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Abstract. Any finitely generated regular variety V of distributive double p-algebras is
finitely determined, meaning that for some finite cardinal n(V), any subclass S ⊆ V of alge-
bras with isomorphic endomorphism monoids has fewer than n(V) pairwise non-isomorphic
members. This result follows from our structural characterization of those finitely generated
almost regular varieties which are finitely determined. We conjecture that any finitely gen-
erated, finitely determined variety of distributive double p-algebras must be almost regular.
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An algebraA = (L,∨,∧,∗ ,+ , 0, 1) of the type (2, 2, 1, 1, 0, 0) is a distributive double
p-algebra if (L,∨,∧, 0, 1) is a distributive (0, 1)-lattice, and ∗ and + are, respectively,
the unary operations of pseudocomplementation and dual pseudocomplementation:

the operation ∗ is determined by the requirement that x � a∗ be equivalent to
x ∧ a = 0, while y � a+ is to be equivalent to y ∨ a = 1.
A distributive double p-algebra A is said to be regular if x ∨ x∗ � y ∧ y+ for all

x, y ∈ A. Regular algebras form a variety R.
As shown in [8], the category of all distributive double p-algebras and all their

homomorphisms is universal, that is, it contains a copy of the category of all graphs,
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and hence also a copy of any category of algebras as a full subcategory, see [18].

The universality implies that for every monoidM there is a proper class DM of non-
isomorphic distributive double p-algebras A whose endomorphism monoid End(A)
is isomorphic to M . Members of DM can also be chosen to be regular, and this is

again due to the universality of R, demonstrated in [9].
We say that two algebras are equimorphic if their endomorphism monoids are

isomorphic. A class C of algebras is said to be α-determined if α is the least cardinal

for which any class E ⊆ C of pairwise equimorphic algebras with |E | = α has at
least two isomorphic members. Therefore a universal class C of algebras cannot be
α-determined for any cardinal α.

No finitely generated subvariety of R is universal, see [10], or even rich enough
to represent every group as the automorphism group of one of its members [8]. The
least nontrivial subvariety of R, the variety B of Boolean algebras, is 2-determined,
see [12], [13] or [19].

We recall that any variety of distributive p-algebras which is α-determined for some

α must be either 2-determined or 3-determined, see [1], where a further discussion
of other related α-determined classes can also be found.

These results indicate that varieties of distributive double p-algebras may exhibit
widely different categorical properties. In the present paper we show, for instance,

that every finitely generated subvariety V ⊆ R is n-determined for some finite
cardinal n = n(V), and that no finite common upper bound of these numbers exists.
To present the general result in its proper context, we need several additional

concepts.

The rudiment Rud(A) of a distributive double p-algebra A is the least sublattice
of A closed under the formation of relative complements and containing all pseudo-

complements and dual pseudocomplements of A, see [10]. We say that an algebra A
is rudimentary if Rud(A) = A. When directly indecomposable, a rudimentary alge-

bra A is called a nucleus. From [10] we recall that every nucleus from any finitely
generated variety V of distributive double p-algebras is finite.
For any distributive double p-algebra A, let P (A) denote the poset of all prime

filters of A ordered by the reversed inclusion. Thus, for any finite A, we may identify

the poset P (A) with the poset of all join irreducible elements in A. Let Ext(P (A)) ⊆
P (A) denote the set of all members of P (A) that are minimal or maximal, and let

Mid(P (A)) = P (A) \ Ext(P (A)).
Following is one of several characterizations of finitely generated universal varieties

of distributive double p-algebras presented in [10].

Theorem [10]. Let V be a finitely generated variety of distributive double p-
algebras. Then V is universal if and only if there is a nucleus C ∈ V such that
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Mid(P (C)) contains a three-element order component M such that the identity is

the only endomorphism of C extending the identity map of M .

This characterization suggests that systematic investigation of non-universal fi-
nitely generated varieties should center on the properties of their nuclei. The present

paper initiates such investigation by examining finitely generated varieties V for
which Mid(P (C)) of any nucleus C ∈ V is an antichain. We call such varieties
almost regular.

Following Beazer [3], for any distributive double p-algebra A, we let ΦA denote its

determination congruence, that is, the congruence consisting of all (a, b) ∈ A×A with
a∗ = b∗ and a+ = b+. If A belongs to a finitely generated variety, then ΦA is the least

congruence on A for which A/ΦA is regular. If A is also directly indecomposable,
then A/ΦA is a finite simple algebra.

Let B ∈ V for some finitely generated variety V. For any p ∈ P (B), let Ext(p)
denote the set of all members of Ext(P (B)) comparable to p. We say that an

element d ∈ Mid(P (B)) is defective if Ext(d) = Ext(e) for some e ∈ Ext(P (B)),
and let Def(P (B)) denote the set of all defective members of P (B). We recall that

Def(P (B)) = ∅ for any B which is rudimentary, see [10].
Davey’s description [4] of Priestley spaces of subdirectly irreducible algebras shows

that a finite algebra B is simple if and only if P (B) is connected and P (B) =

Ext(P (B)), while B is subdirectly irreducible but not simple exactly when P (B)
is connected and Mid(P (B)) = {b} is a singleton. In the latter case, P (B/ΦB) is
always isomorphic to Ext(P (B)) and two possibilities arise: either b is non-defective,
B is a nucleus, and there is no homomorphism B/ΦB → B, or else b is defective and
the algebra B/ΦB is a proper retract of B. Consequently, the rudiment Rud(A) of

an algebra A from a finitely generated variety V provides no information whatso-
ever about that fragment of a subdirect decomposition of A which is determined by

subdirectly irreducible quotients of A possessing proper retracts. Thus, according to
the result of [10] noted earlier, the presence of any combination of subdirectly irre-

ducibles with proper retracts does not affect the universality of a finitely generated
variety V at all. It will be seen that, unlike for universal varieties, α-determinedness
of an almost regular variety V strongly depends on how the two types of subdirectly
irreducibles combine in V.

To state our main result, we let � � denote the class of all those posets P (A) of

prime filters of distributive double p-algebras A for which the subposet Def(P (A))
is convex.

Main Theorem. The following properties of a finitely generated almost regular
variety V of distributive double p-algebras are equivalent:
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(1) V is α-determined for some cardinal α;
(2) V is n-determined for some finite cardinal n = n(V);
(3) {P (A) | A ∈ V} ⊆ � � .

Thus, for instance, every finitely generated variety of regular algebras, the group

universal variety S of double Stone algebras, and countably many other almost reg-
ular varieties are n-determined for some finite n.

The implication (2) ⇒ (1) in the Main Theorem is trivial, while (1) ⇒ (3) is

proved in the last section, where it is also shown that there is no common finite
upper bound of cardinalities n(V) for finitely generated varieties V ⊆ R.
The remainder of the paper is devoted to showing that (3) ⇒ (2). The proof uses

Priestley’s duality for distributive double p-algebras. Following a section on prelim-
inaries, we begin to build up a supply of ‘recognizable’ idempotent endomorphisms

in Sections 1 to 3, and their collections in Sections 4 and 5. In Section 6, on any
equimorphic class S ⊆ � � we define nine progressively finer equivalences. Then we

show that each of these equivalences decomposes S into finitely many subclasses,
and that any two members of any class of the ninth equivalence are isomorphic.

We hope that the reader will agree that Priestley’s duality is a powerful yet deli-

cate tool, and one that is uniquely suited to structural investigations such as those
presented here.

Preliminaries

We begin with a brief review of the essentials of Priestley’s duality.

Let (X, τ,�) be an ordered topological space, that is, let (X, τ) be a topological
space and (X,�) a partially ordered set. For any Z ⊆ X write

(Z] = {x ∈ X | ∃z ∈ Z x � z} and [Z) = {x ∈ X | ∃z ∈ Z z � x}.

A subset Z of X is decreasing if (Z] = Z, increasing if [Z) = Z, and clopen if
it is both τ -open and τ -closed. Any compact ordered topological space (X, τ,�)
possessing a clopen decreasing set D such that x ∈ D and y /∈ D for any x, y ∈ X

with x � y is called a Priestley space.

Following is a well known property of Priestley spaces.

Lemma P.0. If F0 is a closed subset of a Priestley space (X, τ,�), then [F0) and
(F0] are closed. If F1 ⊆ X is also closed and F0 ∩ (F1] = ∅, then there is a clopen
decreasing set D ⊆ X such that F1 ⊆ D and F0 ∩D = ∅.
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Let P denote the category of all Priestley spaces and all their continuous order
preserving mappings. Clopen decreasing sets of any Priestley space form a dis-
tributive (0,1)-lattice, and the inverse image map f−1 of any P-morphism f is a
(0,1)-homomorphism of these lattices. This gives rise to a contravariant functor

D : P −→ D into the category D of all distributive (0,1)-lattices and all their (0,1)-
homomorphisms. Conversely, for any lattice L ∈ D, let P (L) = (P (L), τ,�) be the
ordered topological space on the set P (L) of all prime filters of L ordered by the re-
versed inclusion, and such that the sets {x ∈ P (L) | A ∈ x} and {x ∈ P (L) | A /∈ x}
with A ∈ L form an open subbasis of τ . If h : L −→ L′ is a morphism in D then
h−1 maps P (L′) into P (L) and, according to [15], this determines a contravariant

functor P : D −→ P.

Theorem P.1. (Priestley [15], [16]). The two composite functors P ◦D : P −→
P and D ◦ P : D −→ D are naturally equivalent to the identity functors of their
respective domains. Therefore D is a category dually isomorphic to P.

The two simple claims below will also be useful.

Lemma P.2. Let (X, τ) be a compact 0-dimensional space. Then any collection
U of clopen sets separating points of X is a subbase of τ .

�����. Let σ be the coarsest topology on X for which every U ∈ U is σ-

clopen. Then (X,σ) is a Hausdorff space, and the identity map (X, τ) → (X,σ) is
continuous. Since (X, τ) is compact, both (X, τ) and (X,σ) are compact Hausdorff

spaces, and hence σ = τ . �

Lemma P.3. If (X, τ) and (Y, σ) are topological spaces and f : X −→ Y is a

mapping such that f−1(U) is open for any U ∈ U for some subbase U of σ, then f

is continuous.

Let Min(X) and Max(X) respectively denote the sets of all minimal and maximal

elements of a Priestley space (X, τ,�), and let Mid(X) = X \ (Min(X) ∪Max(X)).
For any Y ⊆ X , denote Min(Y ) = (Y ] ∩ Min(X), Max(Y ) = [Y ) ∩ Max(X) and
Ext(Y ) = Min(Y )∪Max(Y ). When Y = {y}, we write Min(y) instead of Min({y}),
and similarly for Max and Ext. If (X, τ,�) is a Priestley space and Y ⊆ X is nonvoid,

then the sets Min(Y ) and Max(Y ), and hence also their union Ext(Y ) are nonvoid.
In particular, Min(x), Max(x) and Ext(x) are nonvoid for every x ∈ X .

477



Theorem P.4. (Priestley [17]). Let P : D −→ P be the functor assigning
Priestley spaces to distributive (0,1)-lattices, and let h : L −→ L′ be a morphism in

D. Then

(1) L is a distributive double p-algebra if and only if (Y ] is clopen for every clopen
increasing subset Y of P (L) and [W ) is clopen for any clopen decreasing set

W ⊆ P (L);
(2) h is a double p-algebra homomorphism iff P (h)(Min(x)) = Min(P (h)(x)) and

P (h)(Max(x)) = Max(P (h)(x)) for every x ∈ P (L′);
(3) for any distributive double p-algebra L, the sets Min(P (L)) and Max(P (L))

are closed;

(4) h is injective if and only if P (h) : P (L′) −→ P (L) is surjective;

(5) h is surjective if and only if P (h) is a homeomorphism and order isomorphism
of P (L′) onto a closed order subspace Z ⊆ P (L) satisfying Ext(Z) ⊆ Z.

Definition and notation. The Priestley space P (A) of a distributive double
p-algebra A will be called a dp-space, the dual of a double p-algebra homomorphism

a dp-map, and the property from (2) above the dp-property.

For any variety V of distributive double p-algebras, let P (V) denote the category
of all dp-spaces of algebras from V and all dp-maps between them.

For any dp-space X , let End(X) denote the monoid consisting of all dp-maps

f : X → X and, for any f ∈ End(X), let Im(f) denote its image. Then Im(f) ⊆ X

is a closed order subspace of X and Ext(Im(f)) ⊆ Im(f) for every f ∈ End(X).
We shall also need the following consequence of Lemmas 1.3 and 1.4 of [7].

Lemma P.5. If X is a dp-space and f, g ∈ End(X) are idempotent, then
(1) the map ξ : End(Im(f)) → f End(X)f defined by ξ(k) = kf is an isomor-

phism of End(Im(f)) onto f End(X)f with the inverse ξ−1(h) = fh � Im(f),
(2) Im(f) ∼= Im(g) if and only if there exist h, k ∈ End(X) such that hk = f ,

kh = g, hg = fh = h, and kf = gk = k.

We conclude with a simple but useful claim about partially ordered sets.

Lemma P.6. For i = 0, 1, let (Xi,�) be posets, and let Mi be monoids of order

preserving maps of Xi for which there exists an isomorphism ψ : M0 −→ M1. Let

U ⊆ X0 and let ϕ : U −→ X1 be a one-to-one mapping such that

elements u, v ∈ U are comparable in X0 exactly when ϕ(u), ϕ(v) ∈ ϕ(U) are
comparable in X1;
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there exists a comparable pair {x, y} ⊆ U such that for every comparable

pair {u, v} ⊆ U there exists an f ∈M0 satisfying

{f(x), f(y)} = {u, v} and {ψ(f)(ϕ(x)), ψ(f)(ϕ(y))} = {ϕ(u), ϕ(v)}.

Then the bijection ϕ of U onto ϕ(U) ⊆ X1 is either an order isomorphism or an

order anti-isomorphism.

�����. We may assume that x � y. Then either ϕ(x) � ϕ(y) or ϕ(x) � ϕ(y).

For any u � v in U , there is an f ∈ M0 such that f(x) = u, f(y) = v and
{ϕ(u), ϕ(v)} = {ψ(f)(ϕ(x)), ψ(f)(ϕ(y))} is a comparable pair. Since ψ(f) preserves
order, we have ϕ(u) � ϕ(v) when ϕ(x) � ϕ(y), and ϕ(u) � ϕ(v) when ϕ(x) � ϕ(y),
so that ϕ either preserves or reverses the order. But ψ is an isomorphism, so that

the bijection ϕ−1 : ϕ(U)→ U preserves or reverses the order as well. �

1. Basic idempotent dp-endomorphisms

Definitions. Let �� denote the class of all dp-spaces X for which the algebra

D(X) belongs to some finitely generated variety V.
For any X ∈ �� , let Rud(X) denote the dp-space of the rudiment of the distribu-

tive double p-algebraD(X). We say that X ∈ �� is rudimentary if Rud(X) ∼= X . A
rudimentary dp-space X is called a nucleus if the algebra D(X) is directly indecom-

posable. We recall that, for X ∈ �� , the algebra D(X) is directly indecomposable
exactly when X is order connected.

Any maximal order connected subset C ⊆ X ∈ �� is closed in X , see [4] or [11].
Any such C will be called a component of X , and the set of all components of X

will be denoted by � (X).
For any Y ⊆ X , write K(Y ) =

⋃{C ∈ � (X) | C ∩ Y = ∅}. Clearly, K(Y ) ⊆ X is

the union of all components intersected by Y .
Finally, let � � be the subclass of �� formed by all dp-spaces X for which

Mid(Rud(X)) is an antichain. Any such space will be called almost regular.

Lemma 1.1 [10]. Let kX : X −→ Rud(X) denote the Priestley dual of the

inclusion map of the algebraic rudiment D(Rud(X)) of the algebra D(X) into D(X)
itself. Then kX(x) = kX(x′) if and only if Ext(x) = Ext(x′).

Furthermore, for every dp-map f : X −→ X ′ there exists a uniquely determined

dp-map Rud(f) : Rud(X) −→ Rud(X ′) such that Rud(f)kX = kX′f .

For any rudimentary R ∈ �� , the set � (R) consists of finite nuclei and has only
finitely many isomorphism classes.
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From Lemma 1.1 it follows that X ∈ �� if and only if all components of Rud(X)

are finite and only finitely many of them are non-isomorphic.

Definitions. For any y ∈ X ∈ �� , set

E(y) = {x ∈Mid(X) | Ext(x) = Ext(y)}.

Let X ∈ �� . Any x ∈Mid(X) with kX(x) ∈ Ext(Rud(X)) will be called defective.
According to Lemma 1.1, this means that x ∈ E(z) for some z ∈ Ext(X).
Let C ∈ � (X). If |C| > 1 and E(u) ∩ E(z) = ∅ for some z ∈ Min(C) and some

u ∈ Max(C), then Ext(C) = {z, u} and E(x) = Mid(C) for all x ∈ C. In this case,
any element x ∈ Mid(C) is called doubly defective. If |Ext(C)| > 2 and x ∈ E(z)
for some z ∈ Min(C), then x /∈ E(u) for every u ∈ Max(C), and we say that x
is min-defective. A max -defective element is defined dually. Any x ∈ C such that
x /∈ E(z) for every z ∈ Ext(C) is non-defective.
For any X ∈ �� , let Def(X) ⊆ Mid(X) denote the set of all defective elements

of X .

Finally, let � � consist of all spaces X ∈ �� for which the set Def(X) is convex.

Lemma 1.2 [10]. Let X ∈ �� . If Y ⊆ X is closed then K(Y ) is closed, if Y is

clopen decreasing or clopen increasing thenK(Y ) is clopen. If z ∈ X is non-defective,
then E(z) is closed.

The claim below is of central importance, and may be of independent interest. In
algebraic terms, it says that any directly indecomposable image of a rudimentary

distributive double p-algebra R from a finitely generated variety V is a retract of a
direct factor of R.

Lemma 1.3. If X ∈ �� is rudimentary and C ∈ � (X), then there exist a clopen
set D = K(D) containing C and an idempotent g ∈ End(D) with Im(g) = C.

�����. If the component C is a singleton {c}, then the constant mapping g
with g(X) = {c} fulfils all requirements.
If the component C has more than one element, we proceed analogously to the

proof of Lemma 4.1 in [10], as follows.

Since Min(C)∩Max(X) = ∅, Max(C)∩Min(X) = ∅, and C is finite by Lemma 1.1,
for every z ∈ Min(C) there is a clopen decreasing set dAz with dAz ∩ C = {z} and
dAz ∩Max(X) = ∅. Furthermore, for every u ∈ Max(C) there is a clopen increasing
set iAu with iAu ∩ C = {u}, iAu ∩Min(X) = ∅, and such that iAu ∩ dAz = ∅ for
every z ∈Min(C).
For any z ∈Min(C) and u ∈ Max(C), set
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dXz = dAz \ [
⋃{dAv | v ∈Min(C) \ {z}}),

iXu = iAu \ (
⋃{iAt | t ∈ Max(C) \ {u}}].

Since (X,�, τ) is a dp-space and C is finite, dXz is clopen decreasing and z ∈
dXz ⊆ dAz for every z ∈Min(C), while iXu is clopen increasing and u ∈ iXu ⊆ iAu
for every u ∈ Max(C). Hence {dXz | z ∈Min(C)} ∪ {iXu | u ∈Max(C)} is a family
of pairwise disjoint sets.
Next we set, for every z ∈ Min(C) and every u ∈Max(C),
dZz = dXz \ [

⋃{(iXt] | t ∈Max(C) \Max(z)}), and
iZu = iXu \ (

⋃{[dXv) | v ∈Min(C) \Min(u)}].
Again, the finiteness of C and the fact that (X,�, τ) is a dp-space imply that

dZz is clopen decreasing and z ∈ dZz ⊆ dXz for every z ∈ Min(C), while iZu is
clopen increasing and u ∈ iZu ⊆ iXu for every u ∈ Max(C). Hence {dZz | z ∈
Min(C)} ∪ {iZu | u ∈Max(C)} is a family of pairwise disjoint sets. Furthermore,
(cZ) if p < q for some p ∈ dZz and q ∈ iZu, then z < u.

Indeed, p ∈ (iXu] because q ∈ iZu ⊆ iXu, and the definition of dZz shows that, for
p ∈ dZz , this is possible only when u ∈Max(z).
In the next step, for every z ∈Min(C) and every u ∈ Max(C) we set
dBz =

⋂{(iZt] | t ∈Max(z)} ∩ dZz , and
iBu =

⋂{[dZv) | v ∈Min(u)} ∩ iZu.
It is clear that dBz is clopen decreasing, that z ∈ dBz ⊆ dZz ⊆ dAz and hence

dBz ∩ C = {z} for every z ∈ Min(C), and that iBu is clopen increasing such that
u ∈ iBu ⊆ iZu ⊆ iAu and hence iBu ∩ C = {u} for every u ∈ Max(C). Therefore
{dBz | z ∈ Min(C)} ∪ {iBu | u ∈ Max(C)} consists of pairwise disjoint sets. The
property (cB) below then follows from (cZ), while (BZ) follows from the definition

of dBz and iBu.

(cB) if z ∈ Min(C) and u ∈ Max(C) are such that p < q for some p ∈ dBz and

q ∈ iBu, then z < u.
(BZ) if z ∈ Min(C) and u ∈ Max(C) are such that z < u, then dBz ⊆ (iZu] and

iBu ⊆ [dZz).
Set D0 =

⋃{dBz | z ∈ Min(C)}, D1 =
⋃{iBz | z ∈ Max(C)}. Since D0 is clopen

and decreasing, the decreasing set D2 = X \ [D0) is clopen, and Min(D2) = Min(X)\
D0. Similarly,D3 = X\(D1] is clopen increasing and such that Max(D3) = Max(X)\
D1. Hence K(D2) ∪K(D3) is clopen, and so is the set D4 = X \ (K(D2) ∪K(D3)).
From the definition of D4 it follows that Min(x) ⊆ D0 and Max(x) ⊆ D1 for every

x ∈ D4, and that D4 ⊇ C. Set

dDz = dBz ∩D4 for every z ∈Min(C),
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iDu = iBu ∩D4 for every u ∈ Max(C).
Clearly, the set dDz is clopen decreasing and z ∈ dDz ⊆ dBz for every z ∈Min(C),

and iDu is clopen increasing and u ∈ iDu ⊆ iBu for every u ∈ Max(C). Hence the
family {dDz | z ∈ Min(C)} ∪ {iDu | u ∈ Max(C)} consists of pairwise disjoint sets,
and (cB) implies that

(cD) if z ∈ Min(C) and u ∈ Max(C) are such that p < q for some p ∈ dDz and
q ∈ iDu then z < u.

