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Abstract. Let B(X) be the algebra of all bounded linear operators in a complex Banach
space X. We consider operators T1, T2 ∈ B(X) satisfying the relation σT1(x) = σT2(x)
for any vector x ∈ X, where σT (x) denotes the local spectrum of T ∈ B(X) at the point
x ∈ X. We say then that T1 and T2 have the same local spectra. We prove that then,
under some conditions, T1−T2 is a quasinilpotent operator, that is ‖(T1−T2)

n‖1/n → 0 as
n → ∞. Without these conditions, we describe the operators with the same local spectra
only in some particular cases.
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1. Let X be a complex Banach space and let B(X) be the algebra of all bounded

linear operators on X . For any T ∈ B(X), denote by σ(T ) the spectrum of T , and
by σT (x) the local spectrum of T at a point x ∈ X . It is known (see [4] or [5]) that

σT (x) ⊆ σ(T ) (x ∈ X);(a)

σ(T ) =
⋃
{σT (x) : x ∈ X};(b)

σT (x) is a compact set in C, for any x ∈ X ;(c)

σT (x) = ∅ if and only if x = 0.(d)

An operator N ∈ B(X) is called quasinilpotent if ‖Nn‖1/n → 0 as n →∞, i.e. if
σ(N) = 0. N is obviously quasinilpotent if and only if σN (x) = {0} for any vector
x ∈ X \ {0}.
For arbitrary operators T1, T2 ∈ B(X), we can consider the relation

(1) σT1 (x) = σT2(x) whenever x ∈ X.

It is obvious that in the relation considered we can suppose that x �= 0.

77



If T1, T2 satisfy the relation (1) (for any vector x ∈ X), we say that they have the

same local spectra (SLS in short).
If T1 and T2 have SLS, then obviously σ(T1) = σ(T2). In the general case,

the point spectra σp(T1) and σp(T2) can be different. As an example, take any

nilpotent operator N1 in the complex Hilbert space X = L2(0, 1), and the Volterra
integral operator N2 in the same space (N2 is a quasinilpotent but not nilpotent

operator with empty point spectrum). Then σ(N1) = σ(N2) = {0}, and immediately
σN1(x) = σN2(x) = {0} for any vector x �= 0. But, on the other hand, σp(N1) = {0}
and σp(N2) = ∅.

2. The next theorem completely describes the relationship between operators with
SLS if they are commuting and decomposable in the sense of Foiaş [3].

Theorem 1. Let T1, T2 ∈ B(X) be commuting decomposable operators. Then
they have SLS if and only T1 − T2 is a quasinilpotent operator.

�����. Assume that T1 − T2 is a quasinilpotent operator. Then, by a result of

[1] (see also [2, Ch. 4]), we have

σT1(x) = σT2+N (x) = σT2(x)

for any vector x ∈ X .
Next assume that T1 and T2 have SLS. Then with notation from [3], we have for

any closed set F ⊆ C:

XT1(F ∩ σ(T1)) =
{
x : σT1(x) ⊆ F

}
,

XT2(F ∩ σ(T2)) =
{
x : σT2(x) ⊆ F

}
.

By relation (1), it is obvious that

XT1(F ∩ σ(T1)) = XT2(F ∩ σ(T2))

for any closed set F ⊆ C, so that all conditions from Theorem 3.2 from [3] are
satisfied. Hence T1 − T2 is a quasinilpotent operator, Q.E.D. �
The above theorem completely describes commuting operators with SLS in the

class of all normal operators in a Hilbert space, or in the class of all compact operators
in a Banach space. Indeed, as is well-known, all these operators are decomposable.

Corollary 1. Let T1, T2 be commuting operators in a finite-dimensional space

X . Then they have SLS if and only if T1 − T2 is a nilpotent operator.

�����. As is known, any operator in a finite-dimensional space is decomposable,

and the assertion follows immediately by Theorem 1. As is also known, nilpotent
and quasinilpotent operators in a finite-dimensional space always coincide. �
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The next examples show that operators with SLS, in the general case, need not

be commuting nor decomposable.

Example 1. Take X = C2, and let {e1, e2} be the standard basis in C2. Define

N1(x) = N1(ξ1, ξ2) = (ξ1 + ξ2,−ξ1 − ξ2),

N2(x) = N2(ξ1, ξ2) = (ξ1 − ξ2, ξ1 − ξ2).

