weaker condition and then we shall prove the result of [46]. The technique 
of proofs remains the same as in [46]. 

If X is a Banach space we denote by J^(X) the space of all compact linear 
operators on K. For each bounded linear operator Q on X we define 

UQ\U = KM{X)UQ + Kl 

ress = liminf( | |Qn | |ess)1/n. 
n—•oo 

We substitute the condition (5) by the condition 

(6) a = i n f - ^ ^ < 1 . 
v ' â O \a\ 

In the section 2 we will prove that the condition (6) is fulfilled for any domain G C R3 

"with a piecewise smooth boundary" and A = 0. According to the results in [45] 
the condition (6) is fulfilled even for each non-negative measure A for which the 
restriction °t/ A on B is a finite continuous function. 
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1 . THE THIRD BOUNDARY VALUE PROBLEM 

1.1. Preliminaries. We shall suppose in this section that G C Rm, m > 2, is an 
open set. 

Let 33 denote the Banach space of all bounded Baire functions denned on B with 
the usual supremum norm. The symbol SB' stands for the dual space of SS and for 
u. E V we shall denote by \/JL\ the indefinite variation of /x; of course, ||/i|| = |/x|(-B) 
is the norm of a /x in ^'. 

According to [44], proposition 8 we may define on 3S the continuous operator V 

by 

Vf(y) = Vf\(y)[ = JBf(x)hy(x)d\(x) . 

We define for / k BS and y € B 

Wf(y) = dG(y)f(y) + ± ^ f(x)
r^L^zAdJffm_1(x). 

Results in [29] (cf. also [4], [28], [36]) imply that W is a bounded linear operator on 
38 and 

(7) / grad<D(x) • &ad&6y(x) dJTm(o;) = Wip(y), 
JG 

for each <D E ^ , y E B. Here d"y denotes the Dirac measure concentrated at y. 
There is a close connection between the operator T = V + W and the operator <^, 

namely, the restriction to <*?' of the dual operator T" of T coincides with the operator 
& (see [44], proposition 8), T ' / V = ST. 

Denoting by W', V the dual operator of W, V, respectively, we observe that 
W'(V) C V, V(tf') C <€' (see [46], preliminaries 1). 

1.2. Lemma. Let X be a complex Banach space and Q be a bounded linear 
operator on X. Denote by X' the dual space of X and by Q' the dual operator of 
Q. Then 

ressQ = ressQ' = inf{r; r > 0, (Va E C, |a| > r; (al - Q) is Fredholm)}. 

Put 9, = {a E C; |a| > r e s s Q}. Then al - Q is a Fredholm operator with index 0 
for each a € tt. Denote by a(Q) the spectrum of the operator Q. The set Ctna(Q) 
is isolated in Cl. 

P r o o f . Denote by $ the set of all complex numbers a for which al — Q is a 
Fredholm operator. 

ressQ = sup{|a|; a g $} 

655 



by [56], chapter IX, theorem 2.1 and theorem 1.3. According to [56], chapter VII, 
theorem 3.5 the operator al - Q' is Predholm if and only if al - Q is Predholm. 

Hence 

TessQ' = sup{ |a | ; a £ $ } = ressQ. 

Since the index of (al - Q) is constant on the domain ft by [56], chapter VII, 
theorem 5.2 and (al — Q) has index 0 for \a\ > \\Q\\, the index of (al — Q) is null 
for a e ft. 

Fix d > ressQ. Choose n such that ||<2n||ess < dn. The set o-(Qn) - ^ ( 0 ; d n ) is 
finite by [39], lemma 2. Since a(Qn) - <2r(0; dn) = {a n ; a G r/(Q) - ^ ( 0 ; d)} by [61], 
chapter VIII, 7 the set a(Q) fl ft is isolated in f}. • 

1.3. Lemma. Let X be a complex Banach space and Q be a bounded linear 
operator on X. Let Y be a closed subspace of X' such that Q'(Y) C Y and denote 
by Q'/Y the restriction ofQ' to Y. Then 

ress(Q'/Y) ^ ressQ. 

P r o o f . Denote 

n = { a G C ; | a | > r e s sQ}, 

N = a(Q)nft. 

The set 1V is isolated in ft and al — Q is Fredholm for all a e ft by Lemma 1.2. 
We shall prove that (aI-Q')/Y is Fredholm for all a e ft. Fix a G ft. Since al-Q 

is Predholm the operator al — Q' is Predholm too by [56], chapter V, theorem 4.1 
and thus dimKer ((al - Q')/Y) ^ dimKer(aI - Q') < oo, where Ker(aI - Q') is 
the null space of (aI — Q'). 

Now we shall prove that (al — Q')(Y) is a closed subspace of X'. According to 
[56], chapter V, theorem 1.4 there is a bounded operator F from (aI - Q')(X') to 
X' such that (al - Q')F = I and X' is the direct sum of Z = F(al - Q')(X') and 
Ker(aI - Q'). It is easy to see that Z is a closed subspace of X'. Put Z0 = Z f)Y. 
Now let xn e Z0, (al — Q')xn -> y. Then xn -r Fy and since Z0 is closed we have 
Fy G Z0 and y = (al-Q')Fy G ( a I - Q ; ) ( ^ o ) . Hence (aI-Q')(Z0) is closed. Now, 
we shall prove that the codimension of Z0 in Y is finite. Denote n = d imKer(a I -Q' ) . 
Choose yl,..., y n + 1 G Y. Denote by P the projection of X' onto Ker(aI - Q') along 
Z. Then P y 1 , . . . , Pyn+l are linearly dependent. There are c x , . . . , cn+i such that 

n + l n+1 

£c .Py' - -0, £ | C i | 2 > 0 . 
г = l ѓ = l 
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Therefore 
n-fl n+1 

^2ciy
i = ^2ci(I-P)yi€Z0. 

1 = 1 t = l 

So, there is a finite dimensional subspace Z\ of Y such that Y is the direct sum of 
Zo and Z\. Since 

( a / - Q')(Y) = ( a / - Q')(Z0) + (aI - Q ' ) ^ ) , 

(aI - <2')(Z0) is closed and (al - Q')(Z\) has a finite dimension (aI - Q')(F) is a 
closed subspace of K'. 

