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Abstract. We present some geometrical aspects of a higher-order jet bundle which is
considered a suitable framework for the study of higher-order dynamics in continuous media.
We generalize some results obtained by A. Vondra, [7]. These results lead to a description
of the geometrical dynamics of higher order generated by regular equations.

MSC 2000 : 53C05, 70H35, 58F05

Introduction

The present study is an attempt to emphasize some geometrical aspects of a poss-
ible mathematical model for the higher-order dynamics in continuous media as well

as for the higher-order field theories.

The mathematicians agree (see [1], [2], [4], etc) that the most suitable framework

for this application is a higher-order jet bundle associated to a fibered manifold. A
physical field is a section of this “configuration manifold”. The partial differential

equations describing some higher-order dynamics are the kernels of some operators
which appear as sections in a vector bundle of forms over that jet bundle, [1].

A. Vondra initiated such a study for a fibered manifold having the base of dimen-
sion 1, [5], [6], [7].

We consider a fibered manifold (E, π0, B), where B is an orientable manifold of

dimension n � 1 (“parameter space” containing n−1 “spatial variables” and a “time
variable”), E is a manifold of dimension n+m and π0 is a submersion of E on B.

In [4] one argues the importance of a covariant approach that is the time variable
and the other parameters on the whole.
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To start the study it is necessary to define some associated structures and geomet-

rical objects as f(3,−1)-structures, contact forms, connection of order r, dynamical
connections.

Our approach means, in a more general context, to consider the f(3,−1)-structure
on a jet bundle introduced by Vondra in the case n = 1, [6].

The results of § 4 (r = 1) generalize those obtained by Vondra in [7]. These results

lead to a description of the geometrical dynamics of higher order generated by regular
equations.

We shall use the standard multi-index notation. A multi-index is denoted by
I = (i1, . . . , in) ∈ �

n . The length of I is |I| = i1 + . . . + in and its power is

w(I) = |I|!/I! where I! = i1! . . . in!. 0 = (0, . . . , 0) is the null multi-index and
1i = (0, . . . , 1, . . . 0) with 1 at the i-th place. For I = (i1, . . . , in), J = (j1, . . . , jn)

we define the sum I + J = (i1 + j1, . . . , in + jn). In particular, Ij = jI = I + 1j =
(i1, . . . , ij−1, ij + 1, ij+1, . . . , in). For a family of objects A = {ai,J , |I| = m, |J | = 1}
with m, l fixed, we may define a new family σ(A) = {σL(A), |L| = m+ 1} by

σL(A) =
1

w(L)

∑

I+J=L

w(I)w(J)aI,J

(the sum is made for all multi-indexes I, J with I + J = L). The family of objects

A = {aI,j, |I| = m} is identified with the family A = {aI,1j , |I| = m} for which
σ(A) = {σL(A), |L| = m+ 1}, where

σL(A) =
1

w(L)

∑

I+J=L

w(I)aI,J , |I| = m, |J | = 1.

All manifolds and mappings are supposed to be smooth and the summation con-

vention is used as far as possible.

1. Geometric structures on JpE

Let (E, π0, B) be a fibered manifold with dim B = n, dim E = n +m, (U, xi) a

local chart on B and (U0 = π−1
0 (U), x

i, uα) the local fibered chart on E adapted to
(U, xi). If (U0, xi, uα) is another chart local fibered charts on E adapted to (U, xi)
and U ∩ U �= ∅ then the coordinate transformations are

xi = xi(x), det ‖Bi

j‖ �= 0, B
i

j =
∂xi

∂xj
;(1.1)

uα = uα(x, u), det ‖Aα

β‖ �= 0, A
α

β =
∂uα

∂uβ
.
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Let Γ(π0) be the set of the sections of π0 and for a local section on U ⊂ B,

s ∈ ΓU (π0), let us denote

(1.2) uα
I (x) =: u

α
i1...in

(x) :=
∂|I|sα(x)

(∂x1)i1 . . . (∂xn)in
,

where I = (i1, . . . , in) is a multi-index with |I| � r. The equivalence relation in
ΓU (π0) is introduced as follows: s1 ∼ s2 iff uα

I
1
(x) = uα

I
2
(x), 0 � |I| � r, x ∈ U and

determines the r-jets of sections of π0 in x, denoted by jr
xs. Finally, the set of all

such r-jets of sections of π0 is a differentiable manifold denoted by JrE;

(JrE, πr, B), where

πr : JrE → B, πr(j
r
xs) = x,(1.3)

is a fibered manifold; for each pair (p, r) such that 0 � p � r − 1, (JrE, πpr, J
pE),

where

(1.4) πpr : JrE → JpE, πpr(jr
xs) = jp

xs,

is a fiber bundle. In particular, JrE is an affine bundle over Jr−1E and J0E =

E. The local fibered chart on JrE induced by (U, xi) is (Ur = π−1
r (U), x

i, uα
I ),

0 < |I| < r.