These sets also have a strong converse property.

(DD) If z ∈Min(C), u ∈Max(C) and z < u, then dDz ⊆ (iDu] and iDu ⊆ [dDz).

To justify the first conclusion of (DD), let x ∈ dDz = dBz ∩ D4. From (BZ) it
follows that x � y for some y ∈ iZu. Then y ∈ D4 and, since iZu is increasing,
we may assume that y ∈ Max(x). But Max(x) ⊆ D1 and iZu ∩ iBt = ∅ for all
t ∈ Max(C) \ {u}, so that y ∈ iBu ∩ D4 ∩Max(X). This proves the first claim in
(DD). The remainder follows by a dual argument.

For any Z ⊆ Min(C) and U ⊆ Max(C) define
dDZ =

⋃{dDz | z ∈ Z} and iDU =
⋃{iDz | z ∈ U};

Q(Z) = (
⋂{[dDz) | z ∈ Z}) ∩ (D4 \ [dDMin(C)\Z)) or, equivalently,

y ∈ Q(Z) ⇔ y ∈ D4 and Z = {z ∈Min(C) | Min(y) ∩ dDz = ∅};
R(U) = (

⋂{(iDu] | u ∈ U}) ∩ (D4 \ (iDMax(C)\U ]) or, equivalently,
y ∈ R(U) ⇔ y ∈ D4 and U = {u ∈ Max(C) | Max(y) ∩ iDu = ∅};
S(Z,U) = Q(Z) ∩R(U).
Since we are working in a dp-space and because C is finite, all these sets are

clopen. Since {dDz | z ∈Min(C)} and {iDu | u ∈Max(C)} are disjoint families, the
(possibly empty) sets S(Z,U) are pairwise disjoint.

If c ∈ S(Z,U)∩C then, since dDz∩C = {z} for z ∈ Min(C) and iDu∩C = {u} for
u ∈Max(C), we have Z = Min(c) and U = Max(c). Hence c ∈ S(Min(c),Max(c)) =
Sc and, because C is rudimentary, Sc ∩ C = {c}. Therefore, for any Z ⊆ Min(C)
and U ⊆ Max(C), either S(Z,U) ∩C = ∅ or S(Z,U) = Sc for some c ∈ C.
Since each of the finitely many sets S(Z,U) is closed, each set

K(S(Z,U)) =
⋃
{C′ ∈ � (X) | C′ ⊆ D4 and C′ ∩ S(Z,U) = ∅}

is closed, and the set

D5 =
⋃
{K(S(Z,U)) | Z ⊆ Min(C), U ⊆ Max(C), S(Z,U) ∩ C = ∅}

is closed as well. Clearly, D5 = K(D5), D5 ∩ C = ∅, and a component C′ of D4 is

contained in D4 \D5 if and only if C ∩K(S(Z,U)) = ∅ implies C′ ∩K(S(Z,U)) = ∅
for every Z ⊆ Min(C) and every U ⊆ Max(C).
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For Z1 ⊆ Z2 ⊆ Min(C) and U2 ⊆ U1 ⊆ Max(C), and only for such sets, write
T (Z1, Z2, U1, U2) = K(S(Z1, U1) ∩ (S(Z2, U2)]). Then

T (Z1, Z2, U1, U2) =
⋃
{C′ ∈ � (X) | ∃x ∈ S(Z1, U1),
∃y ∈ S(Z2, U2) x � y ∈ C′ ⊆ D4}

is a closed set, so that the finite union

D6 =
⋃
{T (Z1, Z2, U1, U2) | c ∈ S(Z1, U1) ∩ C, d ∈ S(Z2, U2) ∩ C =⇒ c � d}

is also closed. Clearly D6 = K(D6) and D6 ∩ C = ∅.
Therefore D7 = D4 \ (D5 ∪ D6) is open, D7 ⊇ C and K(D7) = D7. Since

D7 ∩D5 = ∅, the open sets Hc = Sc ∩D7 form a decomposition of D7 and satisfy
Hc ∩ C = {c} for every c ∈ C.
We may thus define a mapping h : D7 −→ D7 by the requirement that h(y) = c for

all y ∈ Hc and c ∈ C. Then h is idempotent, Im(h) = C, and h is continuous because
Im(h) is finite and h−1{c} = Hc is open for every c ∈ Im(h). From D7 ∩ D6 = ∅
it follows that x � y for some x ∈ Hc and y ∈ Hd only when c � d in C, and this
shows that h preserves the order.

Next we prove that h preserves extremal elements. If x ∈ Min(D7), then x ∈ dDz

for a unique z ∈ Min(C), so that x ∈ Q({z}), and we need only show that x ∈
R(Max(z)). But (DD) implies that x ∈ (iDu] for all u ∈ Max(z) and from (cD) it
follows that x /∈ (iDt] for each t ∈ Max(C) \Max(z). Hence x ∈ Hz and h(x) = z

follows. This also shows that h(dDz) = {z} for every z ∈ Min(C). Analogously we
find that h(iDu) = {u} for all u ∈Max(C).
Let y ∈ D7 be arbitrary and h(y) = c ∈ C. Then y ∈ Hc ⊆ Q(Min(c)), so that

Min(c) = {z ∈ Min(C) | Min(y) ∩ dDz = ∅}. From h(dDz) = {z} for z ∈ Min(C)
it then follows that h(Min(y)) = Min(c) = Min(h(y)). Analogously, h(Max(y)) =
Max(h(y)) for any y ∈ D7.
Since C is closed decreasing and D7 is open decreasing, there exists a clopen

decreasing set D8 with C ⊆ D8 ⊆ D7. Then D = K(D8) is clopen, and D ⊆ D7

because D7 is also increasing. The restriction g of h to D is the required idempotent
dp-map. �

Theorem 1.4. Let X ∈ �� be rudimentary and let C ⊆ � (X) be a finite set

containing an isomorphic copy of every member of � (X). Let D ⊆ � (X) be disjoint
with C and finite. For every D ∈ D , let a dp-map ϕD : D → C ∈ C be given. Then

there exists an idempotent f ∈ End(X) with Im(f) = ⋃
C and f � D = ϕD for

every D ∈ D .

483



�����. Let C ′ = C ∪ D . Since C ′ is finite, Lemma 1.3 implies the existence

of a family {ZC | C ∈ C ′} of disjoint clopen sets such that C ⊆ ZC = K(ZC), and
of idempotent dp-maps gC : ZC −→ ZC with Im(gC) = C for every C ∈ C ′. Thus
Y = X \ (⋃{ZC | C ∈ C ′}) is clopen in X and hence compact. Again by Lemma
1.3, for every component D ⊆ Y there exists an idempotent dp-map gD : ZD −→ ZD
with Im(gD) = D defined on a clopen set ZD satisfying D ⊆ ZD = K(ZD) ⊆ Y .

Since Y is compact, we may assume that Y =
⋃{ZD | D ∈ D ′} for some finite

D ′ ⊆ � (Y ). Clearly D ′ ∩D = ∅. Since all ZD = K(ZD) with D ∈ D ′ are clopen, we

may also assume that they are pairwise disjoint. For each D ∈ D ′ choose a dp-map
ϕD : D → C ∈ C arbitrarily. Then a mapping f : X −→ X defined by

f(y) =

{
gC(y) for all y ∈ ZC with C ∈ C ,

ϕDgD(y) for all y ∈ ZD with D ∈ D ∪D ′

is the required idempotent dp-map. �

Definition. For X ∈ � � and any C ∈ � (X), we define the Stone nucleus
Nuc(C) of C by

Nuc(C) =

{
Rud(C) if |Ext(C)| = 2,
Ext(C) if |Ext(C)| = 2.

It is clear that in the latter case C represents a double Stone algebra.

Observe that if C ∈ �� is a Stone nucleus then every x ∈Mid(C) is non-defective
and E(x) = {x}.
To show some important properties of Stone nuclei, first we recall from Lemma

1.1 that for any X ∈ �� , the surjective mapping kX : X −→ Rud(X) satisfies
kX(x) = kX(y) exactly when Ext(x) = Ext(y). In particular, kC maps Ext(C)

bijectively onto Ext(kC(C)) with only one exception: if C ∈ � (X) is such that
|Ext(C)| = 2, then kC(C) = Rud(C) is a singleton.
If, on the other hand, C ∈ � � has more than two extremal elements, then any

mapping hC : Rud(C) −→ C such that kChC = 1Rud(C) and hCkC(z) = z for every
z ∈ Ext(C) is a dp-map. Indeed, its continuity follows from the finiteness of Rud(C),
we have hC(Ext(t)) = Ext(u) = Ext(hC(t)) for every t = kC(u) ∈ Rud(C), and hC
preserves order because Mid(Rud(C)) is an antichain. Furthermore, if x ∈ Mid(C)
is non-defective, then x ∈ Im(hC) for some left inverse hC of kC .
A Stone nucleus Nuc(C) = {z, u} of a component C with Min(C) = {z} and

Max(C) = {u} has a similar property: there is a surjective dp-map lC : C −→ {z, u}
because for some clopen decreasing set A ⊆ C we have z ∈ A and u ∈ C \ A. The
injection hC of {z, u} into C is a dp-map for which lChC is the identity of Nuc(C).
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From these observations it follows that

(A) for any order connected C ∈ � � and any subspace N ⊆ C isomorphic to

Nuc(C), there is an idempotent fN ∈ End(C) with Im(fN ) = N .
Let X ∈ � �. If C ∈ � (X) and an idempotent f ∈ End(X) satisfy Im(f)∩C = ∅,

then f(C) ⊆ C and hence Ext(C) ⊆ Im(f). Hence Ext(f(t)) = Ext(t) for all t ∈ C.
When |Ext(C)| > 2, this implies that kCfhC = kChC is the identity endomorphism
of Nuc(C). Thus N = fhC(Nuc(C)) ⊆ Im(f) ∩ C is a dp-subspace of C isomorphic
to Nuc(C). For any C with |Ext(C)| � 2 it is clear that N = Ext(C) ⊆ Im(f) is
isomorphic to Nuc(C). Therefore

(B) if X ∈ � �, then for any idempotent f ∈ End(X) and for any C ∈ � (X),

either f(C) ∩ C = ∅ or f(C) ∩ C contains a dp-subspace N isomorphic to
Nuc(C).

If C,D ∈ � (X) and Nuc(C) ∼= Nuc(D), then, by (A), there exists a dp-map
g : D −→ C with finite image. Thus for every dp-map f : C −→ D there exists
some finite n such that (gf)n is idempotent. Hence the foregoing observations can

be extended as follows:

(C) if X ∈ � � and if C,D ∈ � (X) with Nuc(C) ∼= Nuc(D) then for every dp-
endomorphism f of X with f(C) ⊆ D there exists a dp-subspace N ⊆ C with

N ∼= Nuc(C) such that f is one-to-one on N ; hence Im(f) ∩ D contains a
dp-subspace N ′ isomorphic to Nuc(D).

Even though observations (A), (B), and (C) deal only with connected dp-spaces,

they also inform us that the notion of Stone nucleus might be quite useful.

Definitions. For a given Stone nucleus N and a dp-space X ∈ �� , write

�N (X) = {C ∈ � (X) | Nuc(C) ∼= N}

and

� (2) (X) =
⋃
{�N (X) | |�N (X)| � 2}.

A family C ⊆ � (X) of components of a dp-space X ∈ �� is a Stone plot of X if for

every C′ ∈ � (X) there exists a component C ∈ C with Nuc(C′) ∼= Nuc(C).

Clearly, any X ∈ �� has a finite Stone plot.

Theorem 1.5. Let X ∈ � �, let C be a finite Stone plot of X , and let NC ⊆ C

be a dp-subspace isomorphic to Nuc(C) for every component C ∈ C . Let D ⊆ � (X)

be disjoint with C and finite, and let a dp-map ϕD : D → ⋃{NC | C ∈ C } be given
for every D ∈ D .
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Then there exists an idempotent f ∈ End(X) such that Im(f) = ⋃{NC | C ∈ C }
and f � D = ϕD for every D ∈ D .

�����. Let k : X −→ X ′ be the dp-map of X onto its rudiment X ′ = Rud(X),
see Lemma 1.1. For j = 1, 2, denote Cj = {C ∈ C | |Ext(C)| = j} and C ′

j = {k(C) |
C ∈ Cj}, and write C ′ = {k(C) | C ∈ C }, D ′ = {k(D) | D ∈ D}. Let D2 denote the
set of all D ∈ D such that ϕD : D → C ∈ C2 and D ′

2 = {k(D) | D ∈ D2}. Clearly, if
D ∈ D2 then |Ext(D)| � 2.
Since everyD ∈ D is connected, so is Im(ϕD). Hence there is a unique C ∈ C such

that Im(ϕD) ⊆ NC ⊆ C. By Lemma 1.1, there exists a unique dp-map ϕ′
D : k(D) =

D′ → k(C) with kϕD = ϕ′
D′k.

Since the set C ′∪D ′ ⊆ � (X ′) is finite and k(Min(X)∩Max(X)) is closed, for every
C′ ∈ C ′

2∪D ′
2 there exists a clopen set VC′ ⊆ X ′ with VC′ ∩k(Max(X)∩Min(X)) = ∅,

K(VC′) = VC′ ⊇ C′, and such that C′ is the only member of C ′
2 ∪D ′

2 intersected by

VC′ . Write X ′
2 =

⋃{VC′ | C′ ∈ C ′
2 ∪D ′

2} and X ′
1 = X

′ \X ′
2. By Theorem 1.4, there

exist idempotents f ′1 ∈ End(X ′
1) and f

′
2 ∈ End(X ′

2) such that Im(f
′
1) =

⋃
(C ′ \ C ′

2),

Im(f ′2) =
⋃

C ′
2 and f

′
1 � D′ = ϕ′

D′ for every D′ ∈ D ′ \ D ′
2, f

′
2 � D′ = ϕ′

D′ for every
D′ ∈ D ′

2. Then f
′ = f ′1 ∪ f ′2 ∈ End(X ′) is idempotent.

Since Im(f ′) is finite, there exists a clopen set B ⊆ X ′ such that B = K(B) and
B∩ Im(f ′) = ⋃

C ′
2. Hence A = (f

′k)−1(B) is clopen, A = K(A) and A∩(⋃ C ′
1) = ∅,

so that there is a clopen decreasing setA0 ⊆ A with Min(A) ⊆ A0 and Max(A)∩A0 =
∅ and such that, for every D ∈ D2, A0 ∩ D = ϕ−1

D (Min(X)) ∩D—see Lemma P.0.
For every C ∈ C \ C2, choose hC : k(C) → C so that Im(hC) = NC and hCk is
the identity of NC . Then hCϕ′

Dk = ϕD for any D ∈ D \ D2. For C ∈ C2 denote

Min(C) = {yC}, Max(C) = {zC} and define a mapping f by

f(x) =





hCf
′k(x) if f ′k(x) ∈ C′ ∈ C ′ \ C ′

2,

zC if f ′k(x) ∈ C′ ∈ C ′
2 and x /∈ A0,

yC if f ′k(x) ∈ C′ ∈ C ′
2 and x ∈ A0.

Since A contains only components with at least two extremals we obtain that f ∈
End(X) is idempotent. From the choice of D′ ∈ D ′, ϕ′

D′ and A0 it follows that
f � D = ϕD for any D ∈ D . �

The observation below supplements Theorem 1.5.

Statement 1.6. Let X ∈ �� , and let f ∈ End(X) be an idempotent such that
Im(f) intersects only finitely many components of X . Then for every g ∈ End(X)
with Im(g) ⊆ Im(f) there exists an idempotent h ∈ End(X) such that

Im(h) =
⋃
{Im(f) ∩ C | C ∈ � (X), C ∩ Im(g) = ∅}.
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�����. Denote C = {C ∈ � (X) | C ∩ Im(g) = ∅} and define a mapping h as
follows:

h(x) =

{
gf(x) for x ∈ f−1(X \⋃

C ),

f(x) for x ∈ f−1(⋃ C ).

The set of all components intersecting Im(f) is finite, so that f−1(C) is clopen for
every C ∈ � (X), and hence h ∈ End(X) because f and g are dp-maps. Since
f is idempotent and Im(g) ⊆ Im(f), the dp-map h is idempotent and Im(h) =⋃{Im(f) ∩ C | C ∈ � (X), Im(g) ∩ C = ∅}. �

Theorem 1.7. Let X ∈ �� , and let g ∈ End(X) be an idempotent such that
Im(g) is finite. Let x ∈ Im(g) and y ∈ g−1{x} satisfy x < y. If F1 ⊆ g−1{x}\Min(X)
is a closed set with y ∈ F1 and such that

(t) v ∈ Im(g) ∩Mid(X), v = x and v /∈ [y) ⇒ g−1{v} ∩ [F1) = ∅,

and if F0 ⊆ g−1{x} is another closed set with x ∈ F0 and [F1)∩F0 = ∅, then there is
an idempotent f ∈ End(X) with Im(f) = Im(g) ∪ {y}, F0 ⊆ f−1{x}, F1 ⊆ f−1{y},
and such that f−1{z} = g−1{z} for all z ∈ Im(g) \ {x}.

�����. The set G =
⋃{g−1{v} | v ∈ Mid(X) \ ([y) ∪ {x})} is closed because

g is a dp-map and Im(g) is finite. From the hypothesis and from (t) it then follows

that [F1) and the closed set F0 ∪ G ∪Min(X) are disjoint. Since X is a Priestley
space, there is a clopen increasing set U ⊇ [F1) disjoint with F0∪G∪Min(X). Since
x /∈ Max(X), we have g−1{x} ∩Max(X) = ∅, so that the set Y = g−1{x} ∩ U is
contained in Mid(X), and is increasing in g−1{x}.
Set

f(t) =

{
y for all t ∈ Y,
g(t) for all t ∈ X \ Y.

Then f is idempotent with Im(f) = Im(g) ∪ {y}, F0 ⊆ f−1{x}, F1 ⊆ f−1{y} and
f−1{z} = g−1{z} for all z = x. Since Y is clopen and g is continuous, the map
f is continuous as well. Since g ∈ End(X) is idempotent and x ∈ Im(g), we have
g(z) = z for all z ∈ Ext(K(x)). But then Ext(y) = Ext(x) follows from y ∈ K(x)
and g(y) = x. Moreover, f(z) = g(z) for all z ∈ Ext(X) because Y ⊆ Mid(X).
These two facts imply that f(Ext(t)) = Ext(f(t)) for all t ∈ X .
To show that f preserves order, it is enough to consider comparable t ∈ Y and

t′ ∈ X \ Y . For such elements we have g(t) = x, f(t) = y and f(t′) = g(t′).
If t′ < t, then f(t′) = g(t′) � g(t) = x < y = f(t) because g preserves order.

Suppose that t < t′. Since U is increasing and t ∈ U , we have t′ ∈ U , and from
Y = g−1{x} ∩U it then follows that x = g(t) < g(t′). In particular, g(t′) /∈Min(X).
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If g(t′) ∈Mid(X) and f(t) � f(t′), then y � g(t′) and hence t′ ∈ G, which contradicts
the fact that G ∩ U = ∅. In the remaining case we have g(t′) ∈ Max(x), and
f(t) = y < g(t′) = f(t′) follows from Max(x) = Max(y). �

Lemma 1.8. Let X ∈ � �, let h ∈ End(X) be idempotent, and let D0,D1 ⊆
� (X) be finite disjoint sets such that Im(h)∩D = ∅ for every D ∈ D0∪D1. For each

D ∈ D0 ∪ D1, let ϕD be a dp-map defined on D and factorizing through Nuc(D),

and such that ϕD(D) ⊆ Im(h) for all D ∈ D0 and ϕD(D) ⊆ D for each D ∈ D1.

Then there is an idempotent f ∈ End(X) such that f � D = ϕD for every

D ∈ D0 ∪D1 and Im(f) = Im(h) ∪
⋃{Im(ϕD) | D ∈ D1}.

�����. Since D = D0 ∪D1 ⊆ � (X) is finite, from Lemma P.0 and Lemma 1.3
it follows that there is a family {VD|D ∈ D} of mutually disjoint, clopen, increasing
and decreasing sets satisfying VD ⊇ D and VD∩Im(h) = ∅ for everyD ∈ D , and such
that there exists a surjective dp-map fD : VD → Nuc(D). It can be also assumed
that, for any x, y ∈ D, we have fD(x) = fD(y) exactly when ϕD(x) = ϕD(y). For
any D ∈ D , let gD : Nuc(D) → X be a dp-map for which gDfD = ϕD. Then the
map f defined by

f(t) =

{
gDfD(t) for t ∈ VD with D ∈ D ,

h(t) for all other t

satisfies our claim. �

Remark 1.9. To formulate a more practical condition that is equivalent to

P (V) ⊆ � � for a finitely generated variety V, suppose that X ∈ �� contains
elements x, y, z ∈Mid(X) such that x is min-defective, y is max-defective, z is non-
defective, and [x) ∩ E(z) = ∅ = (y] ∩ E(z). We claim that there exists a surjective
dp-map h : X → Y for which h{x, y, z} ⊆ Mid(Y ), h(x) < h(z) < h(y) and h(z)

is non-defective. To prove this claim, we observe that x, y, z must belong to the
same component C of X , and that E(z) is closed, see Lemma 1.2. Thus the set

E(z) and all singletons in X \ E(z) form a closed decomposition θ of X such that
X/θ is Hausdorff. The surjective map h : X → X/θ = Y is therefore continuous

and induces an order on Y such that Y is a dp-space and h : X → Y is a dp-map.
Clearly h(x) < h(z) < h(y) and h(z) is non-defective. Therefore Y /∈ � � and D(Y )

is isomorphic to a subalgebra of D(X).

Thus if V ⊆ � � is a variety and X ∈ P (V), then [x)∩E(z) = ∅ or (y]∩E(z) = ∅
for any min-defective x, max-defective y and non-defective z in X .
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2. r-maps

Throughout this and subsequent sections, we restrict our attention to dp-spaces
from � �.