Since (al - Q')(Y) is a closed for all A G n we have dim Ker ((al - Q ' ) /F) > 0 
for all a G ft n da(Q'/Y) by [56], chapter XII, theorem 10.1. But then necessarily 
ilnda(Q'/Y) C N (see [56], chapter VII, theorem 3.2). Since Vt-a(Q'/Y) is an open 
set we have ft n a(Q'/Y) C N\ Choose a G cr(Q'/Y) n ft. Then according to [56], 
chapter VI, theorem 4.5 there is a natural number k such that Ker ((aI - Q')k) = 
Ker ((aI - Q')fc+m) for all m ^ 0. Since Ker ((al - Q ' ) m /T) C Ker ((al - Q')m) 
and Ker ((aI - Q')k) is a finite dimensional space by [56], chapter V, theorem 2.3, 
there is a natural number n such that Ker ((al - Q')n/Y) = Ker ((aI - Q')n+X/Y). 
Since a is an isolated point of the spectrum of Q'/Y' and (al — Q')(Y) is closed the 
operator (al — Q')/Y is Fredholm by [56], chapter VI, theorem 4.2. 

Since (aI - Q')/Y is a Fredholm operator for all a G ft lemma 1.2 yields that 
reSs(Q'/Y)^ressQ. • 

1.4. Nota t ion . Let Co stand for the class of all Borel subsets of Rm having 
the Newtonian capacity zero. It should be noted here that t ^ n _ i ( M ) = 0 for any 
M G Co ([34], theorem 3.13) and X(M) = 0 as well because A has a bounded potential 
([34], theorem 2.1). We shall say that a property holds quasi-everywhere in Q C (Rm 

if it holds for all points in Q except possible those in a set M G Co. 
Let us denote ^ the set of all JJL G *£' with the following property. There are 

M G Co and c E R\ such that the difference fyy,(x) = ^ / /+(x) - ^ \JT(X) is 
meaningful for each x G W1 - M and \fy\i(x)\ ^ c holds provided x G Rm - M 
(as usual, /i = /x+ — /x~ is the Jordan decomposition of ;u). Clearly, ^ is a linear 
subspace of *€'. 

The function g is said to belong to the class ~^o > if it is defined quasi-everywhere 
in B and there is a function h G 88 such that g = h quasi-everywhere in B. For 
g G ~^o denote by g the class of all h G ~«̂ o that coincide with g quasi-everywhere in 
B. Let us denote by 3&Q the Banach space of such classes g with the norm defined 
by 

\\g\\o = quasisup|0|, g G g, 
B 

657 



where quasisup \g\ equals the infimum of all c's for which 
B 

{xeB;\g(x)\ > c] G Co 

provided B £ Co; in the case that B G Co we set quasisup \g\ = 0. 
B 

An operator P acting on & is said to operate in 0$o if IV = 0 quasi-everywhere 
whenever / = 0 quasi-everywhere. Such an operator defines in an obvious manner 
an operator acting on «̂ o which will be denoted by P. 

Let L be a linear space over the field of real numbers. We shall denote by X the 
set of all elements of the form x + iy where x, y G L. If the sum of two elements of 
X and the multiplication of an element of X by a complex number are defined in an 
obvious way then X becomes a linear space over the field of complex numbers. Let 
Q be a linear operator acting on L. The same symbol will denote the extension of 
Q to X defined by 

Q(x + iy) = Q(x)+iQ(y). 
If an operator Q on L possesses an inverse operator <5 -1, then the extension of Q~l 

to X is an inverse operator (on X) of the extension of Q to X . 
For / G ^ , g G ^ o put 

| |/ | | = sup \f(x)\, 
x€B 

\\g\\o = quasisup |Q|, g G g. 
B 

Note that ~&, *&o with the above defined norms are Banach spaces and for any 
L A G V 

IMI = s u p / fdfi 
I JB 

where the supremum is taken over all / ~*&& with | |/ | | ^ 1. 
Similarly as above, an operator Q acting o n ^ is said to operate i n ^ o , if Qf = 0 

quasi-everywhere whenever / = 0 quasi-everywhere. Such an operator defines an 
operator o n ^ 0 that will be denoted by Q. The inequality ||Q||o ^ ||Q|| holds good. 
Note that if an operator P o n J operates in <^o, then its extension t o ^ operates 

i n ^ o . 
For any \x G V*, \x — n1 + i,u2, °i/ [i? determines the only element of «̂ o which will 

be denoted by $>J (j = 1,2). Defining 

fyy, = $iil + i&n2 

we have <2?/z G ^ o and the mapping 
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is a linear mapping of V^ i n t o ^ o . 
In what follows, fix 7 G U1 and put T7 = T - 7I. According to our definitions, T, 

T7 will also denote the above defined extension of T, T7 t o ^ , respectively. 
Let il be the set of all complex numbers /3 with |/?| > ressTy. Then IV = fincr(T7) 

is a countable set consisting of isolated points by lemma 1.2. For /3 G fi - IV denote 
I07 = (/3I - T 7 ) _ 1 the inverse operator of (/3I - T7). 

An operator Q acting on "£& is said to have the property ($), if it satisfies the 
following conditions: 

Q operates in ^ 0 , 
Q'W)cW„ 
^Q' /z = Q&11 whenever /LX G V*'. 
We shall denote by fi0 the set of all /3 G ft — IV for which I^7 has the property ($). 

1.5. Lemma. ress(T7) = ress(^). 

P r o o f . Since V is a closed subspace o f ^ ' such that T7(V') C V and ^ = 
T 7 / V lemma 1.3 yields res3(&y) ^ ress(Ty). Since ̂  is a closed subspace o f V and 
P^rSB = T7 we have P^SB) C"3B and reas(Ty) ^ r e s s (^ 7 ) by lemma 1.3. D 

1.6. Lemma. The sets fi0 and fi — IV coincide. 

P r o o f . See [46], proof of Lemma 9. • 

1.7. Lemma Let a0 G fi. Let us denote 

-V(ao) = {y G B; dG(y) = 7 + <*o} 

and let p be any positive integer. Then each f G ~& satisfying 

(8) ( a 0 I - T 7 ) P / = 0, 

(9) (/, /i) = 0 for each p G V,' 

has its support contained in IV (a0). 