For f ∈ F (JrE) the partial derivative of f in direction xi is defined by

(1.5) (jr+1s)∗(dif) = ∂i(f ◦ jrs), ∀ s ∈ Γ(π0).

In the local chart (Ur, x
i, uα

I ) we have

(1.6) dr
i f = ∂if +

∑

0�|I|�r

uα
iI∂

I
αf,

where 0 � |I| � r, ∂I
α =:

∂
∂uα

I
and i is identified with 1i, [3], [1].

For two local fibered charts on JrE, (U r, x
i, uα

I ), (Ur, x
i, uβ

J) with U ∩ U �= ∅, the
coordinate transformations are

xi = xi(x),(1.7)

uα = uα(x, u),

. . . . . . . . . . . . . . . .

uα
L = σL(di(uα

I )),
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where |L| = 1 + |I| and 0 � |I| � r − 1. The natural local basis on JrE is {∂i, ∂
I
α}

and the local co-basis is {dxi, duα
I }, where 0 � |I| � r.

The canonical projection (1.4), πpr : (xi, uα
I ) ∈ JrE �→ (xi, uα

J ) ∈ JpE, with 0 �
|I| � r, 0 � |J | � p, leads to the vector subbundles Vpr = Ker(πpr)∗, 0 � p � r − 1,
of the tangent bundle T (JrE). The local fiberes of Vpr determine regular differential
systems

(1.8) Vpr : z ∈ JrE �→ Vpr(z) ⊂ Tz(JrE)

on JrE having the property

(1.9) Vr−1r(z) ⊂ Vr−2r(z) ⊂ . . . ⊂ Vor(z).

These differential systems are generated by the vector fields {∂I
α}, 0 � |I| � r.

We call the contact form
p

θ , 1 � p � r − 1, the V (JpE)-valued 1-form on JrE

such that

p

θ ((jrs)∗ν) = 0, ∀s ∈ ΓU (π0), ∀ν ∈ TB,(1.10)
p

θ (ξ) = (πpr)∗ξ, ∀ξ ∈ V (JrE), [3].

By using the canonical local basis and co-basis we obtain

(1.11)
p

θ =
∑

|I|=p−1

p

θα
I ⊗ ∂I

α,

where

(1.12)
p

θα
I = duα

I − uα
I,idxi, |I| = p− 1.

We can define a V (JrE)-valued contact form θ2 on JrE by

(1.13) θ2 =
r−1∑

p=1

p

θ =
r−1∑

p=1

∑

|I|=p

θα
I ⊗ ∂I

α.

Finally, we consider a contact map on JrE which is a π∗
r (T

∗B)⊗T (Jr−1E)-valued

1-form θ1 locally given by

(1.14) θ1 = dxi ⊗ dr
i , where dr

i = ∂i +
∑

0�|I|�r

uα
iI∂

I
α.
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We can also introduce some 1-forms
p

J , 1 � p � r−1, on JrE, which are T (JpE)⊗
T (Jp+1E)-valued and defined by

(1.15) Jp =
∑

|I|=p−1

p

θα
I ⊗ ∂Ii

α ⊗ dp+1
i ,

where

(1.16) dp+1
i = ∂i +

∑

0�|I|�p+1

uα
iI∂

I
α.

For each i ∈ {1, . . . , n}, let us define a T (Jp+1E)-valued 1-form on JrE by

(1.17)
p

J i =
∑

|I|=p−1

p

θα
I ⊗ ∂Ii

α .

It follows from (1.17) that

(1.18)
p

J i ◦
p

Jj = 0; [
p

J i,
p

Jj ]FN = 0,

where [ , ]FN is the Frölicher-Nijenhuis bracket defined for the vector valued forms.

Consequently, the 1-form
p

J i is an almost tangent structure called the almost tangent
structure in direction xi.

2. Connection of order r. Dynamical connection of order r

A connection of order r on (E, π0, B) is a section Λ: Jr−1E → JrE of the bundle
(JrE, πr−1r, Jr−1E). Any such connection is locally given by

Λ: (xi, uα
I ) ∈ Jr−1E �→ (xi, uα

I ,Λα
J) ∈ JrE, 0 � |I| � r − 1, |J | = r,

where

Λα
J = Λ

α
J (x

i, uα
I ).