It is easy to see that if f ∈ End(X) is idempotent then, for any g ∈ End(X),
fg = g exactly when Im(g) ⊆ Im(f).

Notation. For any f, g ∈ End(X), we write g � f instead of fg = g whenever
f is idempotent. When g is also idempotent, we write g � f , while g < f means

that g, f ∈ End(X) are idempotents and Im(g) is a proper subset of Im(f).
For any idempotent f ∈ End(X), let [f ] be the set of all idempotents g ∈ End(X)

satisfying g � f and f � g. Hence g ∈ [f ] means that f, g ∈ End(X) are idempotents
and Im(f) = Im(g). We say that such idempotents are equivalent.

If f : X −→ Y is a dp-map and C ∈ � (X), then f(C) ⊆ D for a uniquely

determined D ∈ � (Y ). From the fact that a Stone nucleus of any component is
its retract, see (A), it follows that there exists a dp-map f ′ : Nuc(C) −→ Nuc(D).
Conversely, if C andD are connected and if there is a dp-map h : Nuc(C) −→ Nuc(D)
then (A) again implies the existence of a dp-map f : C −→ D.

Definition. A subspace S of X ∈ � � is called a Stone kernel of X if it satisfies
these three conditions:

(r1) for every C ∈ � (X) there exists a D ∈ � (X) with S ∩D = ∅ and Nuc(D) ∼=
Nuc(C),

(r2) if C0, C1 ∈ � (X) are distinct and S ∩ C0 = ∅ = S ∩ C1, then Nuc(C0) ∼=
Nuc(C1),

(r3) if C ∈ � (X) and S ∩ C = ∅ then S ∩C is isomorphic to Nuc(C).

It is clear that for any Stone kernel S of any X ∈ � �, the set {C ∈ � (X) | S∩C =
∅} is a minimal Stone plot of X .

Definition. Any idempotent f ∈ End(X) such that Im(f) is a Stone kernel of
X will be called an r-map.

An isomorphism ψ : End(X) → End(Y ) is an R-isomorphism if for any g ∈
End(X), ψ(g) is an r-map if and only if g is an r-map.

Statement 2.1. Let X,Y ∈ � �. Then

(1) if S ⊆ X is a Stone kernel of X then S is finite and there exists an r-map

f ∈ End(X) with Im(f) = S;
(2) if f ∈ End(X) is an r-map and g ∈ End(X) is idempotent, then g is an r-map
if and only if Im(f) is isomorphic to Im(g);
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(3) if ψ : End(X) −→ End(Y ) is an isomorphism such that ψ(f) is an r-map for
some r-map f ∈ End(X), then ψ is an R-isomorphism;

(4) if f0, f1, . . . , fn−1 ∈ End(X) are r-maps, then there exist r-maps g0, g1, . . . ,
gn−1 ∈ End(X) such that gi ∈ [fi] and gigj = gi for any i, j ∈ {0, 1, . . . , n−1};
if, moreover, f0(Im(fi)) = Im(f0) for all i ∈ {1, . . . , n− 1}, then g0 = f0 may
be chosen;

(5) if fi, gi are r-maps such that figi = fi and gifi = gi for i = 0, 1, f0 ∈ [f1],
and f0(z) = f1(z) for all z ∈ Im(g0)∩ Im(g1), then there exist r-maps h0 and
h1 such that hi ∈ [gi], hih1−i = hi and fi = f1−ih1−igi for i = 0, 1;

(6) if f ∈ End(X) is an r-map and for every x ∈ Mid(X) ∩ Im(f) an element
vx ∈ E(x) is given, then the mapping g defined for y ∈ X by

g(y) =

{
f(y) if f(y) ∈ Ext(X),
vf(y) if f(y) ∈Mid(X)

is an r-map of X ;

(7) for every x ∈ X \Def(X) there exists an r-map f ∈ End(X) with x ∈ Im(f);
(8) if x, y ∈ X are such that eitherNuc(K(x)) � Nuc(K(y)), orK(x) = K(y) and
Ext(x) = Ext(y), then there exists an r-map f ∈ End(X) with f(x) = f(y);

(9) if f ∈ End(X) is an idempotent and f � g for some r-map g ∈ End(X), then
for every x ∈ Im(f)\Def(X) there exists an r-map gx ∈ End(X) with gx � f

and gx(x) = x;
(10) if f, g ∈ End(X) are r-maps and h ∈ End(X), then h(Im(f)) = Im(g) if and

only if ghf = hf and every idempotent g′ ∈ End(X) with g′ < g satisfies

g′hf = hf .

�����. (1) follows from the definition of a Stone kernel and Theorem 1.5.
(2) is a consequence of the definition of an r-map.

(3) follows from (2) and Lemma P.5.
If f, g ∈ End(X) are r-maps and C ∈ � (X) is such that Im(f)∩C = ∅ = Im(g)∩C,

then (f � C)(g � C) = f � C and (g � C)(f � C) = g � C. Both statements of (4)
then follow by Theorem 1.5 because the image of any r-map intersects only finitely

many components of X .
For i = 0, 1, denote Di = {C ∈ � (X) | Im(gi)∩C = ∅ = Im(g1−i)∩C}. Then Di is

finite and, by Lemma 1.8, there is an r-map hi ∈ [gi] such that hi(x) = gif1−i(x) for
all x ∈ Di. A direct calculation verifies the required expressions, and (5) is proved.

Since {vx | x ∈ Im(f)∩Mid(X)}∪Ext(Im(f)) is a subspace of X ∈ � � isomorphic
to Im(f), claim (6) follows from (1).

(7) follows from Theorem 1.5 and (6).
(8) follows from the definition of an r-map.
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We turn to (9) now. If f ∈ End(X) is an idempotent such that g � f for some

r-map g of X , then any Stone kernel of Im(f) is isomorphic to any Stone kernel
of X . By (7) applied to Im(f), for every x ∈ Im(f) \ Def(X) there is an r-map
g′x ∈ End(Im(f)) with x ∈ Im(g′x). But then gx = g′xf ∈ End(X) is an r-map with
x ∈ Im(gx), and gx � f . Thus (9) is proved.

One implication in (10) is clear, and the other follows from Statement 1.6, (C),
and the definition of an r-map. �

Definition and notation. An idempotent f ∈ End(X) is called a dr-map if
there exists exactly one equivalence class [g] of r-maps with g < f , and h ∈ [g] for
any idempotent h ∈ End(X) with g � h < f . For a dr-map f and an r-map g < f ,

we shall use r(f) to denote any member of [g] for which r(f)f = r(f).

Lemma 2.2. Let x ∈ Def(X), and let f ∈ End(X) be an r-map such that
Im(f)∩K(x) = ∅. Then there exists a dr-map g ∈ End(X) with Im(g) = Im(f)∪{x}
and fg = f exactly when, for every y ∈ Mid(X) \Def(X),

E(y) ∩ ((x] ∩ [x)) = ∅ implies Im(f) ∩ E(y) ∩ ((x] ∩ [x)) = ∅.

Moreover, for any z ∈ Def(X) we can assume that g(z) = g(x), except when
x and z are min-defective and x � z, or

x and z are max-defective and z � x.

Finally, an idempotent f ∈ End(X) is a dr-map if and only if Im(f) = Im(g)∪{x}
for some r-map g and some x ∈ Def(X).

�����. Assume that x is defective and f ∈ End(X) is an r-map satisfying the
hypothesis. Then the assumptions of Theorem 1.7 or of its dual are satisfied by f ,
F1 = {x}, and F0 = {u, z} ∩ f−1(u) with f(x) = u, and Theorem 1.7 or its dual

gives an idempotent g ∈ End(X) with g(z) = g(x), Im(g) = Im(f)∪{x} and fg = f .
Clearly, g is a dr-map. The converse is clear.

Let f ∈ End(X) be a dr-map. Then Im(r(f)) ⊂ Im(f) for an r-map r(f). Let
x ∈ Im(f)\ Im(r(f)). If x were non-defective then, by Statement 2.1(9), there would
exist an r-map g′ with x ∈ Im(g′) and g′ < f . But then g′ /∈ [r(f)]—a contradiction.
Therefore x must be defective. For every non-defective z ∈Mid(X) such that E(z)∩
((x] ∪ [x)) = ∅ we have Im(f) ∩ E(z) ∩ ((x] ∪ [x)) = ∅ because f(E(z)) ⊆ E(z). By

Statement 2.1(6), there is an r-map g < f such that Im(g) ∩ E(z) ∩ ((x] ∪ [x)) = ∅
whenever E(z) ∩ ((x] ∪ [x)) = ∅. We then apply the first part of the proof to obtain
a dr-map g′ ∈ End(X) with Im(g′) = Im(g)∪ {x}. Thus g < g′ � f , so that g′ ∈ [f ]
and Im(f) = Im(g′). The converse implication is clear. �
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Notation. For any dr-map f ∈ End(X), let d(f) denote the defective element
x ∈ Im(f).

The statement below summarizes properties of dr-maps.

Statement 2.3. Let X,Y ∈ � �. Then:

(1) for every x ∈ Def(X), there is a dr-map f such that d(f) = x;
(2) if x, y ∈ X are min-defective then x � y if and only if for any dr-maps

f, g ∈ End(X) with d(f) = x, d(g) = y and every r-map h ∈ End(X), we
have hfg = fg;

(3) if x, y ∈ X are max-defective then y � x if and only if for any dr-maps

f, g ∈ End(X) with d(f) = x, d(g) = y and every r-map h ∈ End(X), we
have hfg = fg;

(4) if f, g ∈ End(X) are dr-maps, then d(f) = d(g) if and only if hf ′g′ = f ′g′

and hg′f ′ = g′f ′ for all f ′ ∈ [f ], g′ ∈ [g] and every r-map h ∈ End(X);
(5) for any defective x ∈ X and any y ∈ X with x = y there exists a dr-map

f ∈ End(X) with f(x) = f(y);
(6) if ψ : End(X) −→ End(Y ) is an R-isomorphism then
(a) for every g ∈ End(X), g is a dr-map if and only if ψ(g) is a dr-map, and
(b) for any two dr-maps g0, g1 ∈ End(X), d(g0) = d(g1) exactly when d(ψ(g0)) =

d(ψ(g1));
(7) if x0, x1 ∈ Def(X) are such that Nuc(K(x0)) ∼= Nuc(K(x1)) and if there exist

r-maps fi ∈ End(X) for i = 0, 1 such that Nuc(K(x0)) ∼= Nuc(K(f0(x0))),
f0[x0) = f1[x1) and f0(x0] = f1(x1], then there exist dr-maps gi ∈ End(X)
with d(gi) = xi, gig1−i = gi, and fi � K(xi) = (f1−ig1−i) � K(xi) for i = 0, 1;

(8) if f ∈ End(X) is a dr-map and for every non-defective x ∈Mid(X)∩Im(f) an
element vx ∈ E(x) is given such that vx � d(f) whenever x � d(f), vx � d(f)

whenever x � d(f) then the mapping g defined for y ∈ X by

g(y) =

{
f(y) if f(y) ∈ Ext(X) ∪Def(X),
vf(y) if f(y) ∈Mid(X) \Def(X)

is a dr-map of X with d(f) = d(g);

(9) an x ∈ Def(X) is doubly defective if and only if for every dr-map f ∈ End(X)
with d(f) = x there exist two distinct r-maps gi ∈ End(X) with gif = gi and
gi � f for i = 0, 1;

(10) if f ∈ End(X) is an idempotent such that f � g for some r-map g ∈ End(X),
then for every x ∈ Im(f) ∩Def(X) there exists a dr-map gx ∈ End(X) with
gx � f and d(gx) = x;
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(11) if f, g ∈ End(X) are dr-maps and h ∈ End(X), then h(Im(f)) = Im(g) if
and only if ghf = hf and g′hf = hf for every idempotent g′ ∈ End(X) with
g′ < g.

�����. From Lemma 2.2 and Statement 2.1(6) we obtain (1).

Next we turn to (2), (3) and (4). If f ∈ End(X) is a dr-map then, for any
g ∈ End(X), either d(f) ∈ Im(fg) and hence hfg = fg for any r-map h ∈ End(X),
or else d(f) /∈ Im(fg) and r(f)fg = fg for any r-map r(f) ∈ End(X). Thus if g ∈
End(X) is a dr-map such that either d(f) = d(g), or d(f) � d(g) are min-defective,

or d(f) � d(g) are max-defective, then hfg = fg for any r-map h ∈ End(X).
Conversely, if either x, y are min-defective and x � y, or x, y are max-defective and

x � y, or x, y are doubly defective and x = y then, by Lemma 2.2 there exists a
dr-map f ∈ End(X) with d(f) = x = f(y). Then for any dr-map g ∈ End(X) with
d(g) = y we have r(f)fg = fg for any r-map r(f) ∈ End(X). This completes the
proof of (2), (3) and (4).

Let x ∈ Def(X) and y = x. If the Stone nuclei of K(x) and K(y) are not

isomorphic then (5) follows from Statement 2.1(8). If Nuc(K(x)) ∼= Nuc(K(y)),
then there is an r-map g such that g(K(x)) ⊆ K(y) by Statement 2.1(4), and g maps

Ext(K(x)) bijectively onto Ext(K(y)). Assume that g(y) = g(x). If y ∈ Ext(X),
then x = f(x) = f(y) for any dr-map f with d(f) = x. If y ∈Mid(X) then x, y are
both min-defective (or max-defective or doubly defective), and there exists a dr-map
f with f(x) = f(y), by Lemma 2.2. If g(y) = g(x), then the existence of such an f

is clear. This proves (5).

If ψ is an R-isomorphism, then (a) in (6) follows from the definition of a dr-map,
and (b) in (6) is a consequence of (a) and (4).

Let x0, x1 ∈ Def(X). By Statement 2.1(4) and 2.1(6), for i = 0, 1 there exist
r-maps hi ∈ End(X) with hifi = hi, fihi = fi and such that, for every y ∈Mid(X),
E(y)∩((xi]∪ [xi)) = ∅ implies Im(hi)∩E(y)∩((xi ]∪ [xi)) = ∅. By Statement 2.1(5),
there exist r-maps g′i ∈ End(X) such that g′ig′1−i = g′i, g′i ∈ [hi], and fig′ih1−i = f1−i.
Lemma 2.2 then supplies dr-maps gi ∈ End(X) with d(gi) = xi and g′i = g′igi, and
(7) follows.

(8) follows from Statement 2.1(6) and Lemma 2.2.

To prove (9), let f ∈ End(X) be a dr-map with d(f) = x. If g ∈ End(X) is
an r-map with gf = g and g < f , then Im(g) = Im(f) \ {x} and hence for any
u ∈ X , g(u) = gf(u) = f(u) whenever f(u) = x, and g(u) = gf(u) = g(x) whenever
f(u) = x. Since g(u) = u for any u ∈ Ext(x), we conclude that if x is min-defective
and {y} = Min(x) then g(x) = y, if x is max-defective and {z} = Max(x) then
g(x) = z. If x is doubly defective and {y} = Min(x), {z} = Max(x) then g(x) = y

or g(x) = z, and both cases occur. Thus (9) is proved.
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Let f ∈ End(X) be an idempotent such that f > g for some r-map g ∈ End(X)
and let x ∈ Im(f) ∩ Def(X). Then any Stone kernel of Im(f) is isomorphic to any
Stone kernel of X . Since any z ∈ Im(f) is defective in Im(f) exactly when it is
defective in X , from (1) we obtain a dr-map g′x ∈ End(Im(f)) with d(g′x) = x. But

then gx = g′xf ∈ End(X) is a dr-map with d(gx) = x and gx � f . This proves (10).
Let f, g ∈ End(X) be dr-maps and h ∈ End(X). If h(Im(f)) = Im(g) then it is

clear that the condition in (11) is satisfied. Conversely, assume that the condition
holds. Then Im(hf) ⊆ Im(g) and, by Statement 1.6, Im(hf) and Im(g) intersect the
same components. From (C) it follows that Im(r(g)) ⊆ Im(hf). From Im(hf) ⊆
Im(g) and r(g)hf = hf we then obtain that d(g) ∈ Im(hf). Thus h(Im(f)) = Im(g),
and (11) is proved. �

Theorem 2.4. A space X ∈ � � is finite if and only if End(X) is finite.

�����. Clearly, if X is finite then End(X) is finite. Conversely, if X is infinite
then for every x ∈ X there exists an r-map or a dr-map fx ∈ End(X) with x ∈
Im(fx). Since Im(fx) is finite, it follows that the set {fx | x ∈ X} ⊆ End(X) is
infinite. �

Definition. An idempotent f ∈ End(X) is a br-map if and only if f is �-
maximal amongst idempotents with the property

(q) g0, g1 < f, g0g1 = g0, g1g0 = g1 imply g0 = g1.

First we prove a technical lemma.

Lemma 2.5. If f ∈ End(X) is an idempotent satisfying (q), then Im(f) satisfies
(r2) and the following condition:

(b1) If x, y ∈ Im(f) ∩ Mid(X) are distinct and Ext(x) = Ext(y), then x, y are
both either min-defective or max-defective, and

((x] ∪ [x)) ∩ (Mid(Im(f)) \Def(X)) = ((y] ∪ [y)) ∩ (Mid(Im(f)) \Def(X)).

�����. Assume that f ∈ End(X) satisfies (q).
First we observe that any idempotents h0, h1 ∈ End(Im(f)) satisfying hih1−i = hi

for i = 0, 1 must coincide. Indeed, if h0 = h1 then the maps gi = hif ∈ End(X)
would be distinct idempotents satisfying gig1−i = gi for i = 0, 1—a contradiction.

This observation and Statement 2.1(4) imply that any two Stone kernels of Im(f)
coincide, so that there is exactly one equivalence class [f ′] of r-maps of Im(f). There-

fore distinct components intersecting Im(f) must have non-isomorphic Stone nuclei,
and this proves (r2).
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We turn to (b1). Suppose that x, y ∈ Im(f) ∩Mid(X) are distinct and such that
Ext(x) = Ext(y). If x, y are non-defective, then Statement 2.1(6) implies the exis-
tence of two distinct Stone kernels of Im(f), contradicting the previous paragraph.
Thus x and y are defective. If

((x] ∪ [x)) ∩ (Mid(Im(f)) \Def(X)) = ((y] ∪ [y)) ∩ (Mid(Im(f)) \Def(X)),

then we apply Theorem 1.7 or its dual to f ′, F1 = {x, y}, and x or y, to obtain
dr-maps f0, f1 of Im(f) such that r(f0) = r(f1) = f ′, d(f0) = x, d(f1) = y, and
f1(x) = y, f0(y) = x. Thus fif1−i = fi and f0 = f1 – a contradiction to the initial

observation. Therefore

((x] ∪ [x)) ∩ (Mid(Im(f)) \Def(X)) = ((y] ∪ [y)) ∩ (Mid(Im(f)) \Def(X)),

which also shows that x and y cannot be doubly defective. From Ext(x) = Ext(y)
it then follows that x and y are both either min-defective or max-defective. This

demonstrates (b1). �

Statement 2.6. Let X,Y ∈ � �. Then:

(1) there exists a br-map f ∈ End(X);
(2) the image Im(f) of any br-map f is finite;
(3) for any br-map f ∈ End(X) there exists exactly one equivalence class [g] of

r-maps g � f ;

(4) if ψ : End(X)→ End(Y ) is an isomorphism then f is a br-map if and only if
ψ(f) is a br-map.

�����. Let g ∈ End(X) be an r-map. Let H denote the set of all classes of
idempotents h ∈ End(X) satisfying (q) and h � g. Then H = ∅ because g ∈ H . If

h ∈ H then Im(h)\Def(X) = Im(g) by Lemma 2.5 and, moreover, | Im(h)\Im(g)| <
2| Im(g)|+1. Therefore any chain in H with respect to � has the length at most
2| Im(g)|+1 and thus H has a maximal element [f ]. Any maximal element of H is a
br-map, and (1) is proved.

(2) follows from Lemma 2.5.
To prove (3), consider a br-map f ∈ End(X). First we prove that Im(f) satisfies

(r1). To do so, suppose that there is a component D such that Nuc(C) ∼= Nuc(D)
for every C ∈ � (X) with Im(f) ∩ C = ∅. Then Lemma 1.8 implies the existence of
an idempotent h with Im(h) = Im(f) ∪N for some dp-subspace N ⊆ D isomorphic
to Nuc(D).

Suppose that g0, g1 < h satisfy gig1−i = gi for i = 0, 1. Since Nuc(D) ∼= Nuc(C)
for every C ∈ � (X) intersecting Im(f), either Im(gi)∩D = N or Im(gi)∩D = ∅ for
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i = 0, 1. In the second case gi � f for i = 0, 1, and hence g0 = g1 because f satisfies

(q). In the first case, we have g0(x) = g1(x) for all x ∈ g−10 (N). If gifgi(D) ⊆ Im(f),
then gifgi(D) = N follows from (C) because gi � h, and hence gif(N) = N .
But then Nuc(K(f(N))) ∼= N , a contradiction. Therefore g′i = gifgi � f is an

idempotent, g′ig
′
1−i = g′i for i = 0, 1, and g0 = g1 exactly when g′0 = g′1. But f

satisfies (q), and g0 = g1 follows. Therefore (q) holds for h > f , in contradiction to

the maximality of f . This shows that f satisfies (r1).
Since f ∈ End(X) is an idempotent, (B) implies that for any component C ∈ � (X)

either C ∩ Im(f) = ∅ or C ∩ Im(f) contains a dp-subspace isomorphic to Nuc(C).
Since f also satisfies (r1), there exists a Stone kernel S of X contained in Im(f)

and hence, by Statement 2.1(1), there exists an r-map g � f . The unicity of the
equivalence class of r-maps contained in Im(f) then follows from Lemma 2.5. This

proves (3).
From the definition of a br-map we immediately obtain (4). �

3. 2r-maps

In this section, we introduce 2r-maps—idempotent endomorphisms reflecting spe-
cific relations of two r-maps. We begin with the definition of a supremum of a finite
set of idempotents.

Definition and notation. Let A ⊆ End(X) be a finite set of idempotents.
We shall write h = supA to denote any idempotent h ∈ End(X) satisfying h � f

for every f ∈ A , and such that k � h for every idempotent k ∈ End(X) satisfying
k � f for all f ∈ A .