Then N21 = N22 = 0, thus N1 and N2 are nilpotent, and therefore they have SLS.

Neverthless, they are obviously noncommuting.

Example 2. Let T1 be the right shift operator in the space �2, defined by

T1(ξ1, ξ2, . . .) = (0, ξ1, ξ2, . . .)

for any x = (ξ1, ξ2, . . .) ∈ �2.

Take T2 = T 21 , i.e.

T2(ξ1, ξ2, . . .) = (0, 0, ξ1, ξ2, . . .).

It is known (see [4], [5] or [6]) that

σT1 (x) = σ(T1) = {λ : |λ| � 1}

for any vector x ∈ �2 \ {0}.
It can be also verified that

σT2 (x) = σ(T2) = {λ : |λ| � 1}

for any vector x ∈ �2 \ {0}.
Hence, the condition (1) is obviously fulfilled, and T1 and T2 = T 21 obviously

commute. On the other hand, if D = T1 − T2 = T1 − T 21 , then

‖Dne1‖2 = ‖(1− T1)nen+1‖2 =
∥∥∥∥

n∑

k=0

(
n

k

)
(−1)ken+k+1

∥∥∥∥
2

=
n∑

k=0

(
n

k

)2
�

n∑

k=0

(
n

k

)
= 2n,

so that ‖Dne1‖1/n �
√
2 for all n � 0. Hence, D is not a quasinilpotent operator.

Together with Theorem 1 this shows that not both operators T1 and T2 are decom-

posable. Moreover, since the analytic functions of decomposable operators are also
decomposable, we have that both operators T1 and T2 are nondecomposable.
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We also note that the operator T1 from this example has appeared several times

in literature as a very useful example for different aims (see [4], [5], [6]).
Describing the general operators which have SLS remains an open question in

this paper. We have succeeded only in some particular classes of operators. In the

next section we shall analyze general (not necessarily commuting) operators in a
finite-dimensional space X which have SLS.

3. Let T be an arbitrary linear operator in a finite-dimensional space X .
Denote σ(T ) = σp(T ) = {λ1, λ2, . . ., λr}, where λi �= λj for i �= j, and let

LT (λ1), LT (λ2), . . ., LT (λr) be the corresponding root spaces of T . Then we have

(2) X = LT (λ1)� LT (λ2)� . . . � LT (λr).

Denote by ET (λi) (i = 1, 2, . . ., r) the projection from X to LT (λi) according to

the decomposition (2). Since X is finite-dimensional, all these projections ET (λi)
(i = 1, 2, . . ., r) are bounded.

Using the definition of the local spectrum, it is not difficult to see the following.

Proposition 1. Let T be an arbitrary operator in a finite-dimensional space X

and assume that x ∈ X\{0}. Then a complex value λ ∈ σT (x) if and only if λ ∈ σ(T )
and ET (λ)x �= 0.
In particular, σT (x) = {λi} if and only if x ∈ LT (λi) \ {0}.

Proposition 2. Let X be a finite-dimensional space. Then operators T1, T2 have

SLS if and only if they have the same spectra and the same corresponding root

spaces.

Remark. As an immediate consequence, we get that then T1 and T2 also have
the same algebraic multiplicities of their eigenvalues.

�����. Let T1 and T2 have SLS. Then we obviously have σ(T1) = σ(T2).
Denote their common spectrum by {λ1, λ2, . . ., λr} where λi �= λj for i �= j, and

let LT1(λi), LT2(λi) (i = 1, 2, . . ., r) be the corresponding root spaces of T1 and T2,
respectively. If x ∈ LT1(λi) \ {0} then σT1(x) = {λi} = σT2(x), whence x ∈ LT2(λi)

by Proposition 1. Hence LT1(λi) ⊆ LT2(λi). Similarly LT2(λi) ⊆ LT1(λi), and
hence LT1(λi) = LT2(λi) for any i = 1, 2, . . ., r.