P r o o f . Denote by II the restriction of J%n-i to the reduced boundary dG. Let 
(8) and (9) hold for an / G ̂ . By the argument from the proof of lemma 14 in [46] 
it follows that / = 0 A-almost everywhere and II-almost everywhere as well. Now it 
is easily seen by the definition of T that 

(aoJ - r7)
fc/(») = [ao + 7 - do(»)]*/(») 

for each natural k. If y ^ IV(a0), then /(y) = 0 by (8). Consequently, the support 
of / is contained in 7V(a0). • 
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Using this lemma and the reasoning from lemma 15 in [46] we obtain 

1.8. Lemma. Suppose that a0 e ft, N(a0) = 0 and p is a positive integer. Let 
/ i , . . . , fq be linearly independent solutions of (8). Then there exist p,u ..., p,q e ^ 
such that 

ifuPj) = &%j (6%j =0fori^ j , Sn = 1) for 1 ^ i, j ^ q. 

1.9. Lemma. Let a0 e N and r > 0 such that the closed disc K centered at a0 

with radius r is contained in ft and K n N = {a0}. Let C be the boundary of K. 
Let us define the operator A-\ acting on*88 by 

(10) A-i = (2m)-1 / Ia7da 
Jc 

where the integral is taken over positively oriented circumference C. The operator 
A-i has the property (<I>). 

P r o o f . See [46], proof of lemma 11. • 

1.10. Lemma. Suppose that a0 £ ft and N(a0) = 0. If p is a positive integer 
and /J, e *8S* satisfies 

(11) ( a o I - T 7 ) * > = 0 

then fx G V ^ . 

P r o o f . The assertion is ti ivial for a0 E ft — IV. Suppose that a0 e N. Choose 
r > 0 small enough such that the closed disc K centered at a0 with radius r is 
contained in ft and K n IV = {a0}. The operator A-i from lemma 1.9 is a bounded 
projection o n ^ and T7 maps A-i(&) into A-\(8S) (see [56], chapter 6). Denote 
by Q the restriction of the operator T7 to the space A-i(38). Since the s p a c e d 
is the direct sum of the subspaces A-\(S8) and (I - A-i)(38), (a0I — T7)f«^) is a 
subspace of the direct sum (a0I - Q) (A-i(&)) and (I - A-i)(£S). Since (a0I - T7) 
is Fredholm by lemma 1.2, we have codim (a0I - Q)(A-i(&)) < oo. At the same 
time ( a 0 I - Q ) ( - 4 _ i ( ^ ) ) = (a 0 I -T 7 ) (^ )nA_iC«^) i s a closed subspace of A-i(@). 
Since the dimension of the null space of the operator (a0I — Q) is less than or equal to 
the dimension of the null space of the operator (a0I - T7), the operator (a0I — Q) is 
Fredholm. Since a(Q) = {a0} by [56], chapter 6, theorem 4.1, the operator (al - Q) 
is Fredholm for each complex number a. According to [56], chapter 9, theorem 2.2 the 
space A-\(9S) has a finite dimension. According to [61], chapter VIII, §8, theorem 4 
the resolvent of the operator (aI — T7) has a pole at a0 . Similarly, the resolvent 
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of the operator (al - F7) has a pole at a0 too. These poles have the same order 
(compare [61], chap. VIII, 6, 8), say po- Clearly, we may assume that p^ p0. 

Similarly as A-\, define the operator ^ _ i o n ^ ' by 

^ _ i = (2Ki)_1 / I;7da 
Jc 

where C has the same meaning as in 1.9. Then the set Y of all solutions of the 
equation (11) coincides with srf-_{@') ([61], chap. VIII, 8). Since tf-_ = A'__ ([61], 
chap. VIII, 7), we have Y = A'__(38'). Similarly, denoting by X the set of all 
solutions of the equation (8), we get X = A-\(&). 

Let f i , . . . , fq be a basis of X. Then the operator A_i possesses the form 

(12) A-_... = __](...,Lik)fk 

k=i 

where jik G ^ ' . Consequently, 

A'_1... = f_(fk,...)nk. 
k=l 

By virtue of lemma 1.8 we construct p!_,..., p!q e V#' such that ( /y ,^) = Sij, 1 ^ 
i, j -$. It follows from (12) that A!__p!k = \xk for k = 1 , . . . ,q and we conclude by 
lemma 1.9 that yk e V*. Since Y = A'__(3S'), we have Y c V*' and the proof is 
complete. D 

1.11. Theorem. Suppose that dc(y) 7-= 0 for each y G B and (6) holds. Then 

FV = 0 

implies v € ^ . In particular, if v € ^ ' satisfies 

:5V = 0 

then v e &l. 

P r o o f . Let T'v = 0. Choose 7 7- 0 such that ress(<57) < M- Then ress(T7) < 
|7| by lemma 1.5. Since N(-j) = 0 lemma 1.10 yields that v e ^ ' . D 

Throughout the rest of the paragraph we shall assume that G has a finite number 
of components Gi,...,Gp such that cl d D cl Gj = 0 for i 7- j . 
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1.12. Theorem. Suppose that (6) holds, dc(y) 7-= 0 for each y 6 B and let 
v G SS1 satisfy 

T'v = 0. 