It is clear that any idempotent h ∈ End(X) with Im(h) = ⋃{Im(f) | f ∈ A } is a
supremum of a given finite set A ⊆ End(X) of idempotents.
Definition and notation. An idempotent f ∈ End(X) is called a 2r-map

if there exist non-equivalent r-maps g0, g1 < f such that f = sup{g0, g1} and g ∈
[g0] ∪ [g1] for any r-map g < f .

For any 2r-map f we denote

∆f = ∆(Im(g0), Im(g1)) = (Im(g0) \ Im(g1)) ∪ (Im(g1) \ Im(g0)).

Lemma 3.1. If f is a 2r-map, then exactly one of the following two cases occurs:

(1) there exist distinct C0, C1 ∈ � (X) with isomorphic Stone nuclei such that
∆f ⊆ C0 ∪ C1 and ∆f ∩Ci ∼= Nuc(Ci) for i = 0, 1,

(2) there exist distinct non-defective x0, x1 ∈ Mid(X) such that x1 ∈ E(x0) and
∆f = {x0, x1}.
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In either case, if g0, g1 � f are non-equivalent r-maps then Im(f) = Im(g0)∪ Im(g1).
�����. Let f be a 2r-map, and let g0,g1 < f be r-maps with [g0] = [g1].
First suppose that Im(g0) ∩ C0 = ∅ = Im(g1) ∩ C0 for some C0 ∈ � (X). Since

Im(g1) is a Stone kernel of X , there must exist a C1 ∈ � (X) \ {C0} with Nuc(C0) ∼=
Im(g1) ∩ C1, and Im(g0) ∩ C1 = ∅ because g0 satisfies (r2). Also, the dp-subspace
S = (Im(g0) ∩ C0) ∪ (Im(g1) \ C1) is a Stone kernel of X , and thus there exists an
r-map g2 with Im(g2) = S ⊆ Im(f), by Statement 2.1(1). Clearly g2 /∈ [g1] and,
since f is a 2r-map, this implies that g2 ∈ [g0]. But then Im(g1) \ C1 = S \ C0 =
Im(g0) \ C0. By Theorem 1.5, there exists an idempotent dp-map h ∈ End(X) with
Im(h) = Im(g0)∪Im(g1). But then Im(f) = Im(g0)∪Im(g1) because f = sup{g0, g1}.
Hence ∆f ⊆ C0∪C1, and ∆f∩Ci = Im(gi)∩Ci is isomorphic to Nuc(Ci) for i = 0, 1.
This describes the first case and proves that Im(f) = Im(g0) ∪ Im(g1) in this case.
We may thus assume that Im(g0) and Im(g1) intersect the same components of X .

Then Ext(Im(g0)) = Ext(Im(g1)), and hence ∆f ⊆ Mid(Im(g0) ∪ Im(g1)). Since f
is a 2r-map and g0, g1 are r-maps, Statement 2.1(6) implies that, for i = 0, 1, there
exists exactly one xi ∈ Im(gi) \ Im(g1−i), and x1 ∈ E(x0). Then ∆f = {x0, x1}.
This concludes the proof of the first statement.
To prove the second statement in case of ∆f = {x0, x1}, we set g = g0f , and note

that gf = g ∈ [g0]. Define h : X −→ X by

h(t) =

{
x1 for t ∈ f−1{x1},
g(t) for t ∈ X \ f−1{x1}.

It is clear that h is an idempotent with Im(h) = Im(g0) ∪ Im(g1). Since f−1{x1} ⊆
g−1{x0} and these two sets are clopen and convex, and from the choice of g, it follows
that h ∈ End(X). But then Im(f) = Im(g0) ∪ Im(g1) because f = sup{g0, g1}. �

Definition. We now specify five types of 2r-maps as follows:

c2r-map—this is any 2r-map f such that ∆f is a disjoint union of two iso-
morphic Stone nuclei,

p2r-map—this is any 2r-map f such that ∆f consists of two non-defective

elements from Mid(X),

t2r-map—this is any 2r-map f for which there exist an h ∈ End(X) and an
r-map g < f such that hg < f is an r-map, h2g = g and hg /∈ [g],
n2r-map—this is any 2r-map f which is not a t2r-map.

e2r-map—this is any n2r-map f—with its non-equivalent r-maps g0, g1 <
f—such that for every r-map g /∈ [g0] ∪ [g1] for which there exist n2r-maps
f0 > g, g0 and f1 > g, g1, and for all g′0 ∈ [g0], g′1 ∈ [g1] and h ∈ End(X) such
that hg′0, hg

′
1 are equivalent r-maps, we have hg � hg′0.
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We proceed to interpret these properties in structural terms.

Lemma 3.2. A 2r-map f is a t2r-map if and only if f is either a c2r-map or a
p2r-map for which ∆f = {x0, x1} is an antichain.

Definition. Any t2r-map f for which ∆f ⊆ Mid(X) is an antichain will be
called a pt2r-map.

����� �� ����� 3.2. Let f be a t2r-map, and let g < f and h be as in the

definition above. If f is not a c2r-map then, by Lemma 3.1, there is an x0 ∈Mid(X)
such that ∆f = {x0, x1} ⊆ E(x0). If x0 ∈ Im(g), then h(x0) = x1 because hg is an
r-map satisfying hg /∈ [g], and h(x1) = x0 because h2g = g. Since h preserves order,
the set {x0, x1} must be an antichain.
To prove the converse, let f be a c2r-map, and let C0, C1 be distinct components

with ∆f ⊆ C0 ∪ C1. Let g0, g1 < f be non-equivalent r-maps with Im(gi) ∩ Ci = ∅.
By Statement 2.1(4), we can assume that gig1−i = gi for i = 0, 1. Define a mapping

h by

h(x) =





g1f(x) if x ∈ f−1(C0),
g0f(x) if x ∈ f−1(C1),
f(x) if x ∈ X \ f−1(C0 ∪ C1).

Since the image Im(f) of f ∈ End(X) is finite, the map h is continuous, and h ∈
End(X) follows. Clearly hgi = g1−i for i = 0, 1, and hence f is a t2r-map.
Let f be a 2r-map for which ∆f = {x0, x1} ⊆ E(x0) is an antichain, and let

g0, g1 < f be non-equivalent r-maps with xi ∈ Im(gi) for i = 0, 1. Then gig1−i = gi
for i = 0, 1. Formal replacement of Ci by {xi} in the above definition of h defines a
dp-map h′ because {x0, x1} ⊆ E(x0) is an antichain. From hgi = g1−i for i = 0, 1 it
then follows that f is a t2r-map. �

Remark. Thus any c2r-map is a t2r-map, and any n2r-map is a p2r-map.

Corollary 3.3. Let X have distinct components Ci with isomorphic Stone nuclei
Ni ⊆ Ci for i = 0, 1. Then for every r-map g0 with Im(g0) ∩ C0 = N0 there exists a
c2r-map f with Im(f) = Im(g0) ∪N1.

�����. Since g0 is an r-map, C1 ∩ Im(g0) = ∅. By Lemma 1.8, there is an
idempotent f ∈ End(X) with Im(f) = Im(g0) ∪ N1. But then Im(f) \ N1 and
Im(f) \ N0 are the only two Stone kernels contained in Im(f), and hence f is a
c2r-map. �

Lemma 3.4. A 2r-map f is an n2r-map if and only if ∆f = {x, y} ⊆ Mid(X)
is a 2-element chain with y ∈ E(x).
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Furthermore, if x ∈ Mid(X) is non-defective and y ∈ E(x) is such that x < y then,

for any closed sets E0, E1 ⊆ E(x) such that x ∈ E0, y ∈ E1, (E0] ∩ [E1) = ∅ and for
every r-map g with x ∈ Im(g), there exists an n2r-map f with Im(f) = Im(g) ∪ {y}
and E0 ⊆ f−1{x}, E1 ⊆ f−1{y}.

�����. Since an n2r-map f is not a t2r-map, the set ∆f = {x, y} must be a
2-element chain, by Lemmas 3.1 and 3.2.
The second statement follows immediately from Theorem 1.7. �

Next we give a sufficient condition for the existence of a pt2r-map f with a given
∆f . We note that, in general, the requirement that ∆f = {x, y} be an antichain
does not suffice.

Lemma 3.5. Let x ∈ X ∈ � � be non-defective and such that E(x) is an

antichain, and let E0, E1 ⊆ E(x) be closed disjoint sets with y ∈ E0 and x ∈ E1.

Then for any r-map g with x ∈ Im(g), there is a t2r-map f > g such that ∆f =

{x, y}, E0 ⊆ f−1{y} and E1 ⊆ f−1{x}.

�����. Since g(E(x)) = {x}, we have E0 ∪ E1 ⊆ g−1{x} = Z. The set Z is

clopen, convex and Z ∩K(x) = E(x).
There is a clopen decreasing set U ⊆ X such that E0 ⊆ U and E1 ⊆ Z \ U .

The set V = Z ∩ U ∩ (Z \ U ] is then closed and, since Z ∩ K(x) = E(x) is an
antichain, we must have V ∩ K(x) = ∅. The union of components S = K(V ) and

the component K(x) are closed, by Lemma 1.2, and S ∩K(x) = ∅. Hence there is a
clopen decreasing set T ′ such that T ′ ∩ S = ∅ and K(x) ⊆ T ′. By Lemma 1.2, the
union of components T = K(T ′) is clopen, E(x) ⊆ T and T ∩ S = ∅. Then the set
U ′ = T ∩ U is clopen and decreasing, and such that W = U ′ ∩ Z is decreasing in
Z, E0 ⊆ W and E1 ∩W = ∅. We claim that W is also increasing in Z. Indeed, if

u < v for some u ∈ W and v ∈ Z \W , then u, v ∈ T ∩ Z, u ∈ U and v /∈ U , so that
u ∈ V ⊆ S—a contradiction because T ∩ S = ∅. Hence W is clopen, increasing and

decreasing in Z, E0 ⊆W , and E1 ∩W = ∅. Set

f(t) =

{
y for t ∈ W,
g(t) for t ∈ X \W.

Then f ∈ End(X) because Im(g) is finite. Since Im(f) contains no Stone kernels
other than Im(g) and (Im(g) \ {x}) ∪ {y}, we conclude that f is a 2r-map. By
Lemma 3.2, the idempotent f is a t2r-map with ∆f = {x, y}, E0 ⊆ f−1{y} and
E1 ⊆ f−1{x}. �

Statements 2.1(8), 2.3(5), Lemmas 3.4 and 3.5, and Corollary 3.3 give the following
claim.
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Corollary 3.6. If X ∈ � � then for every pair of distinct points u, v ∈ X there

exists either an r-map or a dr-map or a 2r-map f ∈ End(X) with f(u) = f(v).

Since the set E(x) ⊆ Mid(X) is closed whenever x ∈ Mid(X) is non-defective,
see Lemma 1.2, every such x is comparable to a minimal and a maximal element of

E(x).
Next we characterize e2r-maps.

Lemma 3.7. Let f be an n2r-map of an X ∈ � � with ∆f = {x, y} and x < y.

Then f is an e2r-map if and only if x is minimal in E(x) and y is maximal in E(x).

�����. Let f be an n2r-map with ∆f = {x, y} ⊆ E(x), and let g0, g1 < f

be r-maps such that x ∈ Im(g0) and y ∈ Im(g1). Hence g0(y) = g0(x) = x and

g1(y) = g1(x) = y.
If x is not minimal in E(x), then E(x) contains a chain z < x < y. Statement

2.1(6) and Lemma 3.4 supply an r-map g /∈ [g0] ∪ [g1] with z ∈ Im(g) and n2r-maps
fi > g, gi such that Im(fi) = Im(gi) ∪ {z} for i = 0, 1. Hence f0(y) = x. Set h = f0.
Then hg1, g0 ∈ [hg0], hg = g, and hg0hg = g0hg = hg because g0hg(z) = z = hg(z),
and hence f is not an e2r-map. A dual argument applies when y is not maximal in

E(x).
For the converse, suppose that x < y are extremal in E(x). Let g be an r-map and

let fi > g, gi be n2r-maps for i = 0, 1. Then ∆f0 = {x, z} and ∆f1 = {y, z} for some
z ∈ E(x) comparable to both x and y, and this is possible only when x < z < y.

Let h ∈ End(X) be such that hg0 and hg1 are equivalent r-maps. By Statement
2.1(2), h is one-to-one on Im(gi) for i = 0, 1. Thus h(x) = h(z) = h(y). Since

Im(g) \ {z} = Im(g0) \ {x}, we obtain Im(hg) = Im(hg0) and hence hg � hg0.
Therefore f is an e2r-map. �

Next we prove a statement concerning comparability of doubly defective points.

Lemma 3.8. Let x, y ∈ X be doubly defective. Then x, y are comparable if

and only if there exist dr-maps f, g ∈ End(X) satisfying d(f) = x, d(g) = y and

r(f) = r(g), and for any such maps there exists a k = sup{f, g} such that
(1) if h � k is a dr-map, then h ∈ [f ] ∪ [g];
(2) if h � k is an r-map, then h ∈ [r(f)];

and hg = f for every h ∈ End(X) with hf = g.
Moreover, if x, y are comparable, then Im(k) = Im(f) ∪ Im(g).

�����. If x, y ∈ X are comparable and doubly defective, and if f ∈ End(X) is a
dr-map with d(f) = x, then, by Lemma 2.2, there exists a dr-map g ∈ End(X) with
d(g) = y and r(f) = r(g) and, by Theorem 1.7 or its dual, there exists an idempotent
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k ∈ End(X) with Im(k) = Im(f) ∪ {y}. Then k = sup{f, g} and thus any dr-map
h � k belongs to [f ] ∪ [g], and any r-map h � k belongs to [r(f)]. If h : X −→ X

is a mapping such that hf = g and hg = f , then h(x) = y and h(y) = x. Hence
h cannot preserve ordering, and therefore h is not a dp-map. Thus both statements

hold.
Conversely, assume that f, g ∈ End(X) are dr-maps such that d(f) = x, d(g) = y,

r(f) = r(g) where x, y ∈ X are doubly defective, and that there exists a k = sup{f, g}
satisfying both conditions. By Statement 2.1(9), Im(k) \ Def(X) = Im(r(f)) and,
by Statement 2.3(10), Im(k) ∩ Def(X) = {x, y}. Thus Im(k) = Im(f) ∪ Im(g) and
K(x) = K(y). If x, y are incomparable, we define

h(t) =





k(t) for t ∈ X \ k−1{x, y},
y for t ∈ k−1{x},
x for t ∈ k−1{y}

Obviously, h ∈ End(X), and fk, gk ∈ End(X) are dr-maps with d(fk) = x, d(gk) =
y, r(fk) = r(gk), k = sup{fk, gk}, and hfk = gk and hgk = fk—a contradiction.

Thus x and y must be comparable. �

Definition and notation. Any dp-map k satisfying conditions of Lemma 3.8
will be called an ndr-map. For any ndr-map k, write ∆k = {x, y}.

Statement 3.9. Let X ∈ � �. Then:

(1) if f0, f1 ∈ End(X) are p2r-maps satisfying Nuc(K(∆f0)) ∼= Nuc(K(∆f1))
and such that g(∆f0) ⊆ E(∆f1) for some dp-map g, then there exists a
k ∈ End(X) with k(z) = z for all z ∈ Ext(Im(f1)) and k(Im(f0)) = Im(f1)
whenever f0 is a pt2r-map or f1 is an n2r-map;

(2) if f0, f1 ∈ End(X) are ndr-maps, then k(Im(f0)) = Im(f1) for some k ∈
End(X);

(3) if f0, f1 ∈ End(X) are both either p2r-maps or ndr-maps, and if h ∈ End(X),
then h(Im(f0)) = Im(f1) (and hence also h(∆f0) = ∆f1) if and only if
f1hf0 = hf0 and khf0 = hf0 for every k ∈ End(X) with k < f1;

(4) if fi ∈ End(X) are c2r-maps such that Nuc(K(x0)) ∼= Nuc(K(x1)) for xi ∈
∆fi with i = 0, 1, then there exist hi ∈ [fi] with hih1−i = hi for i = 0, 1.

(5) Let f be an n2r-map or a pt2r-map for which E(∆f) is an antichain. If

g, g0, g1 ∈ End(X) are r-maps such that g < f , Im(gi) ∩ E(∆f) = ∅ and
gig = gi, ggi = g for i = 0, 1, then Im(g0) ∩ E(∆f) = Im(g1) ∩ E(∆f) if and
only if f ′g0 = f ′g1 for all f ′ ∈ [f ] such that f ′gi are r-maps for i = 0, 1.

�����. Let f0, f1 ∈ End(X) be either p2r-maps with Nuc(K(∆f0)) ∼=
Nuc(K(∆f1)) or arbitrary ndr-maps. By Statement 2.1(4), there exist an f ′0 ∈ [f0]
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and an r-map h ∈ End(X) such that hf ′0 � f1 is an r-map. It is clear that

hf ′0(z) = z for all z ∈ Ext(Im(f1)). In case when f0, f1 are p2r-maps and
Nuc(K(∆f0)) ∼= Nuc(K(∆f1)), Lemma 1.8 and the existence of a dp-map g with
g(∆f0) ⊆ E(∆f1) allow us to assume that h(∆f0) ⊆ E(∆f1) as well.

Suppose that ∆fi = {xi, yi}, where either xi and yi are incomparable or xi < yi

for i = 0, 1. To prove (1) and (2), define a mapping k by

k(u) =





hf ′0(u) if f ′0(u) /∈ ∆f0,
x1 if f ′0(u) = x0,

y1 if f ′0(u) = y0.

Since Im(f0) is finite and f ′0 and h are dp-maps, we conclude that k is continuous,
has the dp-property, and k(Im(f0)) = Im(f1). Furthermore, k(z) = z for all z ∈
Ext(Im(f1)) follows from a similar property of hf ′0. Also, k preserves order except
in case when x0 < y0 and x1, y1 are incomparable. Thus (1) and (2) are proved.

To prove (3), we first observe that h(Im(f0)) = Im(f1) clearly implies the condition
in (3). To prove the converse, note that f1hf0 = hf0 implies that Im(hf0) ⊆ Im(f1).
If g0, g1 < f1 are non-equivalent r-maps, then Im(g0) ⊆ h(Im(f0)) or Im(g1) ⊆
h(Im(f0)), by Statement 1.6 and (C). By the hypothesis, gihf0 = hf0 for i = 0, 1,

so that Im(g1−i) ⊆ h(Im(f0)) for i = 0, 1. But then Im(f1) = Im(g0) ∪ Im(g1) ⊆
h(Im(f0)), and (3) is proved.

Now we turn to (4). Assume that Ci, Di ∈ � (X) are such that Nuc(C0) ∼= Nuc(C1)
and the c2r-maps fi ∈ End(X) satisfy ∆fi ⊆ Ci ∪Di for i = 0, 1.

With no loss of generality we may assume that Ci = Dj for i, j ∈ {0, 1}. By
Statement 2.1(4), there exist r-maps gi ∈ End(X) with gi < fi, Ci ∩ Im(gi) = ∅ and
gig1−i = gi for i = 0, 1. By Lemma 1.8, we may assume that gi(C0 ∪ C1 ∪ D0 ∪
D1) ⊆ Ci for i = 0, 1. Also by Lemma 1.8, there exists a c2r-map h0 ∈ [f0] with
g0h0 = g0 and h0(D1) ⊆ D0. Then for any u ∈ D0 ∩ Im(h0) there exists exactly one
vu ∈ D1 ∩ Im(f1) with h0(vu) = u. This enables us to define h1 : X −→ X by

h1(x) =

{
h0(x) for x ∈ X \ h−10 (D0),
vu for x ∈ h−10 (u) and u ∈ D0.

Since h0 is a c2r-map and Nuc(D1) ∼= Nuc(D0) ∼= Im(f1) ∩ D1 we obtain that
h1 ∈ End(X) and h1 ∈ [f1]. Clearly, hih1−i = hi for i = 0, 1, and (4) is proved.
Assume that either f is an n2r-map, or f is a pt2r-map and E(∆f) is an antichain.

Let g, g0, g1 ∈ End(X) be r-maps such that g < f , Im(gi) ∩ E(∆f) = ∅, and
gig = gi, ggi = g for i = 0, 1. For f ′ ∈ [f ], the maps f ′gi are r-maps exactly
when f ′ � (Im(g0) \ E(∆f)) = g � (Im(g0) \ E(∆f)) and f ′ � (Im(g1) \ E(∆f)) =
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g � (Im(g1) \ E(∆f)). Thus if Im(g0) ∩ E(∆f) = Im(g1) ∩ E(∆f) then necessarily
f ′g0 = f ′g1.
Conversely, if Im(g0) ∩ E(∆f) = Im(g1) ∩ E(∆f) then {u} = Im(g0) ∩ E(∆f) =

Im(g1)∩E(∆f) = {v} and, by Lemmas 3.4 or 3.5, there exists an f ′ ∈ [f ] such that
gf ′ = g and f ′(u) = f ′(v). Then f ′gi are r-maps and f ′(u) = f ′g0(u) = f ′g1(u) =
f ′(v). This proves (5). �

Lemma 3.10. Let C0, C1 ∈ � (X) be such that Nuc(C0) ∼= Nuc(C1). For i = 0, 1,
let xi ∈ Ci be min-defective and yi ∈ Ci max-defective elements such that, for any

z ∈ Mid(X) \Def(X),

E(z) ∩ [xi) = ∅ = E(z) ∩ (yi] only when E(z) ∩ [xi) ∩ (yi] = ∅.

For i = 0, 1, denote {ui} = Min(xi) and {vi} = Max(yi), and suppose that there
exists an r-map g with g(u0) = u1, g(v0) = v1 and such that

z ∈ ([x0) ∪ (y0]) \Def(X) implies g(z) ∈ [x1) ∪ (y1].

Then there exists an h ∈ End(X) with h(x0) = x1, h(y0) = y1 if and only if x0 � y0
or x1 � y1.

�����. By the hypothesis g(xi) = g(ui) = u1 and g(yi) = g(vi) = v1 for i = 0, 1.

Furthermore, by Statement 2.1(6), we may assume that for any z ∈ Mid(X)\Def(X),

g(z) ∈ [x1) whenever E(z) ∩ ([x0) ∪ [x1)) = ∅ and

g(z) ∈ (y1] whenever E(z) ∩ ((y0] ∪ (y1]) = ∅.

