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Abstract. We present some geometrical aspects of a higher-order jet bundle which is
considered a suitable framework for the study of higher-order dynamics in continuous media.
We generalize some results obtained by A. Vondra, [7]. These results lead to a description
of the geometrical dynamics of higher order generated by regular equations.

MSC 2000: 53C05, T0H35, 58F05

INTRODUCTION

The present study is an attempt to emphasize some geometrical aspects of a poss-
ible mathematical model for the higher-order dynamics in continuous media as well
as for the higher-order field theories.

The mathematicians agree (see [1], [2], [4], etc) that the most suitable framework
for this application is a higher-order jet bundle associated to a fibered manifold. A
physical field is a section of this “configuration manifold”. The partial differential
equations describing some higher-order dynamics are the kernels of some operators
which appear as sections in a vector bundle of forms over that jet bundle, [1].

A. Vondra initiated such a study for a fibered manifold having the base of dimen-
sion 1, [5], [6], [7].

We consider a fibered manifold (F,mg, B), where B is an orientable manifold of
dimension n > 1 (“parameter space” containing n—1 “spatial variables” and a “time
variable”), F is a manifold of dimension n + m and 7 is a submersion of F on B.

In [4] one argues the importance of a covariant approach that is the time variable
and the other parameters on the whole.
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To start the study it is necessary to define some associated structures and geomet-
rical objects as f(3, —1)-structures, contact forms, connection of order r, dynamical
connections.

Our approach means, in a more general context, to consider the f(3, —1)-structure
on a jet bundle introduced by Vondra in the case n = 1, [6].

The results of §4 (r = 1) generalize those obtained by Vondra in [7]. These results
lead to a description of the geometrical dynamics of higher order generated by regular
equations.

We shall use the standard multi-index notation. A multi-index is denoted by
I = (i1,...,i,) € N*. The length of I is |I| = iy + ... + i, and its power is
w(I) = [I|Y/I! where I! = i1!...4,!. 0 = (0,...,0) is the null multi-index and
1; =(0,...,1,...0) with 1 at the 4-th place. For I = (i1,...,%n), J = (J1,---,n)
we define the sum I + J = (i1 + j1,...,in + jn). In particular, Ij = jI =1+1; =
(t1,...y%j-1,4; + 1,941, ...,9p). For a family of objects A = {a; j,|I| = m,|J| =1}
with m,{ fixed, we may define a new family o(A) = {o1(A),|L| = m + 1} by

1
op(A) = —— > ww()ar,;

U)(L) I+J=L

(the sum is made for all multi-indexes I, J with I + J = L). The family of objects
A = {arj,|I| = m} is identified with the family A = {ar1,,[I| = m} for which
0(A) = {or(A),|L| = m+ 1}, where

or(A) = ) I;};Lw(z)aI,J, 1| =m, |J|=1.

All manifolds and mappings are supposed to be smooth and the summation con-
vention is used as far as possible.

1. GEOMETRIC STRUCTURES ON JPFE

Let (E,m, B) be a fibered manifold with dim B = n, dim E = n +m, (U,2') a
local chart on B and (Uy = 1, '(U), 2", u®) the local fibered chart on E adapted to
(U, z%). If (U, 7%, a®) is another chart local fibered charts on E adapted to (U, 7)
and U NU # () then the coordinate transformations are

I —i —i 0T
(1.1) 7' =73"(v), det||B;[| #0, B; = pyet

o —a —a 0u”

a* = a”(x,u), det ||Agl| #0, Ag = R
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Let I'(mo) be the set of the sections of 7y and for a local section on U C B,

s € 'y (mo), let us denote

o o oMls* (x)
(12) ur (l’) =: uil...in ($) = (a.’lﬁl)il o (8.’17”)“‘ )
where I = (i1,...,4,) is a multi-index with |I| < r. The equivalence relation in

I'y(mo) is introduced as follows: s1 ~ so iff uf(z) = uf(x), 0 < |I| <7, x € U and
1 2

determines the r-jets of sections of 7y in z, denoted by jos. Finally, the set of all

such r-jets of sections of 7y is a differentiable manifold denoted by J"E;

(J'E,m,,B), where
(1.3) - J'E — B, m.(jrs) = x,

is a fibered manifold; for each pair (p,r) such that 0 < p < r — 1, (J"E, mpy, JPE),
where

(14) 7rp'r: JTE - JpEa Wpr(j;:‘s) - ];)S,

is a fiber bundle. In particular, J"E is an affine bundle over J""'E and J°F =
E. The local fibered chart on J"F induced by (U,2%) is (U, = n Y(U),z",u?),
0<|I| <.