The horizontal form hr of Λ and the vertical form vr are given by

hr = θ1 ◦ Λ = dxi ⊗
(

∂i +
∑

0�|I|�r−2
uα

iI∂
I
α +

∑

|J|=r−1
Λα

iJ∂J
α

)
,(2.1)

vr = θ2 ◦ Λ =
∑

0�|I|�r−1
θα

I ⊗ ∂I
α +

∑

|J|=r−1
(duα

J − Λα
iJdxi)∂J

α .
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The πr−1r-horizontal distribution Imhr is called the semispray distribution

∆r−1
r (Λ) and it is locally generated on Jr−1E by the vector fields

(2.2) Γi = ∂i +
∑

0�|I|�r−2
uα

iI∂
I
α +

∑

|J|=r−1
Λα

iJ∂J
α .

The forms associated to ∆r−1
r (Λ) are given by

(2.3) θα
I = duα

I − uα
iIdxi, Ψα

J = duα
J − Λα

iJdxi,

0 � |I| � r − 2, |J | = r − 2. The connection Λ of order r determines the direct sum

decomposition

(2.4) TJr−1E = ∆r−1
r (Λ)⊕ V (Jr−1E).

A section s ∈ ΓU (π0) is called an integral section of Λ if

jrs = Λ ◦ jr−1s

on U . The condition of integrability is locally given by the relations

(2.5) sα
J (x, sβ

I (x)) = Λ
α
J (x, sβ

I (x)), |J | = r, 0 � |I| � r − 1.

From (2.2) and (2.5) it results that s is an integral section if and only if jr−1s is
an integral map of ∆r−1

r (Λ).

Let π̃1,r−1 : J1(Jr−1E) → Jr−1E be the 1-jet bundle of sections of the bundle
πr−2r−1 : Jr−1E → Jr−2E. If (Ur−1, xi, uα

I ), 0 � |I| � r − 2, is a local chart on
Jr−2E and s(xi, uα

I ) = (x
i, uα

I , sα
J (x, uα

I )), 0 � |I| � r− 2, |J | = r− 1, is a section of
πr−2r−1, then

j1(x,u)s = (x
i, uα

I , sα
J , sα

Ji, s
αI
Jβ), where(2.6)

sα
Ji =

∂sα
J

∂xi
, sαI

Jβ =
∂sα

J

∂uβ
I

.

A canonical chart on J1(Jr−1E) is given by (Ũ1r−1 = π̃1r−1(Ur−1), xi, uα
I ,

uα
J , uα

L, uαI
Jβ), 0 � |I| � r − 2, |J | = r − 1, |L| = r. The contact map on J1(Jr−1E) is

(2.7) θ̃1 = dxi ⊗
(

∂i +
∑

0�|I|�r−1
uα

iI∂
I
α

)
+

∑

0�|I|�r−2
duα

I ⊗
(

∂I
α +

∑

|J|=r−1
uβI

Jα∂J
β

)
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and the contact form is

(2.8) θ̃2 =
∑

|J|=r−1

(
duα

J − duα
iJdxi −

∑

0�|I|�r−2
uαI

Jβduβ
I

)
⊗ ∂J

α .

A dynamical connection on Jr−1E is a section Fd : Jr−1E → J1(Jr−1E) of π̃1,r−1.

Locally, such a connection is given by

Fd : (xi, uα
I ) ∈ Jr−1E �→ (xi, uα

I , uα
J , Fα

L , FαI
Jβ ) ∈ J1(Jr−1E),

where

Fα
L = Fα

L (x
i, uβ

I ), F
αI
Jβ = FαI

Jβ (x
i, uγ

I ), 0 � |I| � r − 2, |J | = r − 1, |L| = r.

The horizontal form hFd
of Fd and the vertical form vFd

are given by

hFd
= θ̃1 ◦ Fd = dxi ⊗

(
∂i +

∑

0�|I|�r−2
uα

iI∂
I
α +

∑

|J|=r−1
Fα

iJ∂J
α

)
(2.9)

+
∑

0�|I|�r−2
duα

I ⊗ (∂I
α +

∑

|J|=r−1
F βI

Jα∂J
β ),

vFd
= θ̃2 ◦ Fd =

∑

|J|=r−1

(
duα

J − Fα
iJdxi −

∑

0�|I|�r−2
FαI

Jβ duβ
I

)
⊗ ∂I

α.

The horizontal distribution ImFd on Jr−1E is locally generated by the vector
fields

Γ̃i = ∂i +
∑

0�|I|�r−2
uα

iI∂
I
α +

∑

|J|=r−1
Fα

iJ∂J
α ,(2.10)

H̃I
α = ∂I

α +
∑

|J|=r−1
F βI

Jα∂J
β , 0 � |I| � r − 2,

or equivalently by the forms

(2.11) Ψ̃α
J = duα

J −
(

Fα
iJ −

∑

0�I�r−2
uβ

iIF
αI
Jβ

)
dxi −

∑

0�|I|�r−2
FαI

Jβ duβ
I , |J | = r − 1.
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3. f(3,−1)-structure on Jr−1E

Theorem 3.1. A tensor field H of type (1, 1) on Jr−1E which satisfies the

relations

(3.1) θ1 ◦H = 0, θ2 ◦H = θ2, H|V (Jr−1E)
= −1V (Jr−1E)

is a f(3,−1)-structure on Jr−1E.