Theorem 1.7 applied to g, F1 = {x0, x1} and x1 gives rise to a dr-map g′ ∈ End(X)
such that gg′ = g and g′(x0) = g′(x1) = x1. If x0 � y0 or x1 � y1 then the order

dual of Theorem 1.7, applied to g′, F1 = {y0, y1} and y1 this time, yields a dp-map
h ∈ End(X) with g′h = g′ and h(y0) = h(y1) = y1. Thus h(x0) = x1 and h(y0) = y1.
Conversely, if there exists an h ∈ End(X) with h(x0) = x1 and h(y0) = y1 then
either x0 � y0 or x1 � y1 because h preserves order. �

Statement 3.11. Let X,Y ∈ � �, and let ψ : End(X) −→ End(Y ) be an R-

isomorphism. Then, for any g ∈ End(X):
(1) g is a 2r-map if and only if ψ(g) is a 2r-map;
(2) g is a t2r-map if and only if ψ(g) is a t2r-map;

(3) g is an n2r-map if and only if ψ(g) is an n2r-map;
(4) g is an e2r-map if and only if ψ(g) is an e2r-map;
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(5) g is an ndr-map if and only if ψ(g) is an ndr-map;

(6) if f0, f1 ∈ End(X) are p2r-maps (or dr-maps, or ndr-maps) and h ∈ End(X),
then h(Im(f0)) = Im(f1) if and only if ψ(h)(Im(ψ(f0))) = Im(ψ(f1)).

�����. The first five claims follow from the respective definitions, while (6) is
a consequence of Statements 2.3(11) and 3.9(3). �

Definition. Let X,Y ∈ � �. An R-isomorphism ψ : End(X)→ End(Y ) is called
a C-isomorphism if for any f ∈ End(X), the endomorphism ψ(f) is a c2r-map exactly
when f is a c2r-map.

Statement 3.12. Let X,Y ∈ � � and let ψ : End(X) −→ End(Y ) be an R-

isomorphism such that

for any Stone nucleus N with |�N (X)| > 1, there exists a c2r-map fN ∈
End(X) with ∆fN ⊆ ⋃

�N (X), such that ψ(fN ) ∈ End(Y ) is a c2r-map;
for any Stone nucleus N with |�N (Y )| > 1, there exists a c2r-map fN ∈
End(Y ) with ∆fN ⊆ ⋃

�N (Y ), and such that ψ−1(fN ) ∈ End(X) is a c2r-
map.

Then, for any h ∈ End(X),
(1) h is a c2r-map if and only if ψ(h) is a c2r-map;

(2) h is a pt2r-map if and only if ψ(h) is a pt2r-map,

and hence ψ is a C-isomorphism.

�����. If h ∈ End(X) is a c2r-map, then there is a unique Stone nucleus N
for which ∆h ⊆ ⋃

�N (X). By the first hypothesis, we have a c2r-map fN with
∆fN ⊆ ⋃

�N (X) for which ψ(fN ) is a c2r-map. By Statement 3.9(4), there exist

f ′ ∈ [fN ] and h′ ∈ [h] such that h′f ′ = h′ and f ′h′ = f ′. From ψ(f ′) ∈ [ψ(fN )] it
follows that ψ(f ′) is a c2r-map. By Lemma P.5(2), Im(ψ(h′)) ∼= Im(ψ(f ′)), so that
ψ(h′) and hence also ψ(h) are c2r-maps. The converse in (1) follows by symmetry,
and (2) is a consequence of (1) and Statement 3.11(2). �

Statement 3.13. Let X,Y ∈ � � and let ψ : End(X) → End(Y ) be a C-
isomorphism. Let f ∈ End(X) be a p2r-map such that either f is an n2r-map or
else both E(∆f) and E(∆ψ(f)) are antichains. If g0 and g1 are r-maps such that
Im(gi) ∩ E(∆f) = ∅ and Im(ψ(gi)) ∩ E(∆ψ(f)) = ∅ for i = 0, 1, then Im(g0) ∩
Im(g1) ∩ E(∆f) = ∅ if and only if Im(ψ(g0)) ∩ Im(ψ(g1)) ∩ E(∆ψ(f)) = ∅.

�����. If f is a p2r-map satisfying the hypothesis, then there exist an r-map

g < f and maps g′i ∈ [gi] such that g′ig = g′i and gg
′
i = g for i = 0, 1, by Statement

2.1(4). But then the conclusion follows from Statement 3.9(5). �
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4. Collections of 2r-maps

This section investigates relations between 2r-maps, and combines p2r-maps into
suitable collections preserved by C-isomorphisms.

Definition. Let f0, f1 be 2r-maps and let g < f0, f1 be an r-map. We say
that f0, f1 are independent over g if h = sup{f0, f1} exists and there are exactly
four distinct equivalence classes of r-maps below h and also exactly four distinct
equivalence classes of 2r-maps below h.

Following is a structural description of independence.

Lemma 4.1. Let g be an r-map and let f0, f1 > g be 2r-maps. Then f0, f1 are

independent over g if and only if ∆f0 ∩∆f1 = ∅.
If ∆f0∩∆f1 = ∅, then there is an idempotent h ∈ End(X) with Im(f0)∪Im(f1) =

Im(h), and hence h = sup{f0, f1}. If, in addition, ∆fi = {xi, yi} ⊆ Mid(X) for
i = 0, 1 and {x0, x1} ⊆ Im(g), then we may assume that

h(t) =

{
f0(t) for t ∈ X \ (f−10 (E(x1)) ∩ f−11 (E(x1))),
f1(t) for t ∈ f−10 (E(x1)) ∩ f−11 (E(x1)).

�����. We begin with the second claim. Assume that ∆f0∩∆f1 = ∅. If ∆f0 or
∆f1 is a union of Stone nuclei then the claim follows from Lemma 1.8. By Lemma 3.1,

in the remaining case ∆fi = {xi, yi} ⊆ E(xi) ⊆ Mid(X) for i = 0, 1. If, say,
x0, x1 ∈ Im(g), then Ext(x0) = Ext(x1) because g is an r-map and ∆f0 ∩∆f1 = ∅.
Set E = f−10 (E(x1)) ∩ f−11 (E(x1)), and write

h(t) =

{
f1(t) for t ∈ E,
f0(t) for t ∈ X \ E.

From f0(E) = {x1} and f1(E) ⊆ E(x1) it follows that h ∈ End(X) because f0, f1 ∈
End(X) have finite images. Since f0 and f1 are idempotents and f1(E) = ∆f1, the
dp-map h is idempotent and Im(h) = (Im(f0) \ {x1})∪∆f1 = Im(f0)∪ Im(f1). This
completes the proof of the second statement.
Let g, gi < fi be r-maps such that gi /∈ [g] for i = 0, 1. For i = 0, 1, write

Ji = Im(g)\Im(gi) andKi = Im(gi)\Im(g), and denote L = Im(g)∩Im(g0)∩Im(g1).
Then either Ji ∼= Ki are Stone nuclei, or Ji and Ki are non-defective points for

i = 0, 1.
We show that ∆f0 ∩∆f1 = ∅ implies that f0, f1 > g are independent over g.

The idempotent h defined in the first part of the proof satisfies Im(h) = Im(f0) ∪
Im(f1), and hence no Stone kernels other than Im(g), Im(g0), Im(g1), andK0∪K1∪L
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are contained in Im(h). Similarly, no images of 2r-maps other than Im(f0), Im(f1)

and Ji ∪K0 ∪K1 ∪ L = Im(gi) ∪ (Im(f1−i) \ Im(g)) with i = 0, 1 are contained in
Im(h). Therefore f0, f1 > g are independent over g.

To prove the converse, let f0, f1 > g be independent 2r-maps with ∆f0∩∆f1 = ∅.
Since ∆f0 ∩∆f1 = (K0 ∩K1) ∪ (J0 ∩ J1) and because Im(g) ⊇ J0 ∪ J1 is a Stone
kernel of X , this is possible only when J0 ∩ J1 = ∅, see Lemma 3.1.
Suppose that J0 = J1. Since g is an r-map, one of the sets ∆fi, say ∆f0, is the

union of two disjoint Stone nuclei while the other ∆f1 = {x0, x1} ⊆ E(x0) with a
non-defective x0 ∈Mid(X) and x0 ∈ ∆f0. By Lemma 3.1, (∆f0\Im(g))∩Im(f1) = ∅,
and thus we may apply Lemma 1.8 to f1 to obtain an idempotent h ∈ End(X) with
Im(h) = Im(f0)∪ Im(f1). But then only Im(g), Im(g0) and Im(g1) are distinct Stone
kernels contained in Im(h), a contradiction.

Therefore J0 = J1.

Suppose that Im(f0) and Im(f1) do not intersect the same components. Then,

by Lemma 3.1, J0 is a Stone nucleus and K0 ∩ K1 = ∅, and Lemma 1.8 implies
the existence of an idempotent h ∈ End(X) with Im(h) = Im(f0) ∪ Im(f1). But
then Im(h) contains only three distinct Stone kernels, namely Im(g), Im(g0) and
Im(g1). This contradiction shows that Im(f0) and Im(f1) must intersect the same

components.

Since f0, f1 > g are independent over g, a supremum h = sup{f0, f1} exists. Since
there are only four distinct equivalence classes of r-maps below h, the image of h
intersects only finitely many components. Thus, by Statement 1.6, Im(h) and Im(f0)

intersect the same components.

Since Im(f0) ∪ Im(f1) contains at least three distinct Stone kernels, and Im(h)
contains exactly four, from Statement 2.1(6) and from the fact that Im(h) and Im(f0)

intersect the same components it follows that Im(h) \ (Im(f0) ∪ Im(f1) ∪ Def(X))
has at most one element. We claim that

(m) if z ∈ Im(h)\(Im(f0)∪Im(f1)∪Def(X)), then no order preserving idempotent
f : E(z)∩ Im(h)→ E(z)∩ Im(h) satisfies Im(f) = (Im(f0) ∪ Im(f1)) ∩E(z).

Indeed, if f is such a map, then for any r-map g′ of Im(h), the mapping

k(t) =





f(h(t)) for t ∈ h−1(E(z)),
h(t) for t ∈ h−1(Mid(X) \ (Def(X) ∪ E(z))),
g′(h(t)) for t ∈ h−1(Ext(X) ∪Def(X))

satisfies Im(k) = Im(f0) ∪ Im(f1). Also, k ∈ End(X) is an idempotent because g′
maps the clopen set h−1(Ext(X) ∪ Def(X)) into itself. Therefore f0, f1 < k < h =
sup{f0, f1}—a contradiction.
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Suppose that J0 = J1 is a Stone nucleus. Since Im(h) contains exactly four distinct

Stone kernels, from Statement 2.1(6) it follows that K0 \K1 = {u0} and K1 \K0 =
{u1} are singletons, u1 ∈ E(u0), and Im(h) \ (Im(f0) ∪ Im(f1) ∪Def(X)) = {z} is a
singleton such that z ∈ Mid(K(J0))\Def(X) or z ∈ E(u0). The first case contradicts
(m) because there certainly is an idempotent order preserving f : E(z) ∩ Im(h) →
E(z) ∩ Im(h) with Im(f) = Im(g) ∩ E(z) = (Im(f0) ∪ Im(f1)) ∩ E(z).
Thus z ∈ E(u0). By Statement 2.1(6) and Corollary 3.3, there exists a c2r-map

f2 with Im(f2) = (Im(f0) \ {u0}) ∪ {z}. Since u1, z ∈ E(u0) and because there

are at most four 2r-maps below h, Lemma 3.4 implies that the subposet E(u0) ∩
Im(h) = {u0, u1, z} contains at most one comparable pair. But then there exists an
idempotent order preserving mapping of E(u0) ∩ Im(h) into itself whose image is
{u0, u1}, in contradiction to (m).
Now let J0 = J1 = {x} be a singleton. Then Ki = {yi} are singletons and

yi ∈ E(x) for i = 0, 1. Since Im(h) contains exactly four distinct Stone kernels, the
set Im(h) ∩ E(x) = {x, y0, y1, z} = T must have four elements. By (m), there is no
idempotent f : T → T with Im(f) = {x, y0, y1}, and this implies that z is comparable
to at least two other, incomparable members of T , and z is extremal in E(x). Since
fi(E(x)) = ∆fi = {x, yi} for i = 0, 1, if x and yi are in the same component of E(x),
then yi is comparable to x. It follows that y0, y1 are incomparable and that {y0, z},
{y1, z} are comparable pairs. So, if z is comparable to x, then T has five comparable
pairs, and hence there are five non-equivalent n2r-maps whose images are contained
in Im(h). Thus z is not comparable to x and two cases arise. First, x is comparable

to both y0 and y1, in which case the map which sends z to x and leaves all other
elements of T fixed is an order preserving idempotent—a contradiction with (m). In

the second case, x is incomparable to all other members of T , and there exist five
2r-maps whose images intersect Im(h)∩E(x) in sets {yi, x}, {yi, z} with i = 0, 1 and
{x, z}.
Therefore ∆f0 ∩∆f1 = ∅ for any 2r-maps f0, f1 independent over g. �

Corollary 4.2. For every r-map g of X ∈ � � there are only finitely many

2r-maps fj > g that are pairwise independent over g.

�����. The claim follows from Lemma 4.1 and the finiteness of Im(g). �

Lemma 4.3. Let {f0, f1, . . . fn} be a set of pairwise independent n2r-maps or
pt2r-maps over an r-map g ∈ End(X). Then there exists an h = sup{f0, f1, . . . , fn}
with Im(h) =

⋃{Im(fi) | i = 0, 1, . . . , n}. Furthermore, the supremum h may be

selected so that h � E(xi) = fi � E(xi) for any i = 0, 1, . . . , n and xi ∈ ∆fi.
�����. We proceed by induction on n. For n = 1, the statement follows from

Lemma 4.1. Assume that it is true for n − 1. By the induction hypothesis, there
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exists an h′ = sup{f0, f1, . . . , fn−1} with Im(h′) =
⋃{Im(fi) | i = 0, 1, . . . , n−1} and

h′ � E(xi) = fi � E(xi) for all xi ∈ ∆fi with i = 0, . . . , n− 1. Denote ∆fn = {x, y}.
Then, because f0, . . . , fn are pairwise independent over g, the set Im(h′)∩E(x) is a
singleton and for any z ∈ ∆fi with i = 0, . . . , n − 1 we have E(z) ∩ E(x) = ∅. Let
E = (h′)−1(E(x)) ∩ f−1n (E(x)). Define

h(t) =

{
h′(t) for t ∈ X \ E,
fn(t) for t ∈ E.

Since h′(E), fn(E) ⊆ E(x) and because fn, h′ ∈ End(X) are idempotents with finite
images, we deduce that h ∈ End(X) is idempotent. From fn(E) = ∆fn it follows

that Im(h) = (Im(h′) \ E(x)) ∪∆fn = Im(h′) ∪ Im(fn) =
⋃{Im(fi) | i = 0, 1, . . . n}.

Thus h = sup{f0, f1, . . . , fn}. Since E(x) ⊆ E, we have h � E(x) = fn � E(x). �

We say that r-maps g and g′ are close if Im(g) and Im(g′) intersect the same

components of X.

Lemma 4.4. Let f0, f1 ∈ End(X) be idempotent. Then:
(1) Two r-maps f0, f1 are close if and only if ff1 � ff0 for every c2r-map f

such that ff0 is idempotent and, vice versa, ff0 � ff1 for every c2r-map f
for which ff1 is idempotent.

(2) If fi � gi for some r-map gi for i = 0, 1, then Im(f0) and Im(f1) intersect the
same components of X if and only if for i = 0, 1 and for any r-map ri � fi

there is an r-map r1−i � f1−i close to ri.

�����. Let f0, f1 be r-maps. If Im(f0), Im(f1) do not intersect the same
components, then there are distinct C0, C1 ∈ � (X) with Nuc(C0) ∼= Nuc(C1) and
Ci ∩ (Im(fi) \ Im(f1−i)) = ∅ for i = 0, 1. By Corollary 3.3, there is a c2r-map
f > f0 with ∆f ⊆ C0 ∪C1. Then ff0 = f0 is idempotent and ff1 = ff0ff1 because
C1 ∩ Im(ff1) = ∅.
Conversely, suppose that Im(f0) and Im(f1) intersect the same components of

X , and let f be a c2r-map. Then f(E(x)) is a singleton, and f(E(x) ∩ Im(f0)) =
f(E(x) ∩ Im(f1)) for every x ∈ Mid(X) \ Def(X) implies that Im(ff0) = Im(ff1).
Therefore (1) holds.
Since gi � fi for some r-map gi ∈ End(X) for i = 0, 1, from Statement 2.1(9) it

follows that a component C ∈ � (X) intersects Im(fi) if and only if there exists an
r-map ri < fi with C ∩ Im(ri) = ∅. The remainder follows from the definition of
closeness of r-maps. �

Definition. We say that an r-map g is nice whenever

(n1) every x ∈ Im(g) ∩Mid(X) is extremal in E(x),
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(n2) if x ∈ Im(g)∩Mid(X) and E(x) is not an antichain, then x is comparable to
some z ∈ E(x) \ {x}.

A finite non-empty collection F of p2r-maps independent over a nice r-map g is
proper if it satisfies these three conditions:

(p1) if x ∈ Im(g) ∩Mid(X) and E(x) = {x} is not an antichain, then x ∈ ∆f for
some e2r-map f ∈ F ,

(p2) if x ∈ Im(g)∩Mid(X) and E(x) = {x} is an antichain, then x ∈ ∆f for some
pt2r-map f ∈ F ,

(p3) each member of F is of the type described in (p1) or (p2).

Notation. For a given r-map g, let e(g) denote the maximal number of mutu-
ally independent e2r-maps over g, let n(g) denote the maximal number of mutually
independent n2r-maps over g, and let p(g) be the maximal number of all mutually

independent p2r-maps over g. Then p(g) � n(g) � e(g) � 0, and these numbers are
finite because of Corollary 4.2.

Lemma 4.5. For any nice r-map g, there exists a proper collection F of p2r-

maps over g.

Secondly, a collection F of independent e2r- or pt2r-maps over a nice r-map g is

proper if and only if

(1) F contains e(g) distinct e2r-maps, and
(2) F contains p(g)− e(g) distinct pt2r-maps.

�����. Let g be a nice r-map, and letG denote the set of all x ∈ Im(g)∩Mid(X)
with E(x) = {x}.
Let x ∈ G. If E(x) is not an antichain, then by (n2) there is, say, some z ∈ E(x)

comparable with x, and by (n1) and Lemma 3.7 there exists an e2r-map fx > g

with x ∈ ∆fx. If E(x) is an antichain, then by Lemma 3.5 there exists a pt2r-map
fx > g with x ∈ ∆f ⊆ E(x). Any collection F = {fx | x ∈ G} of such p2r-maps is
independent and satisfies (p1)-(p3).

It is straightforward to verify that a collection F of independent p2r-maps over a
nice r-map g is proper exactly when it satisfies (1) and (2). �

Notation. For r-maps g, g′ ∈ End(X), let V (g′, g) consist of all r-maps h ∈
End(X) close to g′, and such that Im(h) ∩ C = Im(g) ∩ C for any C ∈ � (X) with

Im(g) ∩ Im(g′) ∩C = ∅.

Lemma 4.6. There exists an r-map g ∈ End(X) such that e(g) � n(g′) for
every r-map g′ ∈ End(X). Any such g is nice.
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Secondly, let g ∈ End(X) be a nice r-map and let g′ ∈ End(X) be an r-map. Then
there exists an r-map g0 ∈ V (g′, g) such that e(g0) � n(h) for every h ∈ V (g′, g).
Any such g0 is nice.

�����. Both statements follow from the definition of a nice r-map, Statement
2.1(6) and Lemma 3.7. �

Lemma 4.7. Let f0, f1 ∈ End(X) be either pt2r-maps or n2r-maps. Then:
(1) if there are f ′0 ∈ [f0], f ′1 ∈ [f1] and an r-map g such that gf ′0f ′1 = f ′0f

′
1 or

gf ′1f
′
0 = f

′
1f

′
0, then ∆f0 = ∆f1;

(2) if gf ′0f
′
1 = f ′0f

′
1 and gf

′
1f

′
0 = f ′1f

′
0 for every r-map g and for all f

′
0 ∈ [f0],

f ′1 ∈ [f1], then ∆f0 = ∆f1 only when f0 and f1 are pt2r-maps with ∆f0 ∪
∆f1 ⊆ E(x) for some E(x) which is not an antichain.

�����. If ∆f0 = ∆f1 then ∆f0 ⊆ Im(f ′0f ′1) ∩ Im(f ′1f ′0) for every f ′0 ∈ [f0] and
f ′1 ∈ [f1]. But ∆f0 ⊆ Im(g) for any r-map g, so that gf ′0f ′1 = f ′0f ′1 and gf ′1f ′0 = f ′1f ′0.
This proves (1).

To prove (2), assume that ∆f0 = ∆f1. Then there exist xi ∈ Mid(X) such that
xi ∈ ∆fi \ ∆f1−i for i = 0, 1. If E(x0) = E(x1), then f ′i(∆f1−i) is a singleton for
some f ′i ∈ [fi], i = 0, 1, and hence gf ′if ′1−i = f ′if

′
1−i for some r-map g and any

f ′i−1 ∈ [f1−i]. Hence we may assume that ∆f0 ∪∆f1 ⊆ E(x). If fi is an n2r-map or
E(x) is an antichain then, by Lemmas 3.4 or 3.5, there exists an f ′i ∈ End(X) such
that f ′i(∆f1−i) is a singleton, so that gf

′
if

′
1−i = f ′if

′
1−i for some r-map g and any

f ′1−i ∈ [f1−i]. Thus both fi must be pt2r-maps and E(x) cannot be an antichain. �

Notation. Given an idempotent h ∈ End(X) with finite Im(h) and a non-
defective x ∈ Im(h), we define a map hx by

hx(t) =

{
x for t ∈ h−1(E(x)),
h(t) for t ∈ X \ h−1(E(x)).