Then v e ff' and there are ci,...,cp G (R1 such that $/v = a on G» and 

~~ c2\(dGi) = 0. If a = 0fori = l,...,p then v = 0. 
i= i 

Proof. Using theorem 111 we conclude v G ̂  C &' and Sfv = 0. By the 
definition of £f 

0 = (<p,&v)= / (p(x)Wv(x)d\(x)+ / gmd<p(x) - graderv(x)dJ^n(x) 
JB JG 

for each ip G 3. Since there exist functions ipn e 3 such that 

lim / grad(pn • g rad^vdJ^ m = / \gxad<%v\2 dJffm, 
n->°° JG JG 

lim / <pnWvd\= [[Wv]2d\ 
n->°°JB JB 

according to [46] lemma 24 and lemma 25, we have 

(13) / \giad^rv(x)\2 dJ^m(x) + f [Wv(x))2d\(x) = 0. 
JG JB 

Therefore there are c\,... ,cv such that $f v = a on Gi. Let v = v+ — v~ be the 
Jordan decomposition of v. We have $/v+(x) = $/v~(x) + a for each x G G». Since 
Gi has a positive m-dimensional density at any z G dGi, every fine neighbourhood of 
z (in the Cartan topology) meets G (see [3], chap. VII, §§2, 6) and we conclude from 
the Cartan Theorem ([3], chap. VII, §6) that <frv+(z) = a + ^v~(z). Consequently, 
fyv = a holds quasi-everywhere in dGi. Noting that the same is true for A-almost 

p 
all points x G B we arrive at the equality ~~ c2\(8Gi) = 0 by (13). 

i= i 
Suppose that ct = 0 for i = 1 , . . . ,p. Then ^z/+ = fyv" on G. Since do(y) 7-= 0 

for each y G B, the set G is not thin at any y G B ([3], chap. VII, §2) and we 
have v+ = v~ (see [34], theorem 5.10 and chap. V, §1, section 2, 14). In this case 
v = 0. • 

1.13. Lemma. Let Gi is a bounded component ofG such that \(dGi) = 0. If fi 
is the characteristic function of dGi then Tfi = 0. 

P r o o f . Since cl G, D cl Gj = 0 for i ^ j we can choose <D G f? such that </? = 1 
on a nieghbourdhood of clG,, <D = 0 on a neighourhood of cl(G - Gi). Then for 
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y£B 

Tfi(y) = Vfi(y) + Wfi(y) = f hy(x) d\(x) + W<p(y) 
JdGi 

= 0+1 grad<p(x) • grad^6y(x)dJt?m(x) = 0 
JG 

by (7). D 

1.14. Theorem. Suppose that do(y) 7-= 0 for each y G B and (6) holds. Denote 
by G\,.. .,Gj all bounded components ofG for which X(dGi) = 0. Then 

(14) &(V) = {v G <€'; v(8Gi) = 0, i = 1 , . . . ,j}. 

P r o o f . According to lemma 1.5 and lemma 1.2 the operator T is Fredholm 
with index null. According to lemma 1.13 we have dimKerT ^ j . If TV = 0 then 
v G <&' by lemma 1.11 and according to theorem 1.12 there are C\,... ,cv G U1 such 

p 
that Wv = d on Gi. Since ^Z ci^(^i) — 0 by theorem 1.12 we have Ci = 0 for 

i = i 
X(dG{) > 0. If d is unbounded then a = lim <%v(x) = 0. Hence dimKerT' ^ j 

|x|—>oo 

by theorem 1.12. Since dimKerT = dimKerT' = j because the index of T is 
equal to 0 (see [56], chapter VII, theorem 3.1) lemma 1.13 implies that KerT = 

j 

{ Y^aifi\ ai £ -^1}? where fi is the characteristic function of dGi. According to 
t = i 

[56], chapter VII, theorem 3.1 we have V(@') = {v G @'\ (/, i I ) = 0 V / E KerT} = 
{ve@'; (fi,v)=0, i = l,...,j}. 

According to lemma 1.2 the operator 3" is Fredholm with index null. Since 
Ker5" = KerT' by theorem 1.11 we have c o d i m ^ ( ^ ' ) = d i m K e r T = j . Since 
T(<T) C f n r ' ( # ) = {v G ^ ' ; v(dd) = 0, i = l , . . . , j } and codim{i/ G <*?'; 
v(dd) =0,i = l,...,j}=j, we have &(<&') = {v G <*?'; v(dG{) =0,i = l,.. .,j}. 

• 

1.15. Theorem. Denote by ^H the all elements of C' which are absolutely 
continuous with respect to H = J^m-i/dG. Suppose that dc(y) 7- 0 for any y G B, 
X G <€H and (6) holds. Denote byG\,...,Gj all bounded components ofG for which 
X(dd) = 0. Then 

(15) &(^) = {ve^',v(dGi) = 0, i = l,...,j}. 

P r o o f . It is known from proposition 12 in [44] that Sr(¥?'H) C <tfH and &v G <tfH 

for a v G ^' implies v G <€H. Theorem 1.14 yields 

&(V'H) C {v G V'H ; v(dG{) = 0, i = 1 , . . . , j}. 
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On the other hand if v G ^'H and v(dG{) = 0 for i = 1 , . . . , j , then there is a // G *£" 
such that £f\i = v by theorem 1.14. Consequently, ,u G ̂ . D 

2. T H E ESSENTIAL RADIUS OF THE NEUMANN OPERATOR 

In this section we shall study conditions under which the essential radius of the 
Neumann operator (2WG — I) is smaller than 1. Here G C IRm, m ^ 2, is again a 
Borel set with a bounded boundary 

2.1. Lemma. Let D C Um be an open set, \p\ D -> (Rm a diffeomorphism of 
class Cl+oc, where 0<a<l.LetGbe bounded, clG C D. 

1) 6V(<3) = ^(dG) and n ^ G ) (^(x)) is a normal vector to the hypersurface ^p({z G 
D; (z - x) • nG(.r) = 0}) at ip(x) for each x G dG. 

2) If x G I?, D\j)(x) = I, where D^p(x) is the differential of^p at the point x then 
for every e > 0 there is r > 0 such that for each y G B C\^/(x;r) and for each Borel 
function / , | / | < 1 

I / f(z)gvadhy(z)'nG(z)dtmn.1(z) 
I JBn&(x\r) 

[ f{i>-l{w))gxBAh^y){w)-n^G\w)áJťm.\{w) 
!í>(Bn*(i,r)) 

< є . 