�����. The endomorphism H : T (Jr−1E) → T (Jr−1E) in the local chart

(Ur−1, xi, uα
I ), 0 � |I| � r − 1, has the expression

H =

(
Hi

jdxj +
∑

0�|I|�r−2
Hi,I

α θα
I +

∑

|J|=r−1
Hi,Jduα

J

)
⊗ ∂i(3.2)

+
∑

0�|I|�r−2

(
Hβ

I,jdxj +
∑

0�|L|�r−2
HβL

Iα θα
L +

∑

|J|=r−1
HβJ

Iα duα
J

)
∂I

β

+
∑

|J|=r−1

(
Hβ

J,jdxj +
∑

0�|I|�r−2
HβI

Jαθα
I +

∑

|K|=r−1
HβK

Jα duα
K

)
⊗ ∂J

β .

The condition θ1 ◦ H = 0 yields Hi
j = Hi,I

j = Hi,J
α = 0; θ2 ◦ H = θ2 implies

Hβ
I,j = HβJ

Iα = 0, H
βL
Iα = δβ

αδL
I , 0 � |I| � r − 2, 0 � |L| � r − 2, |J | = r − 1, where

δL
I = δ11i1

. . . δ1n

in
, for I = (i1, . . . , in), L = (l1, . . . , ln).

From the third condition (3.1) we obtain HβK
Jα = −δβ

αδK
J , |K| = |J | = r − 1, and

consequently,

(3.3) H =
∑

0�|I|�r−2
θα

I ⊗ ∂I
α +

∑

|J|=r−1

(
Hβ

J,idxi +
∑

0�|I|�r−2
HβI

Jαθα
I − duβ

J

)
⊗ ∂J

β .

In particular, we have

H(∂i) = −
∑

0�|I|�r−2
uα

iI∂
I
α +

∑

|J|=r−1
Hβ

J,i∂
J
β ;(3.4)

H(∂I
α) = ∂I

α +
∑

|J|=r−1
HβI

Jα∂J
β , 0 � |I| � r − 2;

H(∂J
α) = −∂J

α ; |J | = r − 1.
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From (3.4) we obtain

H2(∂i) = −
∑

0�|I|�r−2
uα

iI∂
I
α −

∑

|J|=r−1

( ∑

0�|I|�r−2
uα

iIH
βI
Jα +Hβ

J,i

)
∂J

β ;

H2(∂I
α) = ∂I

α, 0 � |I| � r − 2;
H2(∂J

α) = ∂J
α , |J | = r − 1.

Thus H3(∂i) = ∂i, H
3(∂I

α) = ∂I
α, H3(∂J

α) = ∂J
α and H defines a f(3,−1)-structure

on Jr−1E. �

Corollary 3.2. The eigenspace ofH corresponding to the eigenvalue 1 is Im(H2−
H) = Vπ̃1,r−1(J

r−1E). The eigenspace of H corresponding to the eigenvalue 0 is
Im(H2−I). The eigenspace ofH corresponding to the eigenvalue (−1) is Im(H2+H).
The subbundle

(3.5) H ′(Jr−1E) = Im(H2 +H)⊕ Im(H2 − I)

is called the weak horizontal subbundle associated to H . His generators and the

vector fields

Γi = ∂i +
∑

0�|I|�r−2
uα

iI∂
I
α +

∑

|J|=r−1

(
Hβ

J,i +
1
2

∑

0�|I|�r−2
uα

iJHβI
Jα

)
∂J

β ,(3.6)

H
I

α = ∂I
α +
1
2

∑

|J|=r−1
HβI

Jα∂J
β , 0 � |I| � r − 2.

Also we have

(3.7) T (Jr−1E) = H ′(Jr−1E)⊕ V (Jr−1E).

Theorem 3.3. Each f(3,−1)-structure H on Jr−1E defined in Theorem 3.1
induces a canonical dynamical connection Fd on Jr−1E by

(3.8) ImhFd
= H ′(Jr−1E).

Locally, Fd is given by

Fα
L = σL(H

β
J,i) +

1
2

∑

0�|I|�r−2
σL(Uα

iIH
βI
Jα), |L| = 1 + |J |,(3.9)

F βI
Jα =

1
2
HβI

Jα; 0 � |I| � r − 2, |J | = r − 1.