Then hx is an idempotent whose image is finite, and the fineteness of Im(h) implies

that hx ∈ End(X).
Let F be a proper collection of p2r-maps over a nice r-map g ∈ End(X) and let

f ∈ F . Denote ∆f = {x, y} and h = supF . Let S(F , g, f) denote the family of all

those idempotents k ∈ End(X) for which
(s1) h(C) ⊆ C implies k(C) ⊆ C for every C ∈ � (X);

(s2) h′kh ∈ [hx] ∪ [hy] for every h′ ∈ [h].
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Lemma 4.8. Let F be a proper collection of p2r-maps over a nice r-map g ∈
End(X) and let f ∈ F . Then for every k ∈ S(F , g, f) there exists an r-map
k′ ∈ End(X) with k′ < k.

�����. Since any f ′ ∈ F is either an n2r-map or a pt2r-map, from Lemma

4.3 it follows that h = supF has the image Im(h) =
⋃{Im(f ′) | f ′ ∈ F}, so that

the components C ∈ � (X) intersecting Im(h) form a minimal Stone plot. Since

k ∈ S(F , g, f) is idempotent, from (C) it follows that Im(k) contains a Stone kernel.
Statement 2.1(1) then completes the proof. �

The claim below follows immediately.

Statement 4.9. Let X,Y ∈ � � and let ψ : End(X) −→ End(Y ) be an R-

isomorphism. Then:

(1) if f0, f1 ∈ End(X) are 2r-maps and f0, f1 > g for an r-map g, then f0, f1 are

independent over g if and only if ψ(f0), ψ(f1) are independent over ψ(g);
(2) e(ψ(g)) = e(g), n(ψ(g)) = n(g) for any r-map g ∈ End(X).
If ψ is also a C-isomorphism, then

(3) p(ψ(g)) = p(g) for any r-map g ∈ End(X);
(4) if g ∈ End(X) and ψ(g) ∈ End(Y ) are nice r-maps, then a collection F of

p2r-maps is a proper collection over g if and only if ψ(F ) = {ψ(f) | f ∈ F}
is a proper collection over ψ(g);

(5) if g ∈ End(X) and ψ(g) ∈ End(Y ) are nice r-maps, then

ψ(S(F , g, f)) = S(ψ(F ), ψ(g), ψ(f))

for every proper collection F of p2r-maps over g and for every f ∈ F ;

(6) if f, g ∈ End(X) are r-maps, then f and g are close if and only if ψ(f) and
ψ(g) are close;

(7) if f0, f1 ∈ End(X) are idempotents such that fi > gi for some r-maps g0, g1 ∈
End(X), then Im(f0) and Im(f1) intersect the same components of X if and

only if Im(ψ(f0)) and Im(ψ(f1)) intersect the same components of Y ;
(8) if f ∈ End(X) is either a pt2r-map such that E(∆f) is an antichain or an

n2r-map then, for any p2r-map f ′ ∈ End(X), we have ∆f = ∆f ′ if and only
if ∆ψ(f) = ∆ψ(f ′).

Theorem 4.10. Let F be a proper collection of p2r-maps over a nice r-map g.

Let f ∈ F , and let ∆f = {x, y} with x ∈ Im(g). Denote h = supF . Then

(1) k(z) = z for every z ∈ Im(h) \ {x, y} and every k ∈ S(F , g, f),
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(2) k(x) = k(y) ∈ E(x) for every k ∈ S(F , g, f),

(3) for every z ∈ E(x) there exists a k ∈ S(F , g, f) with k(x) = z,
(4) for k1, k2 ∈ S(F , g, f), we have k1(x) = k2(x) if and only if k1g = k2g.

Thus the map ηf : {kg | k ∈ S(F , g, f)} −→ E(x) given by ηf (kg) = kg(x) is a
bijection.

�����. Since h′kh ∈ [hx] ∪ [hy] by (s2), the map h′kh is idempotent for any
k ∈ S(F , g, f), and Im(h′kh) = Im(h) \ {y} or Im(h′kh) = Im(h) \ {x} for any
h′ ∈ [h]. Therefore
(a) h′k(t) = t for all t ∈ Im(h) \ {x, y} and any h′ ∈ [h].
Let C ∈ � (X) be such that g(C) ⊆ C. Then h(C) ⊆ C.
First, for any c ∈ Im(h) ∩Mid(C) with E(c) = {c}, we have Im(h) ∩ E(c) = ∆f ′

for some f ′ ∈ F because of (p1), (p2) and Lemma 4.3. Since members of F are
independent over the r-map g, the 2r-map f ′ ∈ F with E(c) ∩ Im(h) = ∆f ′ is
uniquely determined.
Next we show that k(c) = c for every c ∈ (Im(h)∩C)\{x, y}. By (a), for every such

c and for all h′ ∈ [h] we already have h′k(c) = c. Thus k(c) = c for all c ∈ Ext(C)
and also for all c ∈Mid(C) with E(c) = {c}. If c ∈Mid(Im(h)∩C) and E(c) = {c},
then, as shown above, Im(h) ∩ E(c) = ∆f ′ = {u, v} for a unique f ′ ∈ F . But
then f ′ = f since c /∈ {x, y} = ∆f and because F consists of independent 2r-maps.

Since k is the identity on Ext(C), we must have k(u), k(v) ∈ E(c). If E(c) is not an
antichain then u and v are comparable extremal elements of E(c) because of (n1),

(n2) and (p2). If k(u) = u then, by Lemma 3.4, there is a 2r-map f ′′ ∈ [f ′] such
that f ′′{k(u), k(v)} = {v}. If E(c) is an antichain, then such an f ′′ exists because of
Lemma 3.5. But then, in either case, Lemma 4.3 implies the existence of an h′ ∈ [h]
with h′{k(u), k(v)} = {v} ⊂ ∆f ′. Whence h′kh /∈ [hx] ∪ [hy]—a contradiction with
(s2). This shows that k(u) = u and, symmetrically, k(v) = v. Whence k(c) = c for

every c ∈ (Im(h) ∩ C) \ {x, y}, and the proof of (1) is complete.
To prove (2), suppose that k(x) = k(y). Then by Lemmas 3.4 and 3.5, there exists

an f̂ ∈ [f ] with f̂(k(x)) = f̂(k(y)) and, by Lemma 4.3, there exists an h′ ∈ [h] with
h′k(x) = h′k(y)—a contradiction because h′kh /∈ [hx] ∪ [hy] again. This proves (2).
Let z ∈ E(x). Define

k(u) =

{
h(u) for u ∈ X \ h−1{x, y},
z for u ∈ h−1{x, y}.

Then k ∈ S(F , g, f), and this proves (3).
To prove (4), we note that, by (1), k1(z) = z = k2(z) for all z ∈ Im(h) \ {x, y},

and hence for all z ∈ Im(g) \ {x}. Since g(x) = x, we have k1g = k2g if and only if
k1g(x) = k2g(x).
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From the above it follows that ηf is a bijection. �

Statement 4.11. Let X,Y ∈ � �, and let ψ : End(X) −→ End(Y ) be a C-
isomorphism. Let g ∈ End(X) and ψ(g) ∈ End(Y ) be nice r-maps, and let F be a

proper collection over g. For any f ∈ F and all z ∈ E(∆f), write

νf (z) = ηψ(f)(ψ(η
−1
f (z))).

Then νf : E(∆f) −→ E(∆ψ(f)) is a bijection such that

(1) νf (x) ∈ Im(ψ(g)) for the element x ∈ Im(g) ∩∆f ;
(2) elements u, v ∈ E(∆f) are comparable if and only if νf (u), νf (v) ∈ E(∆ψ(f))
are comparable.

�����. By Theorem 4.10 and Statement 4.9(5), the map νf is a correctly defined

bijection of E(∆f) onto E(∆ψ(f)). Since for any k ∈ S(F , g, f) with k(∆f) = {x}
we have kg = g, (1) is proved.

By Lemma 3.4, {u, v} ⊆ E(∆f) is a comparable pair if and only if there exists
an n2r-map f ′ ∈ End(X) with f ′ > η−1f (u), η

−1
f (v) because kg is an r-map for any

k ∈ S(F , g, f). From Statement 3.11(3) it follows that {u, v} is a comparable pair
if and only if {νf(u), νf (v)} is a comparable pair. �

5. 3r-maps and blocks

In this section, we define suitable maximal collections consisting of c2r-maps or

pt2r-maps, and investigate their relation and preservation by monoid isomorphisms.
To make such collections coherent, we need some additional concepts.

Definition. We say that an idempotent f ∈ End(X) is a 3r-map if there are
exactly three distinct classes of r-maps gi < f for i = 0, 1, 2, exactly three distinct

classes of t2r-maps fi < f for i = 0, 1, 2, and f = sup{g0, g1, g2}.

Lemma 5.1. Let f ∈ End(X) be a 3r-map. Let g0, g1, g2 < f be pairwise

non-equivalent r-maps, let f0, f1, f2 < f be pairwise non-equivalent t2r-maps, and
let gi, gi+1 < fi+2—with the addition modulo 3. Then exactly one of the following

three cases occurs:

(1) f0, f1, f2 are c2r-maps, and there are distinct C0, C1, C2 ∈ � (X) with iso-

morphic Stone nuclei satisfying

Im(gi) \ Im(gi+1) = Im(gi) \ Im(gi+2) ⊆ Ci for i = 0, 1, 2;
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(2) f0, f1, f2 are pt2r-maps, and there is a component C and distinct non-

defective x0, x1, x2 ∈ Mid(C) such that {x0, x1, x2} ⊆ E(x0) is an antichain
and

Im(gi) \ Im(gi+1) = Im(gi) \ Im(gi+2) = {xi} for i = 0, 1, 2;

(3) exactly one 2r-map, say f0, from {f0, f1, f2} is a pt2r-map, and the other
two are c2r-maps, and there are distinct components C0, C1 ∈ � (X) with

isomorphic Stone nuclei and distinct incomparable non-defective x1, x2 ∈
Mid(C1) with x2 ∈ E(x1) such that

Im(g0) \ Im(g1) = Im(g0) \ Im(g2) ⊆ C0,

Im(g1) \ Im(g0), Im(g2) \ Im(g0) ⊆ C1,

Im(gi) \ Im(g3−i) = {xi} for i = 1, 2.

�����. First, by Lemma 3.1, Im(fi) = Im(gi+1) ∪ Im(gi+2) and hence

(c1) ∆fi = (∆fi+1 \∆fi+2) ∪ (∆fi+2 \∆fi+1) for i = 0, 1, 2.

Furthermore, ∆fi∩∆fj = ∅ for distinct i, j = 0, 1, 2, for otherwise there would exist
four distinct Stone kernels contained in sup{fi, fj} � f , by Lemma 4.1.

Suppose that f0, f1, f2 are c2r-maps. Since ∆f0 ∩ ∆f1 = ∅, by Lemma 3.2 and
(c1) there exist three distinct components C0, C1, C2 with isomorphic Stone nuclei
satisfying ∆fi ⊆ Ci+1 ∪Ci+2 for i = 0, 1, 2. This describes the case under (1).
Suppose that f0, f1, f2 are pt2r-maps. Since ∆f0 ∩∆f1 = ∅, by Lemma 3.2 and

(c1) there exist three distinct points x0, x1, x2 such that {x0, x1, x2} ⊆ E(x0) is an
antichain and ∆fi = {xi+1, xi+2} for i = 0, 1, 2, and this describes the case under
(2).

Suppose that f0 is a pt2r-map and f1 is a c2r-map. Since ∆f0 ∩∆f1 = ∅, from
Lemma 3.2 and (c1) it follows that f2 is a c2r-map and the description given in (3)

occurs. �

Definition. A 3r-map f ∈ End(X) is called
ct3r-map if it satisfies the condition (1) in Lemma 5.1;
pt3r-map if it satisfies the condition (2) in Lemma 5.1;

m3r-map if it satisfies the condition (3) in Lemma 5.1.

We say that a 3r-map is a t3r-map if it is either a ct3r-map or a pt3r-map.
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Lemma 5.2. Let f0 ∈ End(X) be a t2r-map and let g < f0 be an r-map. Then for

every component C ∈ � (X) with Nuc(C) ∼= Nuc(K(∆f0∩Im(g))) and C∩Im(f0) = ∅
and for every dp-subspace N ⊆ C isomorphic to Nuc(C) there exists a 3r-map
f ∈ End(X) with Im(f) = Im(f0) ∪N .
Consequently, if g ∈ End(X) is an r-map and C1, C2 ∈ � (X) are distinct com-

ponents such that Nuc(C1) ∼= Nuc(C2) and C1 ∩ Im(g) = ∅ = C2 ∩ Im(g), then for
any dp-subspaces Ni ⊆ Ci isomorphic to Nuc(Ci) for i = 1, 2 there exists a ct3r-map
f ∈ End(X) with Im(f) = Im(g) ∪N1 ∪N2.
If f ∈ End(X) is a 3r-map and g0, g1, g2 < f are non-equivalent r-maps and

f0, f1, f2 < f are non-equivalent t2r-maps, then Im(f) =
⋃{Im(gi) | i = 0, 1, 2} =

Im(fj) ∪ Im(fj+1) for each j = 0, 1, 2.

�����. To obtain the first statement, we apply Lemma 1.8 to f0, the component
C and its dp-subspace N . The second statement follows from Corollary 3.3 and the

first statement of this Lemma.
If f ∈ End(X) is a ct3r-map or an m3r-map, then the third statement follows

from the first statement of this Lemma and Lemma 5.1. It remains to consider
a pt3r-map f ∈ End(X). Since f = sup{g0, g1, g2} and Im(f) contains exactly
three distinct Stone kernels, namely Im(g0), Im(g1), and Im(g2), we conclude from
Statement 2.1(6) and 2.1(9) that Im(f) \ Def(X) = Im(g0) ∪ Im(g1) ∪ Im(g2). By
Statement 2.1(1), there exists an r-map g′ ∈ End(Im(f)). Define a mapping f ′ by
setting, for u ∈ X ,

f ′(u) =

{
f(u) if f(u) /∈ Def(X),
g′(f(u)) if f(u) ∈ Def(X).

Clearly Im(f ′) = Im(g0) ∪ Im(g1) ∪ Im(g2). Since f and g′ are idempotent dp-maps,
we conclude that f ′ ∈ End(X) is idempotent. From f = sup{g0, g1, g2} it then
follows that Im(f) = Im(f ′). �

Lemma 5.3. Let f be a 3r-map and let g0, g1, g2 < f be non-equivalent r-maps.

Then

(1) f is a t3r-map if and only if for some g ∈ [g0] there exists an h ∈ End(X)
such that hg ∈ [g1], h2g ∈ [g2] and h3g = g;

(2) if f is an m3r-map then f0 = sup{g1, g2} is a pt2r-map if and only if there
exists an h ∈ End(X) such that for some g ∈ [g1] we have hg ∈ [g2], h2g = g
and hg0 = g0.

�����. Let f > g0, g1, g2 be a t3r-map. Then, by Statement 2.1(4), the three
r-maps gi can be chosen so that gigj = gi for i, j = 0, 1, 2. Write Im(gi)\ Im(gi+1) =
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Im(gi) \ Im(gi+2) =Mi for i = 0, 1, 2, and E = f−1(M0 ∪M1 ∪M2), and set

h(t) =

{
f(t) for t /∈ E,
gi+1f(t) for t ∈ f−1(Mi), i = 0, 1, 2.

The image of f ∈ End(X) is finite, and hence h is a dp-map. Clearly hgi = gi+1 for
i = 0, 1, 2.
To prove the converse in (1), assume that f is not a t3r-map. Then, by Lemma 5.1,

there are components C0, C1 with isomorphic Stone nuclei so that (Im(g0)\Im(gj))∩
C0 = ∅ and (Im(gj)\Im(g0))∩C1 = ∅ for j = 1, 2. If for some g ∈ [g0] and h ∈ End(X)
we have hg ∈ [g1], h2g ∈ [g2] and h3g = g, then h(Im(gi)) = Im(gi+1) for i = 0, 1, 2
and hence h(C1) ⊆ C1 and simultaneously h(C1) ⊆ C0—a contradiction. This

completes the proof of (1).
To prove (2), let f > g0, g1, g2 be non-equivalent r-maps such that f0 = sup{g1, g2}

is a pt2r-map and gig3−i = gi for i = 1, 2. Denote ∆f0 = {x1, x2}, and set

h(t) =





f(t) for t /∈ f−1{x1, x2},
x1 for t ∈ f−1{x2},
x2 for t ∈ f−1{x1}.

Then h ∈ End(X) because Im(f) is finite, x2 ∈ E(x1), and {x1, x2} is an antichain,
while hg2 = g1 and hg1 = g2 follow from g2g1 = g2 and g1g2 = g1. Clearly hg0 = g0.

Conversely, if there exists an h ∈ End(X) with hg0 = g0, hg ∈ [g2] and h2g = g for
some g ∈ [g1], then h(C) ⊆ C for any component C intersecting Im(g0). If g0 and g1
are close, then g0 and g2 are close because h(Im(g1)) = Im(g2), and this contradicts
Lemma 5.1(3). Thus there exists a component C which intersects Im(g1) but not

Im(g0). From Lemma 5.1(3) and h(Im(gi)) = Im(g3−i) for i = 1, 2 it follows that g1
and g2 are close. But then f0 = sup{g1, g2} is a pt2r-map, by Lemma 3.2. �

The observation below now follows directly from the respective definitions.

Lemma 5.4. For X,Y ∈ � � let ψ : End(X) −→ End(Y ) be an R-isomorphism.
Then, for every f ∈ End(X),
(1) f is a 3r-map if and only if ψ(f) is a 3r-map;
(2) f is a t3r-map if and only if ψ(f) is a t3r-map;

(3) f is an m3r-map if and only if ψ(f) is an m3r-map;
(4) if f is an m3r-map and g1, g2 < f are non-equivalent r-maps, then f0 =

sup{g1, g2} is a pt2r-map if and only if ψ(f0) is a pt2r-map.
If ψ is also a C-isomorphism, then

(5) f is a ct3r-map if and only if ψ(f) is a ct3r-map;
(6) f is a pt3r-map if and only if ψ(f) is a pt3r-map.
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Definition. A set � of equivalence classes of r-maps is called a block if it is

maximal with respect to these two properties:

(d1) for every pair [g0] = [g1] of classes from � , there is a t2r-map f > g0, g1,
(d2) for every triple {[gi] | i = 0, 1, 2} of distinct members of � , there is a t3r-map

k > g0, g1, g2.

Lemma 5.5. Let � be a block. Then

(1) Im(g0) \ Im(g1) = Im(g0) \ Im(g2) and Im(g0) ∩ Im(g1) = Im(g0) ∩ Im(g2) =
Im(g1) ∩ Im(g2) whenever [g0], [g1], [g2] ∈ � are pairwise distinct;

(2) Im(g0) \ Im(g1) ∼= Im(g2) \ Im(g3) for any quadruple [g0], [g1], [g2], [g3] ∈ �

with [g0] = [g1] and [g2] = [g3].

�����. The first statement follows from the fact that Im(g0)\Im(g1) = Im(g0)\
Im(g2) and Im(g0) ∩ Im(g1) = Im(g0) ∩ Im(g2) = Im(g1) ∩ Im(g2) for any t3r-map
f and pairwise non-equivalent r-maps g0, g1, g2 < f , see Lemma 5.1. The second
statement follows from the first because Im(g0) \ Im(g1) ∼= Im(g1) \ Im(g0) for any
t2r-map f > g0, g1 and pairwise non-equivalent r-maps g0, g1 – see Lemma 3.2. �

Lemma 5.5 implies that the mapping β below is correctly defined.

Notation. For any block � and any [g] ∈ � define β(� , [g]) = Im(g) \ Im(g′)
for any [g′] ∈ � \ {[g]}.

Lemma 5.6. If � is a block, then exactly one of these two cases occurs:

(1) there is a Stone nucleus N such that for any [g] ∈ � , the dp-subspace

β(� , [g]) ⊆ X is isomorphic to N ∼= Nuc(K(β(� , [g]))) and the mapping
β′ : � → �N (X) given by β′([g]) = K(β(� , [g])) for all [g] ∈ � is a bijection

of � onto �N (X);

(2) there is a non-defective x ∈Mid(X) such that the mapping β(� ,−) maps �
injectively into E(x) and {β(� , [g]) | [g] ∈ � } is an antichain.

Suppose that N is a Stone nucleus with |�N (X)| > 1. For every C ∈ �N (X),

let NC ⊆ C be an arbitrarily selected dp-subspace isomorphic to Nuc(C) ∼= N .

Then for any Stone kernel S of X and for every C ∈ �N (X), there is an r-map

gC ∈ End(X) with Im(gC) = (S \ (
⋃{D | D ∈ �N (X)})) ∪ NC . The collection

� = {gC | C ∈ �N (X)} of these r-maps is a block, and β(� , [gC ]) = NC for all

C ∈ �N (X).

�����. If (2) fails to hold then Lemmas 5.1 and 5.5 imply that there ex-

ists a Stone nucleus N such that β(� , [g]) is a dp-subspace isomorphic to N ∼=
Nuc(K(β(� , [g]))) for any [g] ∈ � , and K(β(� , [g0 ])) = K(β(� , [g1 ])) whenever
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[g0], [g1] ∈ � are distinct. Corollary 3.3, Lemma 5.2 and the maximality of a block

imply that (1) holds.
Since the subspace SC = (S \ (

⋃{D | D ∈ �N (X)})) ∪ NC is a Stone kernel
for any C ∈ �N (X), from Statement 2.1(1) it follows that there exists an r-map

gC ∈ End(X) with Im(gC) = SC . By Corollary 3.3 and Lemma 5.2, the collection �
satisfies (d1) and (d2) from the definition of a block, and Lemmas 3.2 and 5.1 imply

the maximality of � . Thus � is a block. The remainder is clear. �

Definition. Any block � satisfying statement (1) in Lemma 5.6 is called a

component block. We say that a component block � corresponds to a Stone nucleus
N if β(� , [g]) ∼= N for some [g] ∈ � . If β(� , [g]) is a point in Mid(X) for some

[g] ∈ � , we call � a point block.

Lemma 5.7. Let � 0 , � 1 be blocks such that [g] ∈ � 0 ∩� 1 . Then the conditions
(1), (2) and (3) below are mutually equivalent, and the same is true also for the
conditions (4), (5), and (6).