For f € .Z(J"E) the partial derivative of f in direction z? is defined by

(1.5) (") (dif ) = 0i(f 0 j7s), ¥ s € T(mo).
In the local chart (U, z%, u%¥) we have

(1.6) dif=0,f+ > ufolf,

0<|Il<r

ou
For two local fibered charts on J"E, (U,., 7%, @¢), (U,, 2, ug) with UNU # 0, the
coordinate transformations are

where 0 < |I| < r, 0L =: -2+ and i is identified with 1;, [3], [1].
I

(L.7) =7 (z),
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where |L| = 1+ |I| and 0 < |I| < 7 — 1. The natural local basis on J"E is {9;, 0L}
and the local co-basis is {dz*,du%}, where 0 < |I]| < r.

The canonical projection (1.4), my,: (z%,u}) € J'E — (z',u%) € JPE, with 0 <
[I] <7, 0<|J| < p, leads to the vector subbundles V,, = Ker(mp,)«, 0 < p < r —1,
of the tangent bundle T'(J"E). The local fiberes of V. determine regular differential
systems

(1.8) Vor: 2 € J'E — Vo (2) CT.(J"E)
on J"E having the property
(1.9) Vicir(2) C Vicor(2) C oo C Vor(2).

These differential systems are generated by the vector fields {91},0 < |I| < 7.

P
We call the contact form 6, 1 < p < r — 1, the V(JPE)-valued 1-form on J"FE
such that

(1.10) 0 ((i"s).v) = 0, ¥s € Ty(mo), Vv € TB,
0 (5) = (ﬂ-pr)*fa V€ € V(JTE)v [3]

By using the canonical local basis and co-basis we obtain

p P
(1.11) 0= > 00,
[I|=p-1
where
P ,
(1.12) 0F = duf —ufdx’, [I|=p—1.

We can define a V(J"E)-valued contact form 62 on J"E by
p
(1.13) r=> 06=> > 07 @d.
Finally, we consider a contact map on J” E which is a 7(T* B)®@ T (J" 1 E)-valued

1-form 6 locally given by

(1.14) ) = dr' ®d;, where d; =0; + Z u$s oL
0<|T1<r
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P
We can also introduce some 1-forms J, 1 < p < r—1, on J"E, which are T(JPE)®
T (JPTE)-valued and defined by

p .
(1.15) TP= Y freiled’,
[I|=p—1
where
(1.16) =0+ Y ufol.
0<|T|<p+1

For each i € {1,...,n}, let us define a T'(JP*!E)-valued 1-form on J"E by

p .
(1.17) Ji= Y dreol

[I|=p—1

It follows from (1.17) that
p P P P
(1.18) JtoJi =0; [J, J]pn =0,

where [, |pn is the Frolicher-Nijenhuis bracket defined for the vector valued forms.

p.
Consequently, the 1-form J* is an almost tangent structure called the almost tangent
structure in direction x°.

2. CONNECTION OF ORDER 7. DYNAMICAL CONNECTION OF ORDER 7

A connection of order r on (E, 7, B) is a section A: J""'E — J"E of the bundle

(JTE,7,_1,,J""'E). Any such connection is locally given by
A: (28 uf) e JTIE — (2 uG A € JTE, 0L I <r—1, || =,

where
G = AG(2", ug).

The horizontal form A" of A and the vertical form v" are given by

(2.1) " =0,0A=ds'® (ai + 0> upol+ > A;{,@j),
og|I|<r—2 [ J|=r—1
V=fyoh= > 0@+ > (du§—AYda')d).
og|I|I<r—1 |J|=r—1
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The m,_1,.-horizontal distribution Imh" is called the semispray distribution
AT71(A) and it is locally generated on J"~!E by the vector fields

(2.2) =0+ > ufdol+ > A%9l

0<|I|<r—2 [J|=r—1
The forms associated to A7~!(A) are given by
(2.3) ¢ =duf —ulds', VY = du§ — A da’

< |I| € r =2, |J| =r —2. The connection A of order r determines the direct sum

decomposmon
(2.4) TJ'E=AT"Y Ao V(JE).