�����. The relation (3.9) follows from (3.6) and (2.10). �
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An f(3,−1)-structure H on Jr−1E defined by (3.1) is called symmetric if

σL(H
β
J,i) = Hβ

Ji, ∀L with |L| = r, |J | = r − 1.

Theorem 3.4. The set of the dynamical connections on Jr−1E and the set of

the symmetric f(3,−1)-structures defined by (3.1) have the same cardinality.

�����. A bijection is given by

Fα
L = Hβ

L +
1
2

∑

0�|I|�r−2
σL(uα

iIH
βI
Jα), |L| = 1 + |J |, |J | = r − 1,(3.10)

F βI
Jα =

1
2
HβI

Jα, 0 � |I| � r − 2, |J | = r − 1,

or

Hβ
L = F β

L −
∑

0�|I|�r−2
σL(uα

iIF
βI
Jα), |L| = 1 + |J |, |J | = r − 1,(3.11)

HβI
Jα = 2F

βI
Jα, 0 � |I| � r − 2, |J | = r − 1.

�

Theorem 3.5. Each connection of order r defines a symmetric f(3,−1)-structure.

�����. Let h = θ1 ◦Λ = dxi ⊗ Γi, where Γi is given by (2.2), be the horizontal

1-form of a connection Λ of order r. Consider the tensor field

(3.12) A =
r−1∑

p=1

[h,
p

J i]FN ⊗ dp+1
i ,

where
p

J i is given by (1.17) and dp+1
i is given by (1.16). Using the definition of the

bracket [ , ]FN we deduce

A =
r−1∑

p=1

dxk ∧LΓk

p

J i ⊗ dp+1
i .

For the Lie derivation LΓk
we have

LΓk

p

J i =
∑

|I|=p−1
(LΓk

θα
I ⊗ ∂Ii

α + θα
I ⊗LΓk

∂Ii
α ), 1 � p � r − 1;

LΓk
θα

I = θα
Ik, 0 � |I| � r − 2; LΓk

θα
I = duα

Ik − Λα
Ikhdxh, |I| = r − 2;

LΓk
∂Ii

α = [Γk, ∂Ii
α ] = −δi

k∂I
α −

∑

|J|=r−1
∂Ii

α (Λ
β
kJ )∂

J
β , 0 � |I| � r − 2.
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Then we can write

A =
r−1∑

p=1

∑

|I|=p−1
dxk ∧ (LΓk

θα
I ⊗ ∂Ii

α + θα
I ⊗LΓk

∂Ii
α )⊗ dp+1

i

=
∑

0�|I|<r−2
dxk ∧ (θα

Ik ⊗ ∂Ii
α − δi

kθα
I ⊗ ∂I

α)⊗ dr
i

+
∑

|I|=r−2
[(duα

Ik − Λα
Ikhdxh)⊗ ∂Ii

α − δi
kθα

I ⊗ ∂I
α)]⊗ dr

i

−
∑

0�|I|�r−2

∑

|J|=r−1
∂Ii

α (Λ
β
kJ )dxk ∧ θα

I ⊗ ∂J
β ⊗ dr

i .

Let trA =
r−1∑
p=1

LΓk

p

J idxk(dp+1
i ) =

r−1∑
p=1

LΓk

p

J k. Then

trA =
∑

0�|I|<r−2
(θα

Ik ⊗ ∂Ik − nθα
I ⊗ ∂I

α)

+
∑

|I|=r−2
[(duα

Ik − Λα
Ikhdxh)⊗ ∂Ik

α − nθα
I ⊗ ∂I

α]

−
∑

0�|I|�r−2

∑

|J|=r−1
∂Ii

α (Λ
β
iJ )θ

α
I ⊗ ∂J

β

=
∑

0�|I|�r−2
θα

I ⊗ ∂I
α − n

∑

0�|I|�r−2
θα

I ⊗ ∂I
α

+
∑

|J|=r−1
duα

J ⊗ ∂J
α −

∑

|J|=r−1
ΛJhdxh ⊗ ∂J

α −
∑

|J|=r−1

∑

0�|I|�r−2
∂Ii

β (Λ
α
iJ)θ

β
I ⊗ ∂J

α

= (1 − n)θ2 +
∑

|J|=r−1

(
duα

J − Λα
Jhdxh −

∑

0�|I|�r−2
∂Ii

β (Λ
α
iJ )θ

β
I

)
⊗ ∂J

α .

Now we put

H = −(n− 2)θ2 − trA, i.e.(3.13)

H = θ2 +
∑

|J|=r−1

(
Λα

Jidxi +
∑

0�|I|�r−2
∂Ii

β (Λ
α
iJ )θ

β
I − duα

J

)
⊗ ∂I

α.

H is a symmetric f(3,−1)-structure on Jr−1E, satisfying the condition (3.1). �

It is easy to establish the following theorems.

