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1. Introduction

A fundamental problem in measure theory is that of finding conditions under which

a countably additive vector measure µ on a ring R can be extended to a countably
additive measure on a wider class of sets containing R.

The first result states that every closed vector measure µ on a ring R with values
in a complete locally convex space X has a unique extension on the algebra F of
locally measurable sets which contains the ring R.

The second result states that a locally bounded vector measure µ on a ring R with

values in a weakly complete locally convex space has a (unique) extension on the
δ-ring F(R) generated by R.

Definitions and notation. In all what follows S denotes a nonempty set, R a
ring of subsets of S, X a locally convex Hausdorff space, its topology τ being given

by a family Γ of seminorms on X in the sense that the family {x : q(x) < ε}, for
every ε > 0 and every q ∈ Γ, is a sub-base of neighborhoods of zero in Γ. The family
of all continuous seminorms can be taken for Γ. Let L be a class of subsets of S,
µ a map from L into X . We then define: µ is s-bounded, if and only if for every

sequence {An} of mutually disjoint sets from L, we have lim
n→∞

µ(An) = 0.

An X-valued map µ on R is called finitely additive if µ(A ∪ B) = µ(A) + µ(B)
whenever A, B are disjoint sets in R. The map µ is called σ-additive (or countably

additive if µ(
∞⋃

n=1
An) =

∞∑
n=1

µ(An), whenever A1, A2, . . . are mutually disjoint sets

from R such that
∞⋃

n=1
An ∈ R.
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Let µ be an X-valued finitely additive set function on R and let q be a seminorm

defined on X , then the q-variation q(µ) is defined by

q(µ)(A) = sup

{
q

( n∑

j=1

ajµ(Aj)

)}
, A ∈ R

where the supremum is taken over all disjoint sets A1, . . . , An from R such that
A = A1 ∪ . . . ∪An and all scalars a1, . . . , an with |aj | � 1 for every j = 1, 2, . . . , n.

A locally convex space X is said to be (sequentially) complete if every (ordinary
Cauchy sequence) generalized Cauchy sequence is convergent.

Let R be a ring of subsets of a set S. We define an order A1 � A2 iff A1 ⊂ A2,
A1, A2 ∈ R. Then R is a directed set with the order “�”. A set function µ : R → X ,

where X is a complete locally convex Hausdorff space, is called closed if the image
set {µ(A) : A ∈ R} of the directed set R converges in X .

The main result of this section is Theorem 1.2 which is a generalization of ([12],
Theorem 1).

Lemma 1.1. Let µ : R → X be a vector measure. Then the following are equiv-

alent:

(i) µ is closed;

(ii) for every neighborhood U of zero in X there exists A0 ∈ R such that, for every

A ∈ R with A ⊂ S −A0, we have µ(A) ∈ U .

�����. ii) ⇒ i). {µ(A) : A ∈ R} is a Cauchy net in X ([10], Proposition 2).
i) ⇒ ii). Let V be an absolutely convex neighborhood of zero in X such that

V + V ⊂ U . We set x1 = lim{µ(A) : A ∈ R}. Then x1 belongs to X . There exists
A0 ∈ R such that µ(A)− x1 ∈ V for every A ∈ R with A0 ⊆ A. For every set A ∈ R

with A ⊂ S − A0 we have A0 ⊂ A ∪ A0 and therefore µ(A ∪ A0) − x1 ∈ V . Then
from the relation µ(A ∪A0)− x1 = µ(A) + µ(A0)− x1 ∈ V we have

µ(A) = µ(A ∪A0)− µ(A0) = µ(A ∪A0)− x1 + x1 − µ(A0)

= (µ(A ∪A0)− x1)− (µ(A0)− x1) ∈ V − V = V + V ⊂ U.

We put F = {A ⊂ S such that for every set E ∈ R we have E ∩A ∈ R} the locally
measurable sets. Then F is an algebra containing R. If S ∈ R then we have F = R.

�

Theorem 1.2. Let R be a ring of subsets of S with S /∈ R, F , the locally
measurable sets, X a complete locally convex space and µ : R → X a countably

additive set function. If µ is closed, then µ can be extended to a countably additive

set function µ̂ : F → X .
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�����. If A ∈ F then clearly the set {µ(E ∩A) : E ∈ R} is a Cauchy net in X .

We define µ̂(A) = lim{µ(E ∩A) : E ∈ R}. Then µ̂(A) ∈ X and µ̂ is a finite additive
set function. Let {An} be a sequence from F with An ∩ Am = ∅ for every n 	= m

such that A =
∞⋃

n=1
An ∈ F . Then for every neighborhood U of zero in X there exists

a set E ∈ R such that µ̂(A)− µ(A∩E) ∈ U and µ(B) ∈ U for every set B ∈ R with

B ⊂ S − E. Since A ∩ E =
∞⋃

n=1
An ∩ E ∈ R we have µ(A ∩ E) =

∞∑
n=1

µ(An ∩ E).