A section s € T'y(mp) is called an integral section of A if

jTs=Noj " Ls

on U. The condition of integrability is locally given by the relations

(2.5) s?(w,s?(az)) A (z, SI( ), |J=r 0| <r—1.

From (2.2) and (2.5) it results that s is an integral section if and only if j7~1s is
an integral map of AT71(A).

Let m1—1: JY(J " 1E) — J"71E be the 1-jet bundle of sections of the bundle
Tp—op—1: JTYE — J'72E. If (Up—1,2%,u$),0 < |I| < r— 2, is a local chart on
J"2E and s(z%, u}) = (2, u9, s%(z,u?)), 0 < |I| < r—2, |J| =7 —1, is a section of

Tr—2r—1, then

(2.6) j(lm’u)s = (z*, u‘},s?,s?i,s%), where

& — 65.] ozI _ asJ
Ji — ox YR S Iu 5

A canonical chart on JY(J"71E) is given by ((717»_1 = Tr—1(Up—1), % u9,
u%,u%,u%) <|I|<r—2,]J|=r—1,|L| =r. The contact map on J!(J""1E) is

(2.7) 51d:c"®<8i+ > u?,@i>+ > du?®<8i+ > uJa8ﬁ>

og|I|ISr—1 og|I|I<r—2 |J|=r—1
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and the contact form is

(2.8) 0y = Z <du§ — dufda’ — Z umdu[) ® 0.

|J|=r—1 og|I|<r—2

A dynamical connection on J" "1 E is a section Fy: J"1E — JY(J"T1E) of T 1.
Locally, such a connection is given by

Fu: (o',uf) € 7B = (o uf S, Fi ) € I (7 B),
where
Fr —FL(w uj) FJB =F¢ (xi,u}), o< |I|<r—2,|J]=r—1,|L| =r

The horizontal form hpr, of Fy and the vertical form vp, are given by

(29) hp, =6 0F;=dr'® <ai + 0> upol+ > F;},@i)

o< |I|<r—2 |J]=r—1
+ Y duge @+ > Filog),
o< |I|<r—2 |J]=r—1
Fy =020 Fy = Z (du‘}—F{}dmi— Z FJIdU1> ® ;-
|J|=r—1 og|I|1<r—2

The horizontal distribution Im F; on J" 'E is locally generated by the vector
fields

(2.10) Li=0i+ > ufdol+ > F3ol,
og|I|1<r—2 |J|=r—1
I
=ol+ > FJlaj, o<|I|<r-2,
[J|=r—1

or equivalently by the forms

(2.11) U5 = du§ — (F;}, - > uf,F;g)dxi - Y FSiduf, |J|=r-1

0<I<r—2 o< |I|<r—2
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3. f(3,—1)-STRUCTURE ON J" 1E

Theorem 3.1. A tensor field H of type (1,1) on J""'E which satisfies the
relations

(3.1) 91 oH = 0, (92 oH = 92, H‘V(J"*lE) = _1V(.]"*1E)

is a f(3,—1)-structure on J"1E.

Proof. The endomorphism H: T(J""'E) — T(J""'E) in the local chart
(Ur—1,2%,u¢), 0 < |I] < r — 1, has the expression

(3.2) H= <H;idxﬂ'+ SNoooHMer+ Y Hi’Jdu§)®5i
o<|I|<r—2 |J|=r—1

- (H,éjdm Yoty Y H,ﬁ;dug)ag,

0<|I|<r—2 0<|LI<r—2 [J|=r—1

£ X (Hars ¥ miens Y miNag) o)

|J|=r—1 og|I|1<r—2 |[K|=r—1

The condition ¢; o H = 0 yields H! = H"' = H},
H} = H =0, HlY =850F,0< || <r—2,0<|L]

J = 0; 63 0 H = 6, implies
<r—2,|J|=r—1, where

5f =0;b ... 0, for I'=(ir,....in), L=(l1,...,l).