P r o o f . For 1) see [40], lemma 7. 
According to [41], lemma 3 for every S > 0 there is R\ > 0 such that for every 

z G &?, \z-x\< Ri 

(16) |n*<G> (</>(*)) • Dil>(z)nG(z) - 1| < <J, 

according to [41], lemma 4 there are positive constants I?2, -Ki such that for r G 

(0,R2),yeB,z€dG, \y - x\ < r, |a? - z\ < r, y 7- z 

(17) l*-yp _ x 

W-)-чKv)lr ^ K\rа 

and according to [41], lemma 6 there exist positive constants R3, K2 such that for 
every y € B, z € dG, 0 < \y - z\ < R3 

(18) | g r a d ^ ( l 7 ) ( ^ ( z ) ) - n ^ G ) ( ^ ) ) 

" A\*(z)-1>{v)\J(Z ~ V)' nG{z)][nHG) ^{Z)) • ^ W»° W1 
< /ir_|W - z\1+a'm. 
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Since 

grád .%(.,)(>(;-)) -n^G\ý(z)) -grád/.„(>) -nG(z) 

^\gradhHy)(Tl>(z))-n^(il>(z)) 

[(z-y) .nG(~)][n*<°> (>(-)) • D^(z)nG(z)}\ 
A\ф(z)-ф(y)Y 

+ gradh y(z) • nG(z)[n^ (ф(z)) • Dф(z)nG(z)} [-\z-y\r 

\ip(z)-i>(y)Y 

+ \gTadhy(z)-nG(z)[n^G'>(i>(z))-D^(z)nG(z) - 1]| 

- 1 

there are positive constants er, Ti such that for y G BC\^/(x;ri)1 z £ dGC\fy(x\r\) 

we have 

(19) | g r a d / i ^ O t z ) ) • n^G>(>(z)) - g r adM*) • nG (z) | 

<c\\y- zr+1~m + 6{va+e) |gradMz)' «G(-0| 

(see (18), (17), (16)). Since Dip(x) = I, we may choose Ti small enough so that 

my) -1>(*)\ (l £ ì ^ 
V 6WG + є У 

Í Í 
/ e \^r=i 
\ + 6(V°+e)J 

š 1 + 
6(VG + e)J "* \y-z\ ^V'6(VG+e), 

for arbitrary y,z € BC\^(x;r\). Thus for every non-negative Borel function g on B 

<2°> ( ' " é r a ) / w T / G . xi i gdJťm-x^ I goil> ldJťm-\ 
b(V +6)/ JBn^(x;ri) JV(BH^(x;ri)) 

/ 

ź i + І ) 1 gdJťm 
6(VG + e)J JBnv{x.ri) 

and for every function g on B integrable with respect to Jfm-i 

(21) 1/ gdJťm-i - / g°V> 1dJťTn-i 
Bnf/(x;ri) J^ÍBn^/íxiri)) 

ś 6(VG 
+ Є)JБ Bn^(x;ri) 

|fl| dҖ 7П — 1 • 

According to [28], Corollary 2.17 and [40], lemma 9, there is a constant C2 such that 
for each y € B and r > 0 

(22) / i»-*r 
JdGn<fr(y:r) 

+ l-тn dҖn-^z) ^ c2r
a. 
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dxj)(G) = ip(dG) according to 1). If r < min ( n , | (£ /4c ic 2 ) 1 / a ) , y e B n <9t{x\r), f 

is a Borel function on _9, | / | ^ 1 then 

1/ 
гþ(BП<fr(x;r)) 

f{ф-Ҷw)) grad h+(y)(w) • n^ G > (гD) d ^ m _ i (u;) 

- / . BГY&Ҷx;r) 
/(z)grad/ij,(z) • n G ( z ) d ^ m _ ! ( z ) 

< I / / ty"1 (tu)) [grád n^,,) (tu) • n<"<G>(tu) 
\ Jtp(Bnq/(x;r)) 

- grád n . ^ " 1 (tu)) • nG ty-1 (w))] - ^ - . ( t u ) 

+ I / / ( t / ; - 1 H ) g r a d / i J / ^ - 1 ( u ; ) ) •nG(t/>-1(tt;))d^m_1(W) 
I •!V(-'n'_'(x;,-)) 

- / / (z )gradn 1 J (z ) -n G (z )d^ m _ 1 (z ) 
JBn^(x;r) \ 

< / . [ci|»-^-1(«;)|a+1-ra 

JV;(cJGrY2r(x;r)) L 

+ 6 ( K o + e) l s r a d h y ^ ~ l ( w ) ) •nGty"1 (w)) l] d * - ' W 

1/ 
- / / ( г ) g r a d / i y ( ^ ) . n G ( г ) d ^ m _ i ( z ) 

JBП^(x;r) 

+ 1 / f(ф-l(w))gxadhy(ф-l(w)) .n G (^-Ҷu;))dJ ŕ m - i ( t i ; ) 
/ ^ ( ß П ^ ^ i r ) ) 

('(xjr) 

by (19). According to (20) and (21) we have 

I / }^-\w))g^dh^y)(w)'n^G\w)d^rn-1(w) 
I ^^(Brrz/Cxjr)) 

a*) - / /(*) grad/i^z) • nG(z) dЖш 

JBnW(x\r) 

JдC 

Q(VG+є)Jàc 

—-§—- í \gradhy(z) • nG(z)\ dЖm-X(z) < 
6(VU +Є) JдGПW(x;т) 

Ś2a I \y - z\a+1~m dЖn-^z) 
> GПW(x;т) 

+ ..»,?. . / \gradhy(z) • nG(z)\ dЖm-!(z) 
' Э C П * ( J : ; Г ) 

by (22). 

2.2. L e m m a . Suppose that for each x e B there are a natural number n(x), a 

compact linear operator Kx on ^ and ax e *€ such that ax = 1 in a neighbourhood 
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ofx and 

(23) IM(2JV G - I)n(x) + Kx]axf\\ <qx<l 

for allfetf, | / | ^ 1. Then ress(2PVG - I) < 1. 

P r o o f . For every x G B there is S(x) > 0 such that ax = 1 on <2/(x;S(x)). 

Since B is compact there are rr 1 , . . . , xk G B such that 

k 

BC [}^(xi-)S(xi)). 
i=\ 

There exist ft,..., ft G V, 0 ^ ft ^ 1, spt ft C W(a:1*; J(x i)) such that 

A: 

5> = 1 

І = I 

on B. Put 

(24) g = max qx.. 
i=\,...,k 

Choose a natural number w such that 

(25) kqw < 1. 