Then there exists a positive integer n0 such that

µ(A ∩ E)−
n0∑

k=1

µ(Ak ∩ E) ∈ U.

For each positive integer k such that 1 � k � n0 there exists a set Ek ∈ R with

E ⊂ Ek and µ̂(Ak)− µ(Ak ∩ Ek) ∈ 1
n0

U . Further,

n0∑

k=1

(µ(Ak ∩ Ek)− µ(Ak ∩E)) =
n0∑

k=1

µ(Ak ∩ (Ek − E))

= µ

( n0⋃

k=1

Ak ∩ (Ek − E)

)

and
n0⋃

k=1

Ak ∩ (Ek − E) ⊂ S − E

and therefore we have

n0∑

k=1

µ(Ak ∩ Ek)− µ(Ak ∩ E) ∈ U.

Then we have

µ̂(A) −
n0∑

k=1

µ̂(Ak) = (µ̂(A)− µ(A ∩ E)) + (µ(A ∩ E)−
n0∑

k=1

µ(Ak ∩E)

+

( n0∑

k=1

µ(Ak ∩E)− µ(Ak ∩ Ek)

)

+
n0∑

k=1

(
µ(Ak ∩ Ek)− µ̂(Ak)

)
∈ U + U + U + U = 4U.

�
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2.

Let Q be a field of subsets of a set S and σ(Q) the σ-field generated by Q. If X
is a sequentially complete locally convex Hausdorff space and µ : Q → X is a vector

measure and q ∈ Γ, then for every set A ∈ S we put

µq(A) = sup{q(µ(B)) : B ⊆ A, B ∈ Q}.

Clearly µq is monotone, subadditive and 0 � µq(A) � +∞ for every A ∈ Q.

In this section the main results are Theorems 2.3 and 2.4 which give conditions un-
der which a vector measure µ from a ring R into a sequentially (weakly sequentially)

complete locally convex space X can be extended to the δ-ring F(R).

Proposition 2.1. Let X be a sequentially complete locally convex Hausdorff

space and let µ : Q → X be a countably additive vector measure. The following

statements are equivalent:

(i) µ has a (necessarily unique) countably additive extension µ̂ : σ(Q)→ X,

(ii) µ is s-bounded,

(iii) q(µ) is s-bounded for every q ∈ Γ,
(iv) µq is s-bounded for every q ∈ Γ,
(v) for every sequence (En) of mutually disjoint sets on Q, the series

∞∑
n=1

µ(En)

converges unconditionally,

(vi) for every p ∈ Γ there exists a measure λp : Q → [0,+∞) such that

lim
λp(A)→0

q(µ(A)) = 0, A ∈ Q.

�����. (iii) ⇔ (ii) ([7], Proposition 4.1).
(iii) ⇒ (iv). From ([8], Lemma II.2) we have

µq(A) � q(µ)(A) � 2µq(A), A ∈ Q.

For every disjoint sequence (An)n, An ∈ Q we have q(µ)(An) → 0 and therefore by
(1), µq(An)→ 0.
(iv) ⇒ (iii). It is obvious from (1).
(i) ⇒ ii). It is obvious.
ii) ⇒ i). Since µ is s-bounded iff q(µ) is s-bounded, therefore by ([7], Proposition

4.1) for every q ∈ Γ there exists a bounded measure λq : Q ⇒ [0,+∞) such that
q(µ)� λq. Since q(µ(E)) � q(µ)(E) ([9]) we have that

lim
λq(A)→0

q(µ(A)) = 0.
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By Halmos ([6], §1 Theorem A) λq has a unique extension λ̂q : σ(Q)→ [0,+∞); we
put d(E1, E2) = λ̂q(E1∆E2), E1, E2 ∈ Q and consider on σ(Q) the uniform structure
τ defined by the semi distance d. By Halmos ({19}, theorem D) Q ⊂ σ(Q) is dense
in σ(Q) for the topology induced by τ .

Since
lim

λ̂q(A)→0
q(µ(A)) = lim

λq(A)→0
q(µ(A)) = 0, A ∈ Q

by ([2], Theorem 7), µ can be extended to a vector measure µ̂ : σ(Q)→ X such that

lim
λ̂q(A)→0

q(µ(A)) = 0, A ∈ σ(Q).

The uniqueness of µ̂ is immediate by Dinculeanu ([1], Proposition 6).
(v) ⇒ (ii). It is obvious.
(ii) ⇒ (v). By (ii) ⇒ i)) there exists a unique extension µ̂ : σ(Q)→ X . For every

disjoint sequence (En), En ∈ Q we have µ̂(
∞⋃

n=1
En) =

∞∑
n=1

µ(En) and so
∞∑

n=1
µ(En)

converges unconditionally.

(i) ⇔ (vi). ([2], Corollary 1). �

Let R be a ring of subsets of S. Then there exists the smallest δ-ring F(R)
containing R ([1], §1 Proposition 6).