Theorem 3.6. Each connection of order r defines a dynamical connection. Con-

versely, each dynamical connection determines a connection of order r.
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If Λ is a connection of order r then the associated dynamical connection Fd is

given by

Fα
L = Λ

α
L +
1
2

∑

0�|I|�r−2
σL(u

β
iI∂

Ik
β (Λ

α
kJ )), |L| = 1 + |J |, |J | = r − 1;(3.14)

F βI
Jα =

1
2
∂Ii

α (Λ
β
iJ ), 0 � |I| � r − 2, |J | = r − 1.

A dynamical connection Fd determines a connection of order r given by

(3.15) Λα
L = Fα

L −
∑

0�|I|�r−2
σL(u

β
iIF

αI
Jβ ), |L| = 1 + |J |, |J | = r − 1.

Theorem 3.7. Let ω : J1(Jr−1E)→ JrE be the bundle morphism

ω : (xi, uα
I , uα

J , uα
L, uαI

Jβ) �→ (xi, uα
I , ũα

L), 0 � |I| � r − 2, |J | = r − 2, |L| = r,

where

ũα
L = uα

L −
∑

0�|I|�r−2
σL(u

β
iIu

αI
Jβ), |L| = 1 + |J |,

and Fd is a dynamical connection on Jr−1E. The associated connection of order r

is given by

(3.16) Λ = ω ◦ Fd.

4. A geometric study of systems of partial differential equations
of second order

A dynamical connection Fd on J1E is locally characterized by the vector fields

{Γi, Hα, V i
α}, where

(4.1) Γi = ∂i + uα
i ∂α + Fα

ijV
j
α , Hα = ∂α + F β

iαV i
β , V i

α = ∂i
α,

with Fα
ij = Fα

ji. The 1-forms associated with (4.1) are {dxi, θα,Ψα
i }, where

θα = duα − uα
i dxi;(4.2)

Ψα
i = duα

i − Fα
iβduβ − (Fα

ij + uβ
i Fα

jβ)dxj = duα
i − Fα

iβθβ − F β
iβdxj .
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For the vector fields (4.1) the following relations are satisfied:

[Γi,Γj ] = T α
ijkV k

α , T α
ijk = Γi(F

α
jk)− Γj(F

α
ik),(4.3)

[Γi, Hα] = −F β
iαHβ + T γ

ikαV k
γ , T γ

ikα = Γi(F
γ
kα) + F β

iαF γ
kβ −Hα(F

γ
ik),

[Γi, V
j
α ] = −δj

i Hα + T jγ
ikαV k

γ , T jγ
ikα = δj

i F
γ
kα − ∂j

α(F
γ
ik),

[Hα, Hβ ] = T γ
αβkV k

γ , T γ
αβk = Hα(F

γ
kβ)−Hβ(F

γ
kα),

[V i
α, V j

β ] = 0.

For the forms (4.2) we have

dθα = −Ψα
i ∧ dxi − Fα

iβθβ ∧ dxi,

dΨα
i =

1
2
T α

jkidxj ∧ dxk + T α
kiβθβ ∧ dxk − 1

2
T α

βγiθ
β ∧ θγ

− ∂k
γ (F

α
iβ)Ψ

γ
k ∧ θβ + T kα

jiβΨ
β
k ∧ dxj .

The tensor field of type (1,1) associated with Fd (see 3.11) is given by

(4.5) H = θα ⊗ ∂α + (Hα
ijdxj +Hα

iβduβ − duα
i )⊗ V i

α,

where

(4.6) Hα
ij = Fα

ij − (uβ
i Fα

jβ + uβ
j Fα

iβ), Hα
iβ = 2F

α
iβ .

With respect to the basis {Γi, Hα, V i
α} and the co-basis {dxi, θα,Ψα

i } the tensor
field H has the form

(4.7) H = θα ⊗ ∂α + [(Fα
iβuβ

j − Fα
jβuβ

i )dxj + Fα
iβθβ −Ψα

i ]⊗ V i
α.

From (4.7) we obtain

(4.8) H(Γi) = (Fα
iβuβ

j − Fα
jβuβ

i )V
i
α, H(Hα) = Hα + F β

iαV i
β , H(V i

α) = −V i
α

and

tH(dxi) = dxi(H) = 0, tH(θα) = θα(H) = θα,(4.9)
tH(Ψα

i ) = −Ψα
i + (F

α
iβuβ

j − Fα
jβuβ

i )dxj + Fα
iβθβ .