Put 

For ѓ Є {!,.. .,fc} put 

k 

n = w 
i=\ 
П "(*')• 

n 
n(ѓ) = n(x г), m(í) = — - , a0 = ft. 

n(г) 

For z G {1, . . . , fc}, j G {1, . . . , n + 1 } choose a function a) G f̂ such that 0 < a) ^ 1, 

a) = 1 on Vy_x a neighbourhood of s p t a ^ and spta j C % (xx\6(x%)). Denote 

A) operator A)f = a)f on <€. The operator A)(2WG - I) (I - A)+1) is an integral 
operator on ^ with the kernel - 2 a ' ( x ) ( l - a*-+i(2/))nG(y) • grad/ix(y) which is 
different from 0 only for y £ V? D spt a),x G spt a j and thus this kernel is a bounded 
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and equicontinuous function of the variable x. The operator A1- (2WG - I) (I - _4j+1) 
is compact. Since 

A)(2WG - I)S(I - A)+s) = A)(2WG - 7)S-1A}+S_1(2TVG - /)(/ - A)+s) 

+ A)(2WG - iy~2A)+s_2(2WG - I)(I - ^ . + S _ 1 ) ( 2 W G - /)(/ - A)+s) 

+ A)(2WG - I)A)+l(2WG - /)(/ - A)+2)... (2WG - I)(I - A)+s) 

+ A)(2WG - /)(/ - A)+1)(2WG - I)(I - A)+2)... (2WG - I)(I - A)+s) 

the operator A)(2WG - I)S(I - A)+s) is compact, too. Since £_ 0i = 1 on B and 

a\ = 1 on spt /3i new have 
Ż = l 

(26) ( 2 I V G - I ) n - - ^ / 3 . A Í ( 2 K V G - I ) n 

í = i 

k 

= Y_ Pi{{A\(2wG - I)n(i)K(o+i + (I - 4(o+i)]} 
i = l 

° {K(o+i + (I - Al{i)+1))(
2wG - I)n(i,Kn(o+i + (I - 4„(o+i)]} 

• • • {[^n(i)(m(i)-l)-|-l 

+ (I - 4(0(m(0-i)+i)](2^G - I)n(i)K+i + (I - 4+i)]}}-

Calculate the right side of the equality. Since each member includes the term A\, each 
member, which includes the term (I — _4*-), includes the term Al

r(2WG - I)n(l)(I -
-4j.+n(i)) for some integer r. Since the operator Al

r(2WG - I)n(i)(I - -4j.+Tl(i)) is 
compact we have by (26) 

re s s(2WG - 7 K [\\(2W° ~ I)lesS]1/n 

= { Y2/3i[A\(2WG - / )n ( i )4(0+ i ]K(o+ i (2^G - I)"(i)4n(o+i] 

, 1/n 

. . . [-4nW(mW-l) + l (2VVG - I)n(i)-4n+1] 
ess ) 

k 

Y_ AKi[(2WG - 7)»W + ^04(0+1} 
t = l 

... {.4;(0(m(0_1)+1[(2iy° - / r ( i ) + /C04+1 }||} " 
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< 

< 

k rn(i) 

Enil4-l)nW+ l[(2^G-I)n ( Í )+^]4n(i)+ l l l 
L 1=1 j=l 
r k -, 1 /n 

1 /n 

X> m ( i 
L І = I 

<. [fcg™]1/" < 1 

by (23), (24), (24), because axi = 1 on spta}. D 

2.3. Theorem. Suppose that for each x G B there are r(x) > 0, an open set Dx 

with a compact boundary and diffeomorphism ipx : <% (x\ r(x)) -» U™ of class C1+a, 

where a > 0, such that 

*px(GnW(x;r(x))) =Dxnipx(<fr(x;r(x))), VD* < oo, 

r e s s (21V^ - /) < 1 and D^x(x) = I. Then re s s(2lVG - I) < 1. 

P r o o f . Fix x G B. Put D = Dx,i\) = i\)x. Denote 

S = 2WG - 7, 

S = 2WD - I. 

According to the assumption there is a natural number n and a compact operator 

K on ^(dD) (the space of the continuous functions on 3D) such that 

(27) 

Denote 

(28) 

| | (5Г+Ä-| |< | . 

L = max( | |5 | | , | |5 | | ) . 

Since Dip(x) = I according to lemma 2.1 there is a <5o > 0 such that for y 6 
Bn&(x;6o), fev, | / K 1 

(29) / f(z)gia,dhy(z)-nG(z)dJťm-i(z) 
I JBnW(x;S0) 

-I 
Jtþ 

< 

iþ(BП<fr(x;ő0)) 

1 

f(tp-Hw)) gra.d h^y)(w) • n^G\w)dJťm_l(w) 

8(4L + l ) n * 

Choose or,..., Sn such that 6j < <S.i-_i, for y G B - ^(x\ Sj-i/2) 

(30) / |gradfcy • nG\ dJ^^ < / 
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and for y e dD - i/>(<íf(x\6j-i/2)) 

(31) / | g -* -^ • nD\ <UPm-i < m r \ , ) n -

Put 

a(t) 

and denote 

( 1 for * € (0,1) , 

3 - 4 t for*e(|,f), 

I 0 for O § 

aj(y) = a(\x-y\/Sj). 

For function / defined on ^(X\SQ) put 

(P/)(y) =f{l>-1(v)) for y 6 ^ ( ^ ( x ; Jo)), 
0 for the remaining y G lRm. 

Similarly, for function / defined on ip(^/(x;S0)) put 

(Pf)(y)=f(4>(y)) foryeW(x;60), 
0 for the remaining y e Rm. 