From the third condition (3.1) we obtain Hﬁ( = 605K |K|=|J| =r—1, and
consequently,

(33) H= > 6700+ > <H§idxi+ > Hﬁga?du{j)@ag.

o<|I|<r—2 |J|=r—1 0<|I|1<r—2

In particular, we have

(3.4) H@O)=- > ugol+ > HJ0i;
og|I|<r—2 [ J|=r—1
I
H(@y) =05+ Y Hj05 0<|I|<r—2
|J|=r—1

H@O)) =05 || =r—1.
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From (3.4) we obtain

H20)=— Y wsol- Y < 3 U%H§i+H§,i)ab];

og|I|ISr—2 |J|=r—1 M0og|I|<r—2
H*(9L) =0, o< I <r—2
H?(9]) =], |J|=r—1.
Thus H3(9;) = 0;, H3(0L) = 0%, H3(0)) = 0 and H defines a f(3, —1)-structure
on J'lE. (]

Corollary 3.2. The eigenspace of H corresponding to the eigenvalue 1 is Im(H?—
H) = Vi, ,(J'77'E). The eigenspace of H corresponding to the eigenvalue 0 is
Im(H?—1). The eigenspace of H corresponding to the eigenvalue (—1) is Im(H?+H).

The subbundle

(3.5) H'(J"77'E) =Im(H? + H) @ Im(H? - I)

is called the weak horizontal subbundle associated to H. His generators and the
vector fields

(36) Ti=0i+ Y ufol+ Y (Hg’z > ugJHﬁ)ag,

o<|I|ISr—2 [J]=r—1 0<|I|§r—2

S om9) o<i<r-2
|J|=r—1

Also we have
(3.7) T(J'E)y=H'(J"'E)oV(J"'E).
Theorem 3.3. Each f(3,—1)-structure H on J"~'E defined in Theorem 3.1
induces a canonical dynamical connection Fy on J"~'E by
(3.8) Imhg, = H'(J7'E).
Locally, F, is given by

[e3 1 o I
(3.9) Fi=ou(Hy)+5 > ou(UGH5,). [L=1+J,
o0 I[<r—2
11 a1
FfaziHﬁa; o< |I|<r—2, |[J=r—1.

Proof. The relation (3.9) follows from (3.6) and (2.10). O
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An f(3,—1)-structure H on J"'E defined by (3.1) is called symmetric if
op(HY,)=H},, VL with [L|=r, |J|=r—1.

Theorem 3.4. The set of the dynamical connections on J" 'E and the set of
the symmetric f(3,—1)-structures defined by (3.1) have the same cardinality.

Proof. A bijection is given by

1
(310)  Ff=Hp+g > ou(iHy), [L=1+]J], [J|=r—1,
0g|II<r—2

1

I I

FfaZEHgaa 0| <r—2, |J=r—1,

or

(1)  HP=F/ - > ou@iF), [Ll=1+J], [J]=r -1,

0<|1|<r—2

HL =20t o< |I|<r—2, | =r—1.
O

Theorem 3.5. Each connection of order r defines a symmetric f(3, —1)-structure.
Proof. Let h=6;0A =dz'®T;, where I'; is given by (2.2), be the horizontal
1-form of a connection A of order r. Consider the tensor field

r—1
(3.12) A=>"Ih, Jen @ dPH,

p=1

where j)i is given by (1.17) and df“ is given by (1.16). Using the definition of the
bracket [, |pn we deduce
= P,
A= "da" N L, T @ d

p=1
For the Lie derivation .41, we have

p
gr‘k‘]i: Z (gl“ke?@ag"‘e?@fmag)a 1<p<r—-1,
[I|=p-1
L0,07 = 05 0 < I <7 — % 0,07 = duy, — Afyda®, |1 =7 — 2
0,08 = [T, 0] = =010k — > OL(A])dF, 0<|T| <r—2.
|J|=r—1
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Then we can write

-1

A= 3" da* ALK, 07 @0 + 07 © £, 00) @ di

<

p=1|I|=p—1
= Y dP A0 00 - 607 @0)) @ df
og|I|<r—2
+ > [(dufy, — Afyuda™) @ 05 — 6107 @ 9%)| @ dj
| I|=r—2