Let now ω = f(x)dx1∧. . .∧dxn be a volume form on B and ωi = ι∂iω (the interior

product with respect to ∂i). Then

dωi = f−1(∂if)ω, dxj ∧ ωi = δj
i ω.
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Consider J̃ : J1E → T ∗(J1E) ∧ Λn−1(B)⊗ V T (J1E) defined by

(4.10) J̃ = θα ∧ ωi ⊗ V i
α;

then

Im J̃ = Λn−1(B)⊗ V T (J1E), J̃ ◦ J̃ = 0.

We call the Poincaré-Cartan form of a function L ∈ F (J1E) the n-form θL defined

by

(4.11) θL = J̃(L) + Lω,

where J̃(L) +t J̃(dL) = dL(J̃). In a local fibered chart we have

(4.12) θL = ∂i
α(L)θ

α ∧ ωi + Lω.

Now we consider the (n+ 1)-form

(4.13) ΩL = dθL.

Using a dynamical connection Fd on J1E, the relations (4.4) and the fact that

df = Γi(f)dxi +Hα(f)θα + ∂i
α(f)Ψ

α
i , ∀ f ∈ F (J1E)

we obtain

ΩL = ∂j
β(∂

i
αL)Ψβ

j ∧ θα ∧ ωi −
1
2
[Hβ(∂i

αL)(4.14)

−Hα(∂i
βL)]θα ∧ θβ ∧ ωi − [Γk(∂k

αL)− ∂αL− f−1(∂if)δi
αL]θα ∧ ω.

Denoting Aij
αβ = ∂i

α(∂
j
βL) we have the relations

(4.15) Aij
αβ = Aji

αβ = Aij
βα.

We now make a general remark.

Remark. Let T be a tensor field of type (1,1) on a differential manifold M and
let Ω be a 3-form on M . We can define in terms of T the following 3-forms on M :

(T (1)Ω)(X, Y, Z) = Ω(TX, Y, Z) + Ω(X, TY, Z) + Ω(X, Y TZ),(4.16)

(T (2)Ω)(X, Y, Z) = Ω(TX, TY, Z) + Ω(TX, Y, TZ) + Ω(X, TY, TZ).
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On the other hand, we can associate with T an antiderivation δT of degree zero on

the algebra of forms on M . δT is uniquely determined by the conditions

δT f = 0, ∀f ∈ F (M); δT θ =t Tθ, ∀ θ ∈ Λ1(M).

For a k-form ω ∈ Λk(M) we have

(4.17) (δT ω)(X1, . . . , Xk) = (T (1)ω)(X1, . . . , Xk).

If we consider the operator dT given by

(4.18) dT = δT ◦ d− d ◦ δT

then we have

d ◦ dT = −dT ◦ d, d2T ◦ d = d ◦ d2T ,(4.19)

ιX ◦ dT + dT ◦ ιX = LTX + [δT , LX ].

Theorem 4.1. The (n+ 1)-form ΩL from (4.13) has the decomposition

(4.20) ΩL = Ωc
L +H(2)ΩL −H(1)ΩL,

where

Ωc
L = Aij

αβΨ
α
i ∧ θβ ∧ ωj ,(4.21)

H(1)ΩL = −Aij
αβFα

iγθγ ∧ θβ ∧ ωj − [Hβ(∂i
αL)−Hα(∂i

βL)]θα ∧ θβ ∧ ωi(4.22)

− [Γk(∂k
αL)− ∂αL− f−1(∂kf)∂k

αL]θα ∧ ω,

H(2)ΩL = −Aij
αβFα

iγθγ ∧ θβ ∧ ωj −
1
2
[Hβ(∂

i
αL)−Hα(∂

i
βL)]θα ∧ θβ ∧ ωi.(4.23)

�����. By using the above remark and (4.9) we have

H(1)ΩL = Aij
αβ [

tH(Ψα
i ) ∧ θβ ∧ ωj +Ψα

i ∧t H(θβ) ∧ ωj +Ψα
i ∧ θβ ∧H(1)(ωj)]

− 1
2
[Hβ(∂i

αL)−Hα(∂i
βL)][tH(θα) ∧ θβ ∧ ωi + θα ∧t H(θβ) ∧ ωi

+ θα ∧ θβ ∧H(1)(ωi)]− [Γk(∂k
αL)− ∂αL− f−1(∂kf)∂k

α][
tH(θα) ∧ ω

+ θα ∧H(1)(ω)]

= Aij
αβ [−Ψα

i + (F
α
iγuγ

k − Fα
kγuγ

k)dxk + Fα
iγθγ +Ψα

i ] ∧ θβ ∧ ωj

− 1
2
[Hβ(∂i

αL)−Hα(∂i
βL)](θα ∧ θβ ∧ ωi + θα ∧ θβ ∧ ωi)