We will prove that for j = 1 , . . . , n and / G ^ , | / | ^ 1 

(32) l la i - iS 'a , . / - a j _ 1 P [ ( S y P ( a j / ) ] | | ^ 4 ( 4 L / 1 ) w _ i + 1 • 

If y G dGn&(x;60) then dG(y) =dD(ip(y)) = \ by lemma 2.1. If y G BnW(x]60) 
and there is a £ > 0 such that Jf?m (G C\W(y; g)) = 0 then dG(y) = dD(ip(y)) = 0. If 
y G Bn<Zr(x;S0) and there is a g > 0 such that J ^ n ( ^ ( y ; D) - G) = 0 then dG(y) = 
dD(^(y)) = 1 . If y G # i = a G u { y G P ; 3 D > 0 , * ( G n ^ ( ^ ) ) = 0 } u { y G £ ; 
3D > 0, J^m(^(y\ g)-G)= 0} then according to (29) and (3) 

(33) | a i _ 1 (y)5(a j / ) (y) - a j _ 1 (y ) [P(5P(a j / ) ) ] (y ) | ^ 
4(4L+ !)•*' 

Since Hi is dense in B by the Isoperimetric Lemma (see [28], p. 50) the continuity of 
aj-i{S(ajf) - P[SP(ajf)}) yields (33) for all y G B. Thus the relation (32) holds 
for j = 1. 

Now, let the relation (32) holds for j = r. According to (30) and (3) 

(34) | | ( 1 - a r ) S a r + 1 / K 4(4L + 1)» 
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According to (31) 

(35) | | ( l - P a r ) 5 P ( a r + 1 / ) | | < 
4(4L + l ) n * 

We have 

(36) | | a r 5 r + 1 a r + 1 / - a r P [ ( S ) r + 1 P ( a r + 1 / ) ] | | 

^ | | a r S
r ( l - a r ) S a r + 1 / | | + | | a r S r a r S a r + 1 / - arP[(S)rP(arSar+1 f)]\\ 

+ | | a r P [ ( S ) r P ( a r S a r + 1 / ) ] - a r P [ ( S ) r ( P a r ) S P ( a r + 1 / ) ] | | 

+ | | a r P [ ( S ) r ( P a r ) S P ( a r + 1 / ) ] - a r P [ ( S ) r + 1 P ( a r + 1 / ) ] | | . 

Now we estimate the terms in the right side of (36). 

| | a r S
r ( l - a r ) S a r + 1 / | | < | |S r | | ||(1 - a r ) S a r + 1 / | | < L 

4(4L + l ) n 

by (28) and (34). Since | | S a r + 1 / | | < L by (28) and 0 ^ ar < a r_x we obtain 

| | a r S r a r ( S a r + 1 / ) - a r ( P ( S ) r P ( a r S a r + 1 / ) ] | | 

^ | | a r _ 1 S r a r ( S a r + 1 / ) - a r _ 1 P [ ( 5 ) r P ( a r S a r + 1 / ) ] | | 

<L- * 
A(AL + l Jn- ' -n 

using that the relation (32) holds for j = r and the function jSar+1f. 

| | a r P [ ( S ) r P ( a r S a r + 1 / ) ] - a r P [ ( S ) r ( P a r ) S P ( a r + 1 / ) ] | | 

= | | ( P a r ) ( S ) r [ P ( a r S a r + 1 / ) - (Par)SP(ar+1 f)]\\ 

< | | S | | r | | a r S a r + 1 / - a r P [ S P ( a r + 1 / ) ] | | < Lr
 + 

by (28) and (33). 

| | a r P [ ( S ) r ( P a r ) S P ( a r + 1 / ) ] - a r P [ ( S ) r + 1 P ( a r + 1 / ) ] | | 

= ||(Par)(S)r(Par - l)SP(ar+1f)\\ < | |S| | r | |(l - P a r ) S P ( a r + 1 / ) | | 

< r r  

^ 4 (4L+1)" 

by (28) and (35). Using these estimates and (36) we obtain 

| | a r S r + 1 a r + 1 / - a r P [ ( S ) r + 1 P ( a r + 1 / ) ] | | 
Lr L ^ 1 

^ 3 — — - - — + —rr—-—-rr < 4(4L + l)n 4(4L + 1)^-^+1 ^ 4(4L + l)n~r 
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which is the relation (32) for j = r + 1. So we have proved the relation (32) by the 
induction. 

Using (32) for j = n and (27) we obtain 

| | a n _i .S n a n / + an.1P[KP(anf)]\\ 

^ | | a n _ i S n a n / - an-!P[(S)nP(anf)]\\ 

+ \\an-1P[(S)nP(anf) + KP(anf)]\\ 

^ 4(4L + 1) + 4 ^ 2 

Hence, the assumptions of the lemma 2.2 are fulfilled and ress(2IVG - I) < 1. • 

2.4. Remark . It is well-known that if G is a set with sufficiently smooth bound­
ary, a convex set or a complement of a convex set then ress(2VVG — I) < 1. (See for 
example [28].) 

2.5. Definition. Let ft C Um be an open set. We call H an open polyhedral set if 
its boundary dft, is locally a hypersurface (i.e. every point of dtt has a neighbourhood 
in dft which is homeomorphic to (Rm_1) and dQ, is formed by a finite number of 
(m — l)-dimensional polyhedrons. 

2.6. Proposition. If G C U3 is a polyhedral set then ress(2VVG - J) < 1. 

P r o o f . At first we define WM for a polyhedral cone M c i 3 . We denote by 
C(dM) the space of bounded continuous functions on dM having a finite limit at 
infinity equipped by the maximum norm. We define a bounded linear operator WM 

on C(dM) 

WMf(x) = dM(x) - f f(y)nM(y) • g^dhx(y)dJ^2(y) 
JdM 

for / G C(dM), x G dM. The spectral radius of (2IVM - I) is less than 1 (see [50], 
cf. [19]). 

Fix x G B. Then there are a polyhedral cone M and S > 0 such that Gf)^/(x; 6) = 
M r)ty(x;5). Further there is a natural number n such that 

w(2wM - in < \. 

Put T/> = I and repeat the conclusion from the proof of theorem 2.3. We obtain that 
for each x G B there are S(x) > 0 and a natural number n(x) such that 

\\ax(2WG-I)n^axf\\^^ 
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for all / e if, | / | ^ 1, where 

f 1 for \x - y\<, 5(x)/2, 

a*(v) = < 3 - 4|.r - 2/|/<S(x) for 5(a;)/2 < |x - y| < f <5(z), 

[ o for\x-y\>l6(x). 