= Y i Ag)dat neg @ oy @ dr.

o|I|Sr—2|J|=r—-1

r—1 D. 1 r—1 p
Let tr A = Y %, Jida®(dP™h) = 3 %, JF. Then

p=1 p=1

trAd= > (0% @0 —nby @0}
og|I|<r—2
+ 3 [(dufy, — Afy,da") © OLF — nbog © 0L
[I|l=r—2

- > Y e o

o<|I|1<r—2|J|=r—1

= Y Hed-n Y 0Fe0]

0| I|<r—2 0<|I|<r—2
+ > dus®al— > Apdah®ol- > > 9k(AY)e ®0]
|J|=r—1 |J|=r—1 |J|=r—10<|I|<r—2
=(1-n)b+ Y (du‘} Gudz" — > 9k ;{,)9?)@5.
|J|=r—1 og|I|<r—2

Now we put
(3.13) H=—-(n—2)0 —trA, ie.

H=0+ Y <Af}idxi + ) k(A8 - du‘}) ® al.

|J]=r—1 o< |I|<r—2
H is a symmetric f(3, —1)-structure on J"~1E, satisfying the condition (3.1). O

It is easy to establish the following theorems.

Theorem 3.6. Each connection of order r defines a dynamical connection. Con-
versely, each dynamical connection determines a connection of order r.
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If A is a connection of order r then the associated dynamical connection Fy is
given by

1
(B14) Ff=Af+5 > on(jd(Ay), [LI=1+J], [T =r—1;

0<|1|<r—2

1 ;.

I T

Fol = S0NAD), o<l <r—2, [J]=r—1.

A dynamical connection Fy determines a connection of order r given by

(3.15) P=Fp - Y on(uFS), 1L =1+ | [Tl =r 1.
0g|I|<r—2

Theorem 3.7. Let w: J*(J""1E) — J"E be the bundle morphism
w: (xi,u?,u‘},u‘g,u%) - (2hudag), 0< I <r—2, [J|=r—2, |L|=r,
where

ug =uf — > op(ujush), L =1+1]J],
0<|I|<r—2

and F; is a dynamical connection on J"~'E. The associated connection of order r
is given by

(3.16) A =wo Fy.

4. A GEOMETRIC STUDY OF SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS
OF SECOND ORDER

A dynamical connection Fy on J'E is locally characterized by the vector fields
{Ty, H,, Vi}, where

(4.1) Ti = 0; +ula + FVI, Hy =00+ Fo Vi, Vi=0.,

ij Vo «

with F¥ = F}. The 1-forms associated with (4.1) are {dz’,0, ¥¢}, where

(4.2) 0% = du® — ufdz’;
U = duf — Fgdu® — (FS +ul Fy)da? = du — F30° — Flida?.
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For the vector fields (4.1) the following relations are satisfied:

(4.3) [Tyl = e =Ta(F) — Ti(FR),
[Ty, Ha] = HB +Tykavk T =Ti(F) + FoLFl — Ho(Fj)),
[T, a]=—5]H + TV, ThL, = 61 F), — 0L(F)),
[HvHB}: aﬁkv T”k_H(F ) — HB(F )s
i

v, vy

For the forms (4.2) we have

do™ = — U Ada' — Fp0° Ada,

dve dz’ A da® + T 50° A da® — QTWW AGY

72 jkz
— OR(EZ)T] AO° + TEST) A da

The tensor field of type (1,1) associated with F,; (see 3.11) is given by

(4.5) H =0%® 0o + (H3d2? + Hydu’ — duf) @ V1,
where
(4.6) HS = Fg — (Wl Ffy + W) F), H = 2F

With respect to the basis {I';, Hy, V,!} and the co-basis {dz*, 0% ¥¢} the tensor
field H has the form

(4.7) H =0%® 0, + [(Fu — Figu!)da? + F30° — 99 @ V1.

From (4.7) we obtain

(4.8) H(Ty) = (Fgu — Fgu Wi H(Hy) = Ho + F V4, H(VE) = =V
and
(4.9) tH(dz') = da*(H) = 0, tH(ea) 0“(H) = 6°,

PH(US) = —09 + (Fou! — Foyul)da? + F0°.