− [Γk(∂k
αL)− ∂αL− f−1(∂kf)∂k

α] ∧ θα ∧ ω

= − (Aij
αβFα

iγuγ
j −Aij

αβFα
iγuγ

j )θ
β ∧ ωj −Aij

αβFα
iγθγ ∧ θβ ∧ ωj

− [Hβ(∂i
αL)−Hα(∂i

βL)]θα ∧ θβ ∧ ωi − [Γk(∂k
αL)− ∂αL

− f−1(∂kf)∂k
αL]θα ∧ ω.
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Similarly,

H(2)ΩL = Aij
αβ

tH(Ψα
i ) ∧t H(θβ) ∧ ωj −

1
2
[Hβ(∂i

αL)−Hα(∂i
βL)]θα ∧ θβ ∧ ωi

= −Aij
αβFα

iγθγ ∧ θβ ∧ ωj −
1
2
[Hβ(∂i

αL)−Hα(∂i
βL)]θα ∧ θβ ∧ ωi.

Then

H(2)ΩL −H(1)ΩL =
1
2
[Hβ(∂

i
αL)−Hα(∂

i
βL)]θα ∧ θβ ∧ ωi

+ [ΓK(∂
k
αL)− ∂αL− f−1(∂kf)∂k

αL]θα ∧ ω.

If Ωc
L is given by (4.21) then (4.20) is verified. �

The above theorem suggests the following definition:

A dynamical connection Fd is said to be compatible with L if H(1)ΩL = H(2)ΩL.

Theorem 4.2. A dynamical connection Fd is compatible with L iff the following

conditions are satisfied:

(4.24) Aij
αβFα

ij +Bβ = 0, Aij
αβFα

jγ =
1
2
∂i

βBγ +Ri
βγ ,

where

(4.25) Bα = ∂k∂k
αL+ uβ

k∂βuk
αL− ∂αL+ f−1(∂kf)∂k

αL

and

Ri
βγ = Ri

γβ.

�����. The definition yields

∂k(∂k
αL) + uβ

k∂β∂k
αL− ∂αL+ f−1(∂kf)∂k

αL+Aij
αβF β

ij = 0,(4.26)

∂β∂i
αL− ∂α∂i

βsL+ F γ
kβAki

γα − F γ
kαAki

γβ = 0;

by (4.25) we obtain

Aij
αβFα

ij +Bβ = 0

and

(4.27) ∂i
βBα = ∂kAik

βα + ∂β∂i
αL− ∂α∂i

βL+ uγ
k∂γAik

βα + f−1(∂kf)Aik
βα.
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From (4.27) we obtain

∂β∂i
αL− ∂α∂i

βL = ∂i
βBα − ∂kAik

αβ − uγ
k∂γAik

αβ + f−1(∂kf)Aik
αβ ,

∂α∂i
βL− ∂β∂i

αL = ∂i
αBβ − ∂kAik

αβ − uγ
k∂γAik

αβ + f−1(∂kf)Aik
αβ

and

(4.28) ∂β∂i
αL− ∂α∂i

βL =
1
2
(∂i

βBα − ∂i
αBβ).

(4.26) and (4.28) imply

1
2
(∂i

βBα − ∂i
αBβ) +Aki

γαF γ
kβ −Aki

γβF γ
kα = 0

or (1
2
∂i

βBα −Aki
γβF γ

kα

)
−

(1
2
∂i

βBα −Aki
γαF γ

kβ

)
= 0.

Therefore
Aij

αβFα
jγ =

1
2
∂i

βBα +Ri
βγ , Ri

βγ = Ri
γβ.

A function L ∈ F (J1E) is called regular is det ‖Aij
αβ‖ �= 0. Let us note that

‖Ãαβ
ij ‖ = ‖Aij

αβ‖−1. �

Theorem 4.3. If L is regular then the connections Fd compatible with L are

given by

Fα
ij = Ãαβ

ih

(
P h

βj −
1
n

δh
j Bβ

)
,(4.29)

Fα
iβ = Ãαγ

ij

(
Rj

γβ +
1
2
∂j

γBβ

)
,

where P (P h
βj) is a tensor field of type (1, 2) with Trace Pα = 0 and (δh

kδj
i −δh

i δj
k)P

l
αj =

0; R = (Ri
αβ) is a symmetric tensor field of type (1, 2).

�����. We consider the system of linear equations

(4.30) Aij
αβFα

ik +
1
n

δj
kBβ = P j

βk.

Setting j = k and summing one obtains the first relation (4.24) if Trace Pα = 0.
From (4.30) we deduce the first relation (4.29). The symmetry of Fij implies

Ãαβ
ij (P

j
βk −

1
n

δj
kBβ) = Ãαβ

kj

(
P j

βi −
1
n

δj
i Bβ

)
,

which leads to (δh
k δj

i − δh
i δj

k)P
l
αj = 0. The second relation (4.29) results from (4.24).

�
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