According to lemma 2.2 we have ress(2WG - I) < 1. • 

2.7. Remark. If G C K2 is a domain with a piecewise smooth boundary and 

inf \dG(y) - | | ?- I then ress(2WG - / ) < 1. (See [2], [7], [29], [49].) 
3/€B 

3 . DOMAINS WITH A PIECEWISE-SMOOTH BOUNDARY 

In this paragraph we shall suppose that G C (R3 is an open set with a compact 
boundary. Suppose that for each x G B there are r(x) > 0, a domain Dx which 
is polyhedral, convex or a complement of a convex domain and a diffeomorphism 
xl>x: W(x\r(x)) -> (R3 of class C 1 + a , where a > 0, such that ipx(G n W(x\r(x))) = 
Dx PI ̂ x (^ (^ ;^ (^ ) ) ) - Since the assumptions of theorem 2.3 are fulfilled with sets 
[Dipx(x)]~x(Dx) and diffeomorphisms [Dipx(x)]~1ipx (see remark 2.4 and proposi­
tion 2.6) we have ress(2VVG - I) < 1. 

3.1. Theorem on the third boundary value problem. Let A be a nonnegafcive 
element of^?' and suppose that 9/\ is bounded and continuous on B. Let u. G ¥?'. 
Then there is a solution of the third problem 

du 
- — + \u = fi 

on 

in the form fyv with i ! G f if and only if u.(dQ) = 0 for each bounded component 
FlofG for which \(dQ) = 0. The measure v is uniquely determined if and only ifG 
has no bounded component Q, for which \(dQ) = 0. If \,fi G ̂  then v G ̂ , too. 
If (23?\ )kfji —•> 0 for k —r oo then we may put 

v = J2(-2Ą)k2џ. 
/c=0 

P r o o f . According to [45], proposition 9 the operator V is compact and V(^) C 
tf. Since re s s(2fVG - I) < 1 we have ress(2TVG + 2(V/V) - I) < 1, where V/V is 
the restriction of V to ^ . Since 

^ i = \(2WG + 2(VI<e)-l)\ 
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lemma 1.2 yields 

r e s , ( ^ i ) = \reia(2WG + 2(V/C) - / ) < § . 

According to theorem 1.14 there is v e ¥>' such that &v = fi if and only if /z(<9ft) = 0 
for each bounded component ft of G for which A(<9ft) = 0. Since NGdi/ is a dual 
operator to VVG we have for f e ^ 

(/, (^i/)A + NG^) = [ [ f(x)hy(x)d\(x)dv(y) + {f,NGWv) 
JB JB 

= (Vf, v) + (WGL i/) = (Tf, v) = (f, STv). 

Thus %v is a solution of the third problem 

if and only if Sfv = /j,. Since ST is a Fredholm operator with index 0, because 
^ess(^i) < | , the measure v is uniquely determined iff ^(^>l) = <&*', what happens 
if and only if G has no bounded component ft for which A(<9ft) = 0. If A,/i £ # # 
then proposition 12 in [44] implies *v E ^ . 

Suppose now that (2^i)kfi -> 0 for fc -> oo. Since ress(2.5i) < 1 there are a 
natural number n and a compact linear operator K on ^ such that ||(2<^i)n + .K'|| < 
1. According to [39] the series 

oo 

j=0 

converges. For given e > 0 there is a natural number A; such that for 7712 ^ mi ^ A; 
we have 

гП— 1 

v2(-2ąr'J <ИEiк-2 î)ii 
1 j = m i 

If m2 ^ mi ^ nk we have 

m.2 11 

ѓ=0 

- 1 

^(-2^)VUEIK-2^)ÍI 
i=0 

£ i-ЩГn < є. 

mi ^nj^mг— i 

The series 

j = o 

converges and Sfv = \\I + 23T\]v = fi. 
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3.2. Theorem on the Dirichlet problem. Denote by G\,..., Gp bounded com­
ponents of G. Fix Xj G intGj (j = 1 , . . . ,p). Given g G # , then there are constant 
c\,..., cp and an f G ̂ f such that 

v 

wGf+Y^CjhXj 

represents a solution of the Dirichlet problem for C = (R3 — cl G and the boundary 
condition g. The constants c\,... ,cp are uniquely determined. The function f is 
uniquely determined iff G is unbounded and connected. If (I — 2WGY f -> 0 for 
j -> oo then we may put 

oo 

/ = £ ( J - 2WG)k2g 
k=0 

and c\ = ... = cv = 0. 

P r o o f . Since ress(2WG - I) < 1 the operator WG is Predholm with index 0 
by lemma 1.2. Since NGfy is a dual operator to WG (see [28], proposition 2.20) 
we have dimKerIVG^ = cod\mNG^(^") = p by theorem 3.1 and [56], chapter V, 
theorem 4.1. 

Now, we will prove that we can choose p,\,..., jip G Ker NGfy such that 

(37) (hXi,p,j) = 6ij for i,j = l , . . . , p . 

If v G Ker JV G ^ then there are tpn G 9 such that 

П—ЮO L lim / grádtpn(x) -grádčl/v(x)dJťTn(x) 

= í \gv<*áUv(x)\2 áJťm{x) 
JG 

(see [46], lemma 24 and lemma 25). Since 

L grad^n(-r) • grad^v(x)dJf m (x) = (ijjn,N
Gtyv) = 0 

G 

we have g r a d ^ j / = 0 in G. The function fyv is constant in each component of G. 
If ^ i / = 0 in Gi U . . . U Gv then ^ i / = 0 in G. Let i/ = */+ - i/~ be the Jordan 
decomposition of v. Since dc(y) ?- 0 for each y e B, the set G is not thin at any 
y € B (see [3], chap. VII, §2) and we have i/+ = i/~ (see [34], theorem 5.10 and 
chap. V, §1, section 2, 14). In this case v = 0. 
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Since dim Ker NGdl/ — p there are / i i , . . . , /xp which form a base of Ker NGdi/ such 

that (37) holds. The function 

v 

3=1 

will belong to TVG(<*f) iff 

We put Cj = (2gyfj,j). 

The rest of the proof is the same as in the proof of theorem 3.L • 

3.3. No te . The attentive reader will note that the restriction to IR3 is dectated 

by using the fact that the spectral radius of (2VVG — I) is less than 1 for a polyhedral 

cone in U3 (cf. [50]). It would be very interesting to know whether similar result 

holds in higher dimensions. 
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