(1) For i = 0, 1, there exist classes [gi] ∈ � i \ {[g]} such that t2r-maps fi > g, gi
are independent over g,

(2) for i = 0, 1 and arbitrary classes [gi] ∈ � i \ {[g]}, any two t2r-maps fi > g, gi
are independent over g,

(3) (Im(g) \ Im(g0)) ∩ (Im(g) \ Im(g1)) = ∅ for any [gi] ∈ � i \ {[g]} with i = 0, 1.
(4) For i = 0, 1, there exist [gi] ∈ � i with an m3r-map k > g, g0, g1 such that

k0 = sup{g, g1} is a pt2r-map;
(5) for i = 0, 1 and arbitrary [gi] ∈ � i \{[g]}, there exist anm3r-map k > g, g0, g1

such that k0 = sup{g, g1} is a pt2r-map;
(6) for any [gi] ∈ � i \ {[g]} with i = 0, 1, (Im(g) \ Im(g1)) is a singleton which is
a non-defective point in the Stone nucleus (Im(g) \ Im(g0)).

�����. According to Lemma 4.1, (1) =⇒ (3) and, by Lemmas 5.5 and 4.1,

(3) =⇒ (2). The implication (2) =⇒ (1) is clear.
From Lemmas 5.1, 5.2, 5.3(2) and 5.5 we obtain (4) =⇒ (6) =⇒ (5). The impli-

cation (5) =⇒ (4) is obvious. �

Definition. Blocks � 0 and � 1 with [g] ∈ � 0 ∩ � 1 are called
independent over g if (Im(g) \ Im(g0)) ∩ (Im(g) \ Im(g1)) = ∅ for any [gi] ∈
� i \ {[g]} with i = 0, 1,
mixed over g if (Im(g) \ Im(g0)) ∩ (Im(g) \ Im(g1)) = ∅ and Im(g) \ Im(g0) =
Im(g) \ Im(g1) for any [gi] ∈ � i \ {[g]} with i = 0, 1,
similar over g if Im(g)\ Im(g0) = Im(g)\ Im(g1) for any [gi] ∈ � i \ {[g]} with
i = 0, 1.
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Thus each of the first three conditions of Lemma 5.7 characterizes independent

blocks, and each of its last three conditions characterizes blocks which are mixed.

Definition. Let g be an r-map, and let � be a collection of blocks � such that

[g] ∈ � . If � has the following three properties:

(e1) any two distinct blocks � 0 , � 1 ∈ � are independent over g,

(e2) if � ∈ � and if � 1 � [g] is a block such that � and � 1 are mixed, then � is
a component block,

(e3) � is a maximal collection satisfying (e1) and (e2),

then we say that � is a representing collection over g.

Lemma 5.8. If � is a representing collection over an r-map g ∈ End(X) then, for
every Stone nucleus N with |�N (X)| > 1, there exists a block � ∈ � corresponding

to N .

Any collection �′ of component blocks � � [g] independent over an r-map g ∈
End(X) can be extended to a representing collection � over g.

Any representing collection � over an r-map g ∈ End(X) is finite—in fact, |�| �
|� (S)| + | Im(g) \ Ext(X)|, where S is a Stone kernel of X .
If � is a representing collection over an r-map g ∈ End(X) and if a block � ′ is

similar to some block � ∈ � over g, then �′ = (�\ {� })∪{� ′} is also a representing
collection over g.

�����. Let � be a representing collection over g, and let N be a Stone nucleus
with |�N (X)| > 1. By the second statement of Lemma 5.6, there exists a block
� N � [g] corresponding to N because g is an r-map. Since � is a representing
collection, it must contain a block � 0 such that � N and � 0 are not independent.
Since �N is a component block we conclude, by Lemma 5.7 and (e2) in the definition

of a representing collection, that � N and � 0 cannot be mixed. Thus they are similar,
and hence � 0 corresponds to N .

For a given r-map g, let �′ be a collection of independent component blocks
containing [g]. Then �′ satisfies (e1) and (e2) in the definition of a representing

collection. Consider the set H of all collections � ⊇ �′ of blocks containing [g] that
satisfy (e1) and (e2) from the definition of a representing collection. By Statement

2.1(1), Im(g) is finite and hence, by Lemma 5.7, all inclusion-ordered chains in H

are finite, so that H has a maximal element � containing �′. Any such � is a

representing collection over g.
The third statement follows from the fact that blocks in � are independent over g.

The fourth statement follows from the definition. �

The claim below concerning component blocks follows from the definition of sim-
ilarity and Lemma 3.2.
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Corollary 5.9. Let � 0 and � 1 be blocks with [g] ∈ � 0 ∩ � 1 .
(1) If � 0 and � 1 are similar then � 0 is a component block if and only if � 1 is a

component block.

(2) Let � be a component block and [g0] ∈ � . For any [g] ∈ � \ {[g0]}, let
hg ∈ End(X) be an r-map such that Im(hg) ∩ Im(g0) = Im(g) ∩ Im(g0), and
Im(hg) ∩ C = ∅ exactly when Im(g) ∩ C = ∅ for any component C ∈ � (X).

Set hg0 = hg. Then � ′ = {[hg] | [g] ∈ � } is a component block similar to �
over g.

Following is a summary of preservation properties of R-isomorphisms.

Statement 5.10. Let X,Y ∈ � �, and let ψ : End(X) −→ End(Y ) be an R-
isomorphism. Then a collection � of equivalence classes of r-maps is a block in X if

and only if its image ψ(� ) = {[ψ(g)] | [g] ∈ � } is a block in Y .
If � 0 and � 1 are blocks in X with {[g]} = � 0 ∩ � 1 then
(1) � 0 and � 1 are independent in X if and only if ψ(� 0 ) and ψ(� 1 ) are inde-

pendent in Y ;

(2) � 0 and � 1 are mixed in X if and only if ψ(� 0 ) and ψ(� 1 ) are mixed in Y ;

(3) � 0 and � 1 are similar in X if and only if ψ(� 0 ) and ψ(� 1 ) are similar in Y ;
(4) if � 0 and � 1 are mixed in X , then � 0 is a component block if and only if

ψ(� 0 ) is a component block.

If � is a collection of blocks in X then � is a representing collection over g in X

if and only if ψ(�) = {ψ(� ) | � ∈ �} is a representing collection over ψ(g) in Y .

6. Equivalences

In this section we build a decreasing sequence of nine equivalences and employ it

to show that in the Main Theorem (3) implies (2).

Definition. Any finitely generated variety V of almost regular distributive dou-
ble p-algebras with P (V) ⊆ � � will be called an � �-variety.

Notation. To any � �-variety V we assign the following cardinals:

n1(V), the number of non-isomorphic Stone kernels in P (V);
n2(V) = max{|S| | S ∈ P (V) is a Stone kernel};
n3(V) = max{|� (S)| | S ∈ P (V) is a Stone kernel};
n4(V) = max{|S \ Ext(S)| | S ∈ P (V) is a Stone kernel};
n5(V)= max{|{g | g ∈ End(X), g � f}| | f ∈ End(X) is a br-map,

X ∈ P (V)}
;
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n7(V) = max{|Aut(End(S))| | S ∈ P (V) is a Stone kernel};
n8(V) = max{|{(x, y) | x < y, x, y ∈ Ext(S)}| | S ∈ P (V) is a Stone kernel}.

Observe that n3(V) is also the number of pairwise non-isomorphic Stone nuclei
which belong to V.
We need the definition below to specify n6(V).

Definition and notation. Let S(V) ⊆ P (V) be a set of non-isomorphic Stone
nuclei such that for every Stone nucleus N ∈ P (V) there is an N1 ∈ S(V) isomorphic
to N . For any Stone nucleus N , select once and for all an isomorphism iN of N onto
a member of S(V).
We need to consider dp-spaces such that

(b) Def(X) = ∅, and X is a connected space containing exactly two distinct
elements x, y with Ext(x) = Ext(y).

Clearly, these are the dp-spaces which are the union of exactly two intersecting nuclei.

Let S1(V) ⊆ P (V) be a set of non-isomorphic dp-spaces satisfying (b), and such
that for every X ∈ P (V) with the property (b) there exists an X1 ∈ S1(V) isomor-
phic to X . For any dp-space satisfying (b), select once and for all an isomorphism

jX of X onto a member of S1(V).
Next, letH (V) consist of all dp-maps k : X → Y with X ∈ S(V) and Y ∈ S1(V)

such that Im(k) contains the two distinct elements x, y ∈ Y with Ext(x) = Ext(y).

From (b) it follows that X is a non-singleton nucleus.

Set n6(V) = |H (V)|.

Lemma 6.1. For any � �-variety V, the cardinals n1(V), n2(V), n3(V), n4(V),
n5(V), n6(V), n7(V), and n8(V) are finite.

�����. The finiteness of n1(V) was shown in [10], the finiteness of n2(V),
n3(V), n4(V), n7(V), and n8(V) follows from Statement 2.1(1) and from the finite-
ness of n1(V). Statements 2.6(2), 2.6(3), 2.1(2) and Lemma 2.5 imply that n5(V)
is finite. The finiteness of n6(V) follows from the fact that n3(V) is finite and from
Statement 2.1(1). �

Let an � �-variety V be given, and let S ⊆ P (V) be a class of equimorphic
dp-spaces, that is, let End(X) ∼= End(Y ) for all X,Y ∈ S . For X,Y, Z ∈ S ,

select isomorphisms ψXY : End(X) −→ End(Y ) so that ψXZ = ψY Z ◦ ψXY and
ψXY ◦ ψYX = ψY Y = idEnd(Y ).
We now intend to define a family of equivalences ∼i with i = 1, 2, . . . , 9 on S in

such a way that ∼i+1 will be finer than ∼i for every i, each ∼i will have only finitely
many classes, and Y ∼9 Z will imply that the dp-spaces Y , Z are isomorphic.
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For X,Y ∈ S , the first equivalence ∼1 will be defined by the requirement that

X ∼1 Y if and only if the Stone kernels of X and Y are isomorphic.

The lemma below is a consequence of Statement 2.1(2).

Lemma 6.2. The equivalence ∼1 has at most n1(V) classes.

In any class S1 of ∼1 choose a dp-space X ∈ S1 and a br-map bX ∈ End(X)
arbitrarily. The existence of bX follows from Statement 2.6(1). For any Y ∈ S1 set
bY = ψXY (bX). Then bY is a br-map, by Statement 2.6(4) and, by Statement 2.6(3),

for any Y ∈ S1 there exists a unique r-map fY ∈ End(X) with fY � bY . We now
define the second equivalence ∼2 on S by the requirement that

Y ∼2 Z if and only if Y ∼1 Z and ψY X(fY ) = ψZX(fZ).

The claim below now follows from Statement 2.1(3).

Lemma 6.3. If the equivalence ∼1 has s1 classes then the equivalence ∼2 has at
most s1n5(V) classes. Furthermore, if Y ∼2 Z then ψY Z is an R-isomorphism.

Next, in any classS2 of ∼2 choose a dp-spaceX ∈ S2 and an r-map rX ∈ End(X)
such that e(rX) � n(f) for every r-map f ∈ End(X). By Lemma 4.6, such an rX
exists and is nice. For any Y ∈ S2 set rY = ψXY (rX). By Statements 4.9(2),
3.11(4) and Lemma 4.6, the map rY is a nice r-map and e(rY ) � n(f) for every

r-map f ∈ End(Y ).
For any Y ∈ S2, there exists an isomorphism ϕ′

Y : Im(rX) −→ Im(rY ). For

any f ∈ End(Im(rX)), write ψ′
Y (f) = ϕ′

Y f(ϕ
′
Y )

−1. Then ψ′
Y : End(Im(rX)) −→

End(Im(rY )) is a monoid isomorphism and ϕ′
Y f = ψ′

Y (f)ϕ
′
Y for every f ∈

End(Im(rX)).
By Lemma P.5(1), for any Y ∈ S , the map ξY : End(Im(rY )) → rY End(Y )rY

given by ξY (f) = frY is an isomorphism whose inverse ξ
−1
Y is given by ξ−1Y (h) = h �

Im(rY ) for every h ∈ rY End(Y )rY . Therefore

ϕ′
Y rXfrX(x) = ψ

′
Y (ξ

−1
X (rXfrX))ϕ

′
Y rX(x) = ψ

′
Y (rXf � Im(rX))ϕ′

Y rX(x)

for all f ∈ End(X) and x ∈ X . Also, the domain-range restriction of ψY Z maps
rY End(Y )rY bijectively onto rZ End(Z)rZ because ψY Z(rY ) = rZ .
We now define the third equivalence ∼3 on S by setting

Y ∼3 Z if and only if Y ∼2 Z and ξ−1X ψYXξY ψ
′
Y = ξ

−1
X ψZXξZψ

′
Z .
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For Y ∼3 Z write ϕY Z = ϕ′
Z(ϕ

′
Y )

−1.

Lemma 6.4. If the equivalence ∼2 has s2 classes, then the equivalence ∼3 has at
most s2n7(V) classes. Furthermore, if Y ∼3 Z, then ϕY Z : Im(rY ) −→ Im(rZ) is a
dp-isomorphism such that, for Y ∼3 Z ∼3 U and any f ∈ End(Y ),

ϕY ZrY frY = ψY Z(rY f)ϕY ZrY = rZψY Z(f)ϕZY rY ,

ϕZUϕY Z = ϕY U , and

ϕUY ϕY U = ϕY Y is the identity map on Im(rY ).

�����. From Lemma P.5(1) it follows that the composite ξ−1Y ψYXξY ψ
′
Y is an

automorphism of End(Im(rX)) for every Y ∈ S2. Thus if ∼2 has s2 equivalence
classes, then ∼3 has at most s2n7(V) equivalence classes.
If Y ∼3 Z then ξ−1X ψYXξY ψ

′
Y = ξ−1X ψZXξZψ

′
Z implies ξ

−1
Z ψY ZξY = ψ′

Z(ψ
′
Y )

−1.
Thus for any f ∈ End(Y ) we obtain

ϕY ZrY frY = ϕ′
Z(ϕ

′
Y )

−1rY frY = ϕ′
Z(ψ

′
Y (rY frY � Im(rY ))(ϕ′

Y )
−1rY

= ψ′
Z(ψ

′
Y )

−1(rY frY � Im(rY ))ϕ′
Z(ϕ

′
Y )

−1rY

= ξ−1Z ψY ZξY (rY frY � Im(rY ))ϕY ZrY
= ξ−1Z ψY Z(rY frY )ϕY ZrY = rZψY Z(f)ϕY ZrY

because ξY (rY frY � Im(rY )) = rY frY , ψY Z(rY ) = rZ , and Im(rZ) = Im(ϕY Z).
The remaining equalities follow by a straightforward calculation. �

In any class S3 of ∼3 choose a dp-space X ∈ S3. By Lemma 5.8, there exists
a representing collection �X over rX in X . Select one such collection and, for any

Y ∈ S3, set �Y = ψXY (�X). Then, by Statement 5.10, �Y is a representing
collection over rY in Y .

For any Y ∈ S3 and every � ∈ �X , set γY (� ) = ϕY X(β(ψXY (� ), [rY ])), where β
is the map defined just before Lemma 5.6.

Then γY (� ) ∈ W , where W = {C ∩ Im(rX) | C ∈ � (X)} ∪ (Im(rX) \ Ext(X)).
We now define the fourth equivalence ∼4 on S by requiring that

Y ∼4 Z if and only if Y ∼3 Z and γY = γZ .

By Lemma 4.1 and Statement 5.10, the mapping γY is one-to-one and, by (1) and
(2) in Lemma 5.6, members of its domain can be naturally identified with elements

of W . Therefore {γY | Y ∼4 X} is a collection of partial permutations of W with
the same domain.
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Lemma 6.5. If ∼3 has s3 euivalence classes then ∼4 has at most s3(n3(V) +
n4(V))! equivalence classes.
If Y ∼4 Z then ψY Z is a C-isomorphism such that � ∈ �Y is a component block

corresponding to a Stone nucleus N if and only if ψY Z(� ) ∈ �Z is a component

block corresponding to N .

�����. The first claim follows from the observation just above the statement

of this Lemma.
Let Y ∼4 Z. The definition of ∼4 implies that a block � ∈ �Y is a point block

if and only if ϕY Z(β(� , [rY ])) = β(ψY Z(� ), [rZ ]) is a non-extremal point, while
� ∈ �Y corresponds to a Stone nucleus N if and only if the Stone nucleus of the

component ϕY Z(β(� , [rY ])) = β(ψY Z(� ), [rZ ]) is isomorphic to N . Furthermore,
for any Stone nucleus N with |�N (Y )| > 1, any representing collection �Y contains
a block � corresponding to N , by the first claim of Lemma 5.8. For any c2r-map
f > g, rY with [g] ∈ � \ {[rY ]}, the map ψY Z(f) > ψY Z(g), rZ is a 2r-map of Z.

Since [ψY Z(g)] ∈ ψY Z(� ) and ψY Z(� ) is a component block corresponding to N ,
the map ψY Z(f) is a c2r-map such that ∆ψY Z(f) is a disjoint union of two Stone

nuclei isomorphic to N . By Statement 3.12, ψY Z is a C-isomorphism. �

Let S4 be an equivalence class of ∼4 and let Y, Z ∈ S4.
For every component C ∈ � (Y ) with C ∩ Im(rY ) = ∅, there exists a component

block � ∈ �Y and [gC ] ∈ � with Im(gC) ∩ C = ∅ and Im(gC) \ C ⊆ Im(rY ). By
Lemma 6.5, the Stone nucleus of K(Im(ψY Z(gC))\ Im(rZ )) is isomorphic to Nuc(C).
Therefore the mapping εY Z : � (Y ) −→ � (Z) given by

εY Z(C) =

{
K(Im(ψY Z(gC)) \ Im(rZ)) if Im(rY ) ∩C = ∅,
K(ϕY Z(C ∩ Im(rY ))) if Im(rY ) ∩C = ∅

is well defined, and Nuc(εY Z(C)) ∼= Nuc(C) for every C ∈ � (Y ). For any Y, Z, U ∈
S4, equalities εZUεY Z = εY U and εZY εY Z = id�(Y ) follow from the choice of iso-
morphisms ψY Z and Lemma 6.4.

For any class S4 of the equivalence ∼4 choose an X ∈ S4. By Lemmas 1.8 and
4.6, for every component C ∈ � (X) with C ∩ Im(rX) = ∅ there is an r-map gC
satisfying

(gC) Im(gC) ∩ C = ∅ and Im(gC) \ C ⊆ Im(rX),

such that gC(Im(rX)) = Im(gC), and e(gC) � n(g) for every r-map g ∈ End(X)
satisfying (gC). For every Stone nucleus N with |� N (X)| > 1 set

� N = {[rX ]} ∪ {[gC ] | C ∈ �N (X) and Im(rX) ∩ C = ∅}.
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By Lemma 5.6 and Corollary 5.9(2), �N is a component block similar to some block

� ∈ �X . When we replace the block � by � N for every Stone nucleus N with
|�N (X)| > 1, then, by Lemma 5.8, we obtain a new representing collection �X . For
any Y ∈ S4 and for C′ ∈ � (Y ) with C′ ∩ Im(rY ) = ∅ define gC′ = ψXY (gC) where

εYX(C′) = C. The correctness of this definition follows from the definition of εYX .
By Lemma 4.6 and Statement 4.9(2), all r-maps gC and gC′ = ψXY (gC) are nice.

By Statement 5.10, �Y = ψXY (�X) is a representing collection for every Y ∈ S4.
By Statement 2.1(4), for any component C ∈ � (X) with C∩Im(rX) = ∅ there exist

r-maps qC ∈ [rX ] with qCgC = qC and gCqC = gC . For any C ∈ � (X) intersecting
Im(rX), we set gC = qC = rX . For Y ∈ S4 and C ∈ � (Y ), set qC = ψXY (qC′) where

C′ = εYX(C). For Y, Z ∈ S4 we now define a mapping σY Z : Ext(Y )→ Ext(Z) by
setting

σY Z(x) = ψY Z(gC)ϕY ZqC(x) if x ∈ Ext(Y ) ∩ C and C ∈ � (Y ).

Proposition 6.6. If Y ∼4 Z ∼4 U , then
(1) σY Z : Ext(Y )→ Ext(Z) is an order preserving bijection with the dp-property;
(2) σY Z(y) = ϕY Z(y) for every y ∈ Ext(Y ) ∩ Im(rY );
(3) σY U = σZUσY Z and σUY σY U is the identity of Ext(Y );
(4) σY Zf(y) = ψY Z(f)σY Z(y) for every y ∈ Ext(Y ) and for every f ∈ End(Y )
which is an r-map or a 2r-map, or which satisfies f � rY .

�����. It is clear that σY Z satisfies (1), (2) and (3).
In the six steps below, we prove that the equality

(e) σY Zf(y) = ψY Z(f)σY Z(y) for all y ∈ Ext(Y )

holds for any f ∈ End(Y ) which is an r-map or a 2r-map or satisfies f � rY .

Step 1. If f � rY then ψY Z(f) � ψY Z(rY ) = rZ , and by Lemma 6.4, for any
y ∈ Ext(C), C ∈ � (Y ) we have

ψY Z(f)σY Z(y) = ψY Z(f)ψY Z(gC)ϕY ZqC(y) = ψY Z(rY fgC)ϕY ZqC(y)

= ϕY ZrY fgCqC(y) = ϕY Zf(y),

so that (e) holds for such f , by (2).
Step 2. Assume that f ∈ [gC ] for some C ∈ � (Y ). If y ∈ Ext(C′) with f(y) ∈ C,

then, by Lemma 6.4

σY Zf(y) = ψY Z(gC)ϕY ZqCfgC′qC′(y) = ψY Z(gCqCfgC′)ϕY ZqC′(y)

= ψY Z(f)ψY Z(gC′)ϕY ZqC′(y) = ψY Z(f)σY Z(y).
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Next suppose that y ∈ Ext(C′) and f(y) /∈ C. Then f(y) ∈ Im(rY ) \ qC(C). Denote
εY Z(C) = D. Then ψY Z(qC) = qD and thus σY Z(f(y)) ∈ Im(rZ ) \ ϕY Z(qC(C)) =
Im(rZ) \ qD(D). Now, by Lemma 6.4,

σY Zf(y) = ϕY ZqCfgC′qC′(y) = ψY Z(qCfgC′)ϕY ZqC′(y)

= ψY Z(qC)ψY Z(f)σY Z(y) = qDψY Z(f)σY Z(y).