Let now w = f(z)dz' A...Adz" be a volume form on B and w; = tp,w (the interior

product with respect to 9;). Then
dw; = f7HOi f)w, da? Nw; = dlw
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Consider J: J'E — T*(JYE) A A" 1(B) @ VT(J'E) defined by
(4.10) J =0 Nw; ® Vi

then
Im.J = A" YB)@ VT(J'E), JoJ=0.

We call the Poincaré-Cartan form of a function L € .7 (J!E) the n-form 6, defined
by

(4.11) 0, = J(L) + Lw,

where J(L) +' J(dL) = dL(J). In a local fibered chart we have
(4.12) 0 = 0L (L)0* Aw; + Lw.
Now we consider the (n + 1)-form
(4.13) Q= dby.
Using a dynamical connection F,; on J'E, the relations (4.4) and the fact that
df =Ti(f)da' + Ho(f)0" + 0,(f)TF, ¥ f € F(J'E)
we obtain

S 1 .
(4.14) Qp = J(OLL)T) N O™ A w; — SHs(0,L)
— Ho(O5L)]0% N 0P Aw; — [Tk(05L) — OaL — f~1(0:f)5, L]0 A w.

Denoting Agﬁ =0, (8%L) we have the relations

(4.15) Ay = AV, =AY

We now make a general remark.

Remark. Let T be a tensor field of type (1,1) on a differential manifold M and
let Q2 be a 3-form on M. We can define in terms of T" the following 3-forms on M:

(4.16) (TWQ)(X,Y,2) = UTX,Y,Z)+QX,TY,Z)+ QX,YTZ),
(TPQ)(X,Y,Z) = UTX,TY,Z)+ UTX,Y,TZ) + QX,TY,TZ).
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On the other hand, we can associate with T an antiderivation ér of degree zero on
the algebra of forms on M. d7 is uniquely determined by the conditions

Srf=0,YfeF(M); or0="T6,VY60cA"(M).
For a k-form w € A¥(M) we have
(4.17) (brw)(X1, ..., Xi) = (TOw) (X1, ..., Xp).
If we consider the operator dr given by
(4.18) dr =6rod—dodr
then we have
(4.19) dodr = —drod, d~od=dod>,
tx odr +droix = %rx + [0r, Zx].
Theorem 4.1. The (n + 1)-form , from (4.13) has the decomposition

(4.20) Q=05 + HYQ, - HVQ,,
where
(4.21) Qf = A2, 0 A% A wj,
(4.22) HYQp = — AV F207 AP A w; — [Hg(0LL) — Ha(95L)]0% A 6° Aw;

- [rk(ak ) = 0oL — f 1Ok F)OSLIO Nw,
(4.23) HOQ, = — AZ,FR07 N0 Aw; — %[Hﬁ(az L) — Ho(95L)]0% A 60° A w;.

Proof. By using the above remark and (4.9) we have
HOQ, = AZ[H(T) AP A wj + T A HO) Aw; + T8 AP A HD (w;)]
- %[Hﬁ(agL) Ha(O5L)|[PH(0%) A 0° Aw; + 6% A" H(0°) A w;
+0° N0 NHM ()] = T(05L) — Dol — f7H(ORS)ORNH(0%) Aw
+ 0% A HD ()]
=AY (-0 + (Fu) — Fgu))da® + F2O7 + UP A 0° Aw;
- %[Hﬁ(agL) — Ho(95L)](0% A 0° Aw; + 0% N7 Aw;)
— [CR(8%L) — 0uL — f 1Ok f)O*] AN O Nw
— (A Fou) — AZ FRul)0” Aw; — A FR07 A 67 A w;
— [Hs(9,L) — Ha(95L))0 N 0P A w; — [[(O5L) — Da L
— fTHORNOLLIO* N w.
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Similarly,

- 1 ) )
HPQ, = AL H(U) A H(0°) Aw; — 5[ H3(95,L) — Ha(95L)]107 0P A w;

- 1 ) )
= —ALFA0 N 0% Nwj — S H3(0,L) = Ha(951))0° A 0% A w;.

o
Then
H?Q, — HOQ, = %[Hﬁ(a;L) — HA(9LL))6% 1 6° A w;
+ [Pk (95L) = 0L — [T Ok F)OGLIO" A w.
If QO is given by (4.21) then (4.20) is verified. O

The above theorem suggests the following definition:
A dynamical connection F} is said to be compatible with L if HVQ, = HA Q.