Conversely, assume that T1 and T2 have the same spectrum {λ1, λ2, . . ., λr} and the
same corresponding root spaces. Take any x ∈ X \ {0}. Then x = x1 + x2 + . . . +

xr, where xi ∈ LT1(λi) = LT2(λi) for any i = 1, 2, . . ., r. Denoting S = {i ∈
{1, 2, . . ., r} : xi �= 0} and F = {λi : i ∈ S}, we have that σT1 (x) = σT2 (x) = F by

Proposition 1.
This completes the proof. �
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Using the Jordan form of operators in a finite-dimensional space, one can easily

obtain

Corollary 1. Let X be a finite-dimensional space. Then operators T1, T2 have

SLS if and only if T1 is similar to an operator S1 and T2 is similar to an operator

S2 such that S1 − S2 = N1 −N2, where N1, N2 are nilpotent operators commuting

respectively with T1, T2.

4. Next, consider two similar operators T, S ∈ B(X) in a Banach space X ; thus
S = KTK−1, where K, K−1 ∈ B(X). We know that T and S always have the same

spectra. But the following example shows that similar operators need not have the
same local spectra.

Example 3. Let X = C2 with the standard basis {e1, e2}. Define operators T

and S by

T (ξ1, ξ2) = (ξ1, 0), S(ξ1, ξ2) = (0, ξ2).

Operators T and S are similar with respect to the operator K(ξ1, ξ2) = (ξ2, ξ1).
Next we have that σ(T ) = σ(S) = {0; 1}, but σT (e1) = {1}, σS(e1) = {0}. Hence T

and S have not the same local spectra.

The next example shows that some similar operators can have the same local

spectra.

Example 4. Let X be an arbitrary Banach space, and assume that T = λI+N ,
where λ ∈ C and N is a quasinilpotent operator. If S = KTK−1, where K, K−1 ∈
B(X), we find that σ(S) = σ(T ) = {λ}. For any x ∈ X \ {0}, we easily get
σT (x) = σS(x) = {λ}, so that T and S have SLS.

We also see that such operators T have, in a sense, extremely large local spectra,

for σT (x) = σ(T ) for every x ∈ X \ {0}.

These examples motivate us to introduce the following definition.

LetM (X) be the class of all operators T ∈ B(X) in a Banach space X such that
T and every operator S similar to T have SLS.

Let S (x) be the class of all operators T ∈ B(X) such that

(3) σT (x) = σ(T )

for every vector x ∈ X \ {0}.
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Obviously, both classesM (X) andS (X) contain all operators of the form λI+N ,

where λ ∈ C and N is an arbitrary quasinilpotent operator.

Proposition 3. ClassesM (X) and S (X) coincide.

�����. Assume that T ∈ S (X). By the definition of the local spectrum it is

not difficult to see that
σKTK−1(x) = σT (K−1x)

whenever K, K−1 ∈ B(X). Hence, obviously,

σKTK−1(x) = σ(T ) = σT (x)

for every vector x ∈ X \ {0}. Therefore T ∈ M (X).
Conversely, assume that T ∈ M (X). Then we have

(4) σT (K−1x) = σT (x)

whenever x ∈ X and K, K−1 ∈ B(X).

If x, y �= 0 are arbitrary but fixed vectors in X , we are now proving that there
is an invertible operator K ∈ B(X) such that K−1x = y, i.e. Ky = x. If y = x,

take K = I. If y = αx (α �= 0), take K = α−1I. If x, y are linearly independent,
denote by E = sp{x, y} the linear span over x and y. Then E is closed, and as is

well-known, there is a closed subspace F in X such that X = E �F . Define Kx = y,
Ky = x, Ku = u (u ∈ F ), and further by linearity. Then K = K−1 is bounded on

closed invariant subspaces E and F , and the projection from X onto E along F is
also bounded. Hence K is bounded on the entire space X .

Now consider relation (4).
By the previous remark we get

(5) σT (x) = σT (y) (x, y �= 0).

Since σ(T ) =
⋃{σT (x) : x ∈ X}, we immediately have relation (3) for every x ∈

X \ {0}. Therefore T ∈ S (X). �

The class of operators S (X) seems to be important and interesting. However,

we shall not develop the questions concerning this class in this paper. We only note
that the operators T1, T2 from Example 2 both belong to this class.

The classS (X) can be completely described at least in a finite-dimensional space.

Proposition 4. If X is a finite-dimensional space, then

S (X) =
{
λI +N : λ ∈ C, N is a nilpotent operator

}
.
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�����. Example 4 proves a half of this assertion.

Next, assume that T ∈ S (X). By Proposition 1, it is easy to see that then T has
exactly one point in its spectrum, thus T = λI +N for some λ ∈ C and a nilpotent
operator N .

This completes the proof. �
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