Proposition 2.2. Let X be a sequentially complete locally convex space and

µ : R → X a vector measure. The following statements are equivalent:

(i) µ has a (unique) extension µ̂ : F(R)→ X .

(ii) For every q ∈ Γ, E ∈ R, there exists a measure λq,E : R → [0,+∞) such that

lim
λq,E (A)→0

q(µ(A)) = 0, A ⊂ E

([2], Theorem 2, Corollary 2).
(iii) For every set E ∈ R and every neighborhood U ∈ U there exists a positive

integer k such that, for every finite sequence (Ai), 1 � i � k of mutually

disjoint sets of R with
k⋃

i=1
Ai ⊂ E there exists a positive integer i0 (1 � i0 � k)

such that µ(Ai0) ∈ U ([13], Theorem 1).

(iv) For every set E ∈ R and every sequence (En) of mutually disjoint sets of R

with En ⊂ E (n = 1, 2, . . .) we have

lim
n

µ(En) = 0.
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�����. We can prove it in the same way as [11]. �

G.G. Gould has proved in [5]that a necessary and sufficient condition for a bounded

vector measure µ, taking values in a normed space X , to have a Lebesgue extension
is given by the following property:

Property A. If {xn} is a sequence in X whose norms have a positive lower

bound, then for an arbitrary positive k there exists a finite subsequence {xnk
} such

that ‖∑
k

xnk
‖ > k.

It has been proved that all weakly complete spaces, the Hilbert spaces, and the

spaces �p, 1 � p < +∞, satisfy Property A. We make use of Property A in Theo-
rem 2.3.

Theorem 2.3. Let µ : R → X be a countably additive vector measure in a

sequentially complete locally convex Hausdorff space X with the property

(A): If {xn} is a sequence in X such that there exists a neighborhood U of zero in

X with xn /∈ U for every n ∈ �, then there exists a neighborhood V of zero in

X such that for every positive λ there exists a finite subsequence {xnk
} with

∑

k

xnk
/∈ λV.

Then the following statements are equivalent:

(i) µ : R → X has a countably additive extension µ̂ : F(R)→ X ;

(ii) µ is locally bounded over R, that is, for every q ∈ Γ and every E ∈ R, µq(E) <

+∞.

�����. i) ⇒ ii). x∗µ̂ is a scalar measure on the δ-ring F(R) for every x∗ ∈ X∗

By Dinculeanu ([1], §3 Proposition 14) we have x∗µ̂q(E) = sup{|x∗µ̂(A)| : A ⊂
E, A ∈ F(R)} < +∞ for every set E ∈ F(R), and by Mackey’s theorem µ̂q(E) <

+∞. Therefore µq(E) � µ̂q(E) < +∞ for every q ∈ Γ, E ∈ R.
ii) ⇒ i). We shall show that (ii) implies (iii) of Proposition 2.2.
If this is false, then there exists a set E ∈ R, a neighborhood U ∈ U and a sequence

(En) of mutually disjoint sets of R with En ⊂ E, n = 1, 2, . . ., such that µ(En) /∈ U

for all n. By property (A), there exists a neighborhood V of zero in X such that for
every positive λ there exists a finite subsequence µ(Ekn) with

∑

k

µ(Ekn) /∈ λV.

Therefore we have a contradiction. �
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Theorem 2.4. Let X be a weakly complete locally convex Hausdorff space and

µ : R → X a vector measure. The following statements are equivalent:

(i) µ : R → X has a countably additive extension µ̂ : F(R)→ X ;

(ii) µ is locally bounded over R.

�����. i) ⇒ ii). It is the same as the proof of Theorem 2.3.
ii) ⇒ i). We shall show that ii) implies the statement (iii) of Proposition 2.2. If

this is false, then there exist a set E ∈ R, a neighborhood U ∈ U and a sequence
(En) of mutually disjoint sets of R with En ⊂ E, n = 1, 2, . . ., such that µ(En) /∈ U

for all n ∈ �.
By [5], since X is weakly complete it has the property (A) and X � c0. Indeed,

if we suppose that there exists a subspace Y of X which is topologically isomorphic
to c0, then Y is a complete subset of the Hausdorff space X .

Y is closed and, since it is convex, it is weakly closed. Thus Y is weakly sequen-

tially complete, which is impossible since c0 is not weakly sequentially complete. By
property (A) there exists a neighborhood V of zero in X such that for every positive

λ there exists a finite subsequence {µ(Ekn)} with
∑

k

µ(Ekn) /∈ λV,

which contradicts the statement (ii). �

Corollary 2.5. If X is a Frechet space and q(µ)(E) < +∞ for every q ∈ Γ and
E ∈ �, then µ has a countably additive extension µ̂ : F(R)→ X ([3]).

�����. Since X is Frechet, it is weakly complete. From the inequalities

µq(A) � q(µ)(A) � 2µq(A), A ∈ R

we have µq(A) < +∞, A ∈ R. The proof is obvious by Theorem 2.4. �
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