Theorem 4.2. A dynamical connection Fy is compatible with L iff the following
conditions are satisfied:

i y 1 . )
(4.24) AJsFG + B =0, AL Ff = 5035y + Riy,,
where
(4.25) Bo = Ok0FL + ul 0gul L — 0oL + f~ (O f)OF L
and

R, = R 5.

Proof. The definition yields

(4.26) Or(OFL) + w008 L — OuL + f~(Ox f)OEL + AY,F) =0,
950, L — 0a0hsL + Flg AN, — F1 A%l =

by (4.25) we obtain
A FS + Bs =0

and
(4.27) 04Ba = O A, + 00 L — 0a05L + w0, AL, + [~ Ok f) Al
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From (4.27) we obtain

9304 L — 004 L = 0y Ba — Op Alky — w0, Ally + [ (O f) ALy,
OaO4L — 050%,L = 0., Bg — Op Alky — w0, Ally + [~ (O )ALl

and
i i Lo i
(4.28) 00, L — 0005L = 5(8BBQ — 0., Bg3).
(4.26) and (4.28) imply

1 . , y y
S (0B — 01 B) + AN F, — AMLF], =0

or
1 . i 1 . i
(50580 — AL,FL,) = (305Ba — ABLE, ) = 0.
Therefore 1
i o i i i _ pi
AspFiy = 5988a + Ryy, Ry = Rp.

A function L € Z(J'E) is called regular is det ||A25|| # 0. Let us note that

FaB -
LA = A1~ O

Theorem 4.3. If L is regular then the connections Fy compatible with L are
given by
4.29 Fe= Ao (ph — Lsnp
() ij — ‘Yih Bj_gjﬁ’

_ , 1
_ ary J
i = A (Rwﬁ + 58436)’

where P(Pé‘]) is a tensor field of type (1,2) with Trace P, = 0 and (657 75?5£)Péj
0; R = (R;5) is a symmetric tensor field of type (1,2).

Proof. We consider the system of linear equations

iy 1 .. )
(4.30) AL+ géiBﬁ = Pj-

Setting j = k and summing one obtains the first relation (4.24) if Trace P, = 0.
From (4.30) we deduce the first relation (4.29). The symmetry of F;; implies

~ . 1 .. ~ ) 1 .
Aijﬁ(Pék - E‘%Bﬁ) = Akjﬁ (Péz - 55143,3),

which leads to (5767 — 6?5%)?’&]- = 0. The second relation (4.29) results from (4.24).
O

411



(1]

References

1. M. Anderson: Aspects of the inverse problem to the calculus of variations. Arch.
Math. (Brno) 24 (1988), 181-202.

M. Ferraris, M. Francaviglia: On the Global Structure of Lagrangian and Hamiltonian
Formalisms in Higher Order Calculus of Variations, Proceedings of the Meeting “Geom-
etry and Physics”. Florence, October 12-15 (1982), 43-70.

H. Goldschmidt, S. Stemberg: The Hamilton-Cartan Formalism in the Calculus of Vari-
ations. Ann. Inst. Fourier, Grenoble 28 (1973), 203-267.

M. J. Gotay: A multisymplectic Framework for Classical Field Theory aud the Calculus
of Variations. I. Covariant Hamiltonian Formalism, Mechanics, Analysis and Geometry
200 Years after Lagrange, Amsterdam, 1990.

A. Vondra: Semisprays, connections and regular equations in higher order mechanics.
Proc. Conf. Diff. Geom. and Its. Appl., World Scientific, Singapore (1990), 276-287.
A. Vondra: Some connections related to the geometry of regular higher-order dynamics.
Sbornik VA Brno, Rada “B” 2 (1992), 7-18.

A. Vondra: Natural Dynamical Connections. Czechoslovak Math. J., Praha 41(116)
(1991), 724-730.

Authors’ address: Universitatea de Vest din Timigoara, Facultatea de Matematica,

B-dul V. Parvan 4, 1900 Timigoara, Romania.

412



		webmaster@dml.cz
	2020-07-03T11:41:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