Denote z = ψY Z(f)σY Z(y). If qD(z) = z then ψY Z(f) ∈ [ψY Z(gC)] = [gD] implies
that z ∈ Im(ψY Z(f))\ Im(rZ) = Im(ψY Z(gC))\ Im(rZ ) ⊆ D. But then σY Z(f(y)) ∈
qD(D)—a contradiction. Hence qD(z) = z, and (e) holds again.
Step 3. Assume that f is an r-map such that fr = f for some r ∈ [rY ], and that

Im(f) ⊆ ⋃{Im(gC) | C ∈ � (2) (Y )}. Then there is a smallest set A ⊆ � (2) (Y ) with
f � sup{gC | C ∈ A } and, clearly, the set A is finite. Since fr = f , from Statement

2.1.(4) it follows that for every C ∈ A there exists a g′C ∈ [gC ] with fg′C = f .
Therefore ψY Z(f)ψY Z(g′C) = ψY Z(f) for all C ∈ A , ψY Z(f) � sup{ψY Z(gC) | C ∈
A } and ψY Z(f) � sup{ψY Z(gC) | C ∈ A ′} for any proper subset A ′ of A .
Observe that for any U ∈ S and an arbitrary r-map g ∈ End(U), if g � sup{gC |

C ∈ B} for some finiteB ⊆ � (U) and g � sup{gC | C ∈ B′} for every proper subset
B′ of B, then Im(g) = (

⋃{Im(gC) \ Im(rU ) | C ∈ B}) ∪ (⋂{Im(gC) | C ∈ B}).
Therefore Im(f) = (

⋃{Im(g′C) \ Im(rY ) | C ∈ A }) ∪ (⋂{Im(g′C) | C ∈ A }), and
Im(ψY Z(f)) = (

⋃{Im(ψY Z(g′C)) \ Im(rZ) | C ∈ A }) ∪ (⋂{Im(ψY Z(g′C)) | C ∈ A }),
by the choice of A . Since r, f and g′C are r-maps, from fr = f and fg′C = f

it follows that the kernels of f , r and g′C coincide. Hence if y ∈ Im(r) \ Im(g′C)
then f(y) = g′C(y) and f(y) = r(y) = y for all y ∈ ⋂{Im(g′C) | C ∈ A }. For the
same reason, the kernels ψY Z(f), ψY Z(r) and ψY Z(g′C) coincide, and if z ∈ Im(rZ)\
Im(ψY Z(g′C)) then ψY Z(f)(z) = ψY Z(g′C)(z) and ψY Z(f)(z) = ψY Z(r)(z) = z for

all z ∈ ⋂{Im(ψY Z(g′C)) | C ∈ A }.
Next, let y ∈ Ext(Y ) be such that f(y) ∈ C and C ∈ A . Then r(y) ∈ Im(r) \

Im(g′C). Since Nuc(C) ∼= Nuc(εY Z(C)), we get ϕY Z(Im(r) \ Im(g′C)) = Im(rZ ) \
Im(ψY Z(g′C)) and thus ϕY Z(r(y)) ∈ Im(rZ) \ Im(ψY Z(g′C)). From (2) and Steps 1
and 2, σY Z(r(y)) = ψY Z(r)(σY Z(y)) ∈ Im(rZ) \ Im(ψY Z(g′C)). Hence

σY Zf(y) = σY Zg′Cr(y) = ψY Z(g
′
C)ψY Z(r)σY Z(y) = ψY Z(f)ψY Z(r)σY Z(y)

= ψY Z(f)σY Z(y).

Let y ∈ Ext(Y ) with f(y) ∈ ⋂{Im(g′C) | C ∈ A }. Then f(y) = r(y), and
Nuc(K(r(y))) is not isomorphic to Nuc(C) for any C ∈ A . Hence

Nuc(K(ϕY Z(r(y)))) ∼= Nuc(εY Z(C))
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for any C ∈ A , and thus, by (2) and Step 1,

σY Z(r(y)) = ψY Z(r)σY Z(y) ∈
⋂
{Im(ψY Z(g′C)) | C ∈ A }.

Therefore

σY Zf(y) = σY Zr(y) = ψY Z(r)σY Z(y) = ψY Z(f)ψY Z(r)σY Z(y) = ψY Z(f)σY Z(y).

Altogether, ψY Z(f)σY Z(y) = σY Zf(y) for any y ∈ Ext(Y ).
Step 4. Assume that f is an r-map such that fr = f for some r ∈ [rY ]. Then

there exists an r-map f ′ ∈ End(Y ) close to f , satisfying ff ′ = f , f ′f = f ′, and such
that Im(f ′) ⊆ ∪{Im(gC) | C ∈ A } or f ′ ∈ [rY ].
Then ψY Z(f) and ψY Z(f ′) are close, by Statement 4.9(6). From ψY Z(f)ψY Z(f ′) =

ψY Z(f) we get ψY Z(f) � Ext(Z) = ψY Z(f ′) � Ext(Z). Since f � Ext(Y ) = f ′ �
Ext(Y ), using Steps 1 and 3 we conclude that f satisfies (e).
Step 5. Let f ∈ End(Y ) be any r-map. Then, by Statement 2.1(4), there exist

g0 ∈ [rY ] and g1 ∈ [f ] such that g1g0 = g1 and g0g1 = g0. Then g0f � rY and
g1g0f = f , and then (e) holds because for any y ∈ Ext(Y ) we have

σY Zf(y) = σY Zg1g0f(y) = ψY Z(g1)σY Zg0f(y) = ψY Z(g1)ψY Z(g0f)σY Z(y)

= ψY Z(f)σY Z(y)

from Steps 4 and 1.

Step 6. Let f be a 2r-map.
If f is a p2r-map, then there is an r-map f ′ ∈ End(Y ) such that f ′f = f ′ = ff ′.

But then ψY Z(f) � Ext(Z) = ψY Z(f ′) � Ext(Z), and because f � Ext(Y ) = f ′ �
Ext(Y ), we conclude that (e) holds again.

Suppose that f is a c2r-map. Let y ∈ Ext(Y ). There is a Stone kernel S of Y
intersecting K(y) such that all its other components intersect the image of f , and

such that S intersects K(f(y)) whenever Nuc(K(f(y))) ∼= Nuc(K(y)). By State-
ment 2.1(1), there is an r-map g1 with Im(g1) = S. Clearly, fg1 � g2 for some

r-map g2 and, by Statement 2.1(4), we may assume that g2 is one-to-one on Im(rY ).
Hence there exists an h ∈ End(Y ) such that fg1 = g2h and h � rY . But then, from

Steps 1 and 5,

σY Zf(y) = σY Zfg1(y) = σY Zg2h(y) = ψY Z(g2)σY Zh(y)

= ψY Z(g2)ψY Z(h)σY Z(y) = ψY Z(f)ψY Z(g1)σY Z(y)

= ψY Z(f)σY Zg1(y) = ψY Z(f)σY Z(y)

because g1(y) = y. Therefore (e) holds also for any 2r-map. �
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Let S4 be a class of ∼4. For the dp-space X ∈ S4 already selected, choose a

proper collection FX over rX . This is possible, by Lemma 4.5, because rX is nice.
For every Y ∈ S4 denote FY = ψXY (FX). Then FY is a proper collection over rY ,
by Statement 4.9(4).

Further, for every C ∈ � (X) with Im(rX)∩C = ∅, the r-map gC is nice, and hence
there exists a proper collection F ′ over gC . For every f ∈ F ′ with ∆f ∩C = ∅ there
exists some gf ∈ FX with ∆f ∩ ∆gf = ∅, and hence also a 2r-map hf ∈ End(X)
with hf > gC and ∆hf = ∆gf . Define FC = {f ∈ F ′ | ∆f ∩ C = ∅} ∪ {hf | f ∈
F ′, ∆f ∩ C = ∅}. Since FX is a proper collection, we obtain, by Lemmas 3.7 and
4.5, that FC is a proper collection over gC .

Let Y ∈ S4 and D ∈ � (Y ) be such that Im(rY ) ∩D = ∅, and let C = εYX(D).
Then Im(rX) ∩ C = ∅, and we set FD = ψXY (FC). By Statement 4.9(4), FD is a

proper collection over gD = ψXY (gC). For any C ∈ � (2) (X) for which C ∩ Im(rX) =
∅, we have gC = rX and we set FC = FX . For any Y ∈ S4, if D ∈ � (2) (Y ) is such

that D ∩ Im(rY ) = ∅ then gD = rY and εYX(D) ∩ Im(rX) = ∅, so that FD = FY .
Thus for any Y, Z ∈ S4 and any D ∈ � (2) (Y ), we now have a proper collection FD

over gD such that if f ∈ FD and ∆f ∩ Im(rY ) = ∅ then ∆f = ∆g for some g ∈ FY ,
and if εY,Z(D) = D′ then ψY Z(FD) = FD′ .

We also note that, for distinct components D1, D2 ∈ � (2) (Y ) disjoint with Im(rY ),
the proper collections FD1 , FD2 are disjoint.

For any Y ∈ S4 denote

Nd(Y ) = Ext(Y ) ∪ {x ∈Mid(Y ) \Def(Y ) | E(x) = {x}}.

For any Y, Z ∈ S4, we now intend to define an extension τY Z : Nd(Y )→ Nd(Z)
of the mapping σY Z defined earlier. We set

τY Z(x) =

{
σY Z(x) for x ∈ Ext(Y ),
νf (x) for x ∈ E(∆f) ⊆ C, f ∈ FC , C ∈ � (2) (Y ),

where νf was defined in Statement 4.11.

Lemma 6.7. For any Y, Z ∈ S4, the map τY Z has the following properties:

(1) τY Z maps E(x) bijectively onto E(τY Z(x)) for every x ∈ Nd(Y ) ∩Mid(Y );
(2) τY Z maps K(Im(rY )) ∩Nd(Y ) bijectively onto K(Im(rZ)) ∩Nd(Z);
(3) τY Z maps C ∩Nd(Y ) bijectively onto εY Z(C) ∩Nd(Z) for every C ∈ � (Y )

with Im(rY ) ∩ C = ∅;
(4) τY Z is a bijection;

(5) if y, z ∈ Mid(Y ) ∩Nd(Y ), then {y, z} is a comparable pair in Y if and only
if {τY Z(y), τY Z(z)} is a comparable pair in Z;
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(6) if y ∈ Im(rY ) ∩Nd(Y ) then τY Z(y) ∈ Im(ϕY Z) = Im(rZ);
(7) if also U ∈ S4 then τY U = τZUτY Z , and τUY τY U is the identity mapping on

Nd(Y ).

�����. From Statement 4.11 and Lemma 6.5 we immediately obtain (1).

Since σY Z is a bijection and ψY Z(FY ) = FZ , (2) follows from the definition of

τY Z and (1).

We turn to (3). If C is a component of Y disjoint with Im(rY ), then Im(gC)∩C = ∅.
For any f ∈ FC , either ∆f ⊆ C or else there is an f ′ ∈ FY with ∆f ′ = ∆f . Since
FY and FC are proper, from Lemma 4.7 it follows that ∆f ′ = ∆f if and only if

∆ψY Z(f ′) = ∆ψY Z(f). Therefore ∆f ⊆ C if and only if ∆ψY Z(f) ⊆ εY Z(C), and
(3) follows from (1) because σY Z and ψY Z are bijective.

Claim (4) follows from (2) and (3).

Claims (5) and (6) are the respective consequences of Statements 4.11(2) and

4.11(1).

Finally, τY U = τZUτY Z follows from σY U = σZUσY Z and ψY U = ψZUψY Z , and

the reason for τUY τY U = idNd(Y ) is similar. �

For any Y ∈ S and y ∈ Y , set κY (y) = qK(y)(y). Thus κY : Y → Im(rY ).

Lemma 6.8. The mapping κY has the following properties:

(1) if x, y ∈ Nd(Y ) and K(x) = K(y), then κY (x) = κY (y) if and only if

y ∈ E(x);
(2) κY has the dp-property;
(3) if C0, C1 ∈ �N (Y ) for a Stone nucleus N , and if fi ∈ FCi for i = 0, 1,

then κY (∆f0) = κY (∆f1) if and only if for some j = 0, 1 there exists an
h ∈ End(Y ) such that h(Im(fj)) = Im(f1−j) and qC1−jhqCj = qCj ;

(4) if Y ∼4 Z and x0, x1 ∈ Nd(Y ), then κY (x0) = κY (x1) if and only if
κZτY Z(x0) = κZτY Z(x1).

�����. Claims (1) and (2) follow because qK(y) is an r-map for every y ∈ Y .
To prove (3), let C0, C1 ∈ �N (Y ) and fi ∈ FCi for i = 0, 1. Then κY (∆fi) is a

singleton because ∆fi ⊆ E(xi) for xi ∈ ∆fi ∩ Im(gCi).

Assume that κY (∆f0) = κY (∆f1). Then for hi = gC1−iqCi ∈ End(Y ) we have
hi(xi) = x1−i, hi(Im(gCi)) = Im(gC1−i), and qC1−ihiqCi = qCi for i = 0, 1. Obvi-

ously, for some j = 0, 1, fj is a pt2r-map or f1−j is an n2r-map. Hence there is an
h ∈ End(Y ) such that h(Im(fj)) = Im(f1−j), by Statement 3.9(1).
Conversely, assume that for some j = 0, 1 there exists an h ∈ End(Y ) with

h(Im(fj)) = Im(f1−j) and qC1−jhqCj = qCj . Then h(∆fj) = ∆f1−j and qCj (∆fj) =
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qC1−j (∆f1−j) because fj and f1−j are p2r-maps. Whence κY (∆f0) = κY (∆f1) and

(3) is proved.

Let x0, x1 ∈ Nd(Y ). If x0 ∈ Ext(Y ) then κY (x0) = κY (x1) implies that x1 ∈
Ext(Y ) and qK(x0)(x0) = qK(x1)(x1). Since τY Z extends σY Z , from Proposition 6.6

we obtain qK(τY Z (x0))(τY Z(x0)) = qK(τY Z(x1))(τY Z(x1)), and hence κZ(τY Z(x0)) =
κZ(τY Z(x1)).

If xi ∈ Im(gK(xi)) \ Ext(Y ), then there exists a unique fi ∈ FK(xi) with xi ∈ ∆fi
for i = 0, 1. In this case, if κY (x0) = κY (x1) then from Statement 3.9(3) and from

(3) we conclude that κZ(τY Z(x0)) = κZ(τY Z(x1)).

For i = 0, 1, there is a unique zi ∈ Im(gK(xi)) with zi ∈ E(xi). By Lemma 6.7(1),
we have τY Z(zi) ∈ E(τY Z(xi)) and, by (1), κY (xi) = κY (zi) and κZ(τY Z(xi)) =

κZ(τY Z(zi)). Thus, by the previous paragraph, κY (x0) = κY (x1) implies

κZ(τY Z(z0)) = κZ(τY Z(z1)),

and κZ(τY Z(x0)) = κZ(τY Z(x1)) follows.

If κZ(τY Z(x0)) = κZ(τY Z(x1)) then, using what was shown above, we obtain

κY (x0) = κY (τZY (τY Z(x0))) = κY (τZY (τY Z(x1))) = κY (x1),

which completes the proof of (4). �

For any Y ∈ S4 we now intend to define a partial mapping �Y from Im(rX) into

itself as follows: for any x ∈ Im(rX) for which there exists a y ∈ Nd(Y ) such that
x = ϕY XκY (y), and only for these elements x, we set �Y (x) = κX(τY X(y)).

Lemma 6.9. Let Y, Z ∈ S4. Then the partial mapping �Y is correctly defined

and has the following properties:

(1) �Y is one-to-one;

(2) �Y (x) is defined and �Y (x) = x for every x ∈ Ext(Im(rX));
(3) if �Y = �Z , then τY Z has the dp-property and ϕY ZκY = κZτY Z .

�����. From Lemma 6.8(4) it follows that �XY is a correctly defined injection
and, by Proposition 6.6(4), �Y (x) = x for any x ∈ Ext(Im(rX)). Thus it remains to
prove (3).

Assume that �Y = �Z . Let y ∈ Nd(Y ). Then x = ϕY XκY (y) ∈ Im(rX) and hence
�Z(x) = �Y (x) = κX(τY X(y)). Write z = τY Z(y). Then

κX(τZX(z)) = κX(τZX(τY Z(y))) = κX(τYX(y)) = �Z(x)
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and, by (1), κZ(z) = ϕXZ(x) = ϕY Z(ϕXY (x)) = ϕY ZκY (y). Thus ϕY ZκY = κZτY Z .

From this and Lemma 6.7(2) it follows that τY Z maps C ∩ Nd(Y ) bijectively onto
εY Z(C) ∩Nd(Z) for every component C of Y intersecting Im(rY ), while this is true
for all other components because of Lemma 6.7(3). Using ϕY ZκY = κZτY Z , the fact

that ϕY Z , κY and κZ have the dp-property (see Lemmas 6.4 and 6.8(2)), together
with Lemma 6.8(1), we conclude that τY Z has the dp-property. This proves (3). �

Define the fifth equivalence ∼5 on S by

Y ∼5 Z if and only if Y ∼4 Z and �Y = �Z .

The claim below holds because Im(�Y ) = κX(Nd(X)) for every Y ∈ S4.

Lemma 6.10. If the equivalence ∼4 has s4 classes then ∼5 has at most s4n4(V)!
classes. If Y ∼5 Z, then τY Z has the dp-property.

Let Y ∼5 Z. Recall that, for any x ∈ Y \ Def(Y ), we have x /∈ Nd(Y ) if and

only if x ∈ Mid(Y ) and E(x) = {x}. Consider such an x, and denote C = K(x).
Then ω′

Y Z(x) = ψY Z(gC)ϕY ZqC(x) ∈ (Mid(Z) \Def(Z)), and y = ω′
Y Z(x) /∈ Nd(Z)

because τZY has the dp-property and maps Nd(Z) onto Nd(Y ). Therefore E(y) =
{y}.
This enables us to extend τY Z to a mapping ωY Z : Y \Def(Y )→ Z \Def(Z) by

ωY Z(x) =

{
τY Z(x) for x ∈ Nd(Y ),
ω′
Y Z(x) for x ∈ Y \ (Nd(Y ) ∪Def(Y )).

Lemma 6.11. If Y ∼5 Z ∼5 U , then
(1) ωY Z is a bijection and has the dp-property;

(2) ωY Z(x) = τY Z(x) for any x ∈ Nd(Y ) and ωY Z(x) = ϕY Z(x) for any x ∈
Im(rY );

(3) ωZUωY Z = ωY U , and ωUY ωY U is the identity on Y \Def(Y );
(4) ωY Zf = ψY Z(f)ωY Z whenever f ∈ End(Y ) is an r-map or a c2r-map.

�����. Claims (1), (3) and the first statement in (2) follow easily. The second
statement in (2) follows from Proposition 6.6(2) and Lemma 6.7(6) because ωY Z has

the dp-property, by (1).
It remains to prove (4).

We know that σY Zf = ψY Z(f)σY Z on Ext(Y ) for every f which is an r-map or a
c2r-map. In order to prove (4), we only need to show that ωY Z(Im(f) ∩Mid(Y )) =
Im(ψY Z(f))∩Mid(Z). Since the image of a c2r-map is the union of images of r-maps
below it, see Lemma 3.1, we may assume that f is an r-map.
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Let x ∈ Im(f)∩Mid(Y ). If E(x) = {x}, then E(ωY Z(x)) = {ωY Z(x)} and, because
the bijection ωY Z extends σY Z and has the dp-property, ωY Z(x) ∈ Im(ψY Z(f)) ∩
Mid(Z).
If E(x) = {x} then there exists an f ′ ∈ FK(x) with ∆f ′ ⊆ E(x) and either f ′

is an n2r-map or E(x) is an antichain. Since FK(x) is proper, by Theorem 4.10
and Statement 4.11, for every z ∈ E(x) there exists a kz ∈ S(FK(x), gK(x), f

′)

such that kzgK(x) is an r-map for which z ∈ Im(kzgK(x)) and ωY Z(z) = νf ′(z) ∈
Im(ψY Z(kzgK(x))). Since f and kzgK(x) are r-maps such that Im(f) and Im(kzgK(x))

intersect E(x) we conclude, by Proposition 6.6(1) and 6.6(4), that Im(ψY Z(f)) and
Im(ψY Z(kzgK(x))) intersect E(∆ψY Z(f ′)). Furthermore, from the hypothesis on f ′

and from Statements 3.11(3) and 4.11(2) it follows that either ψY Z(f ′) is an n2r-map
or E(∆ψY Z(f ′)) is an antichain. Therefore, by Statement 3.13, Im(f) ∩ E(∆f ′) =
Im(kzgK(x)) ∩ E(∆f ′) if and only if

Im(ψY Z(f)) ∩ E(∆ψY Z(f ′)) = Im(ψY Z(kzgK(x))) ∩E(∆ψY Z(f ′)).

Hence f(x) = kzgK(x)(x) if and only if

ψY Z(f)(ωY Z(x)) = ψY Z(kzgK(x))(ωY Z(x)) = kωY Z(z)gK(ωY Z (x))(ωY Z(x)).

Therefore x = z if and only if ψY Z(f)(ωY Z(x)) = ωY Z(z). Thus ωY Z(x) ∈
Im(ψY Z(f)). This proves (4). �

For any class S5 of the fifth equivalence, choose an X ∈ S5. Let G0(X) be a
collection of equivalence classes of p2r-maps of X such that

(v1) Im(f0) ∼= Im(f1) whenever [f0], [f1] ∈ G0(X) are distinct,
(v2) for every p2r-map f ∈ End(X) there is an f ′ ∈ G0(X) with Im(f) ∼= Im(f ′),
(v3) if f is a p2r-map, [f ′] ∈ G0(X) and Im(f) ∼= Im(f ′), then

|{C ∈ � (X) | C ∩ Im(rX) ∩ Im(f) = ∅}| � |{C ∈ � (X) | C ∩ Im(rX) ∩ Im(f ′) = ∅}|.

The existence and the finiteness of G0(X) follow from Lemma 3.1 and State-

ment 2.1(1).
Let [g] ∈ G0(X) and let C,C′ ∈ � (X) be components such thatM = C∩Im(rX) =

∅ = C ∩ Im(g), and C′ ∩ Im(g) = M ′ satisfies (b) from the definition of n6(V) =
|H (V)| at the beginning of this section. Suppose that there is a k : N → N ′ ∈
H (V) with M ∼= N and M ′ ∼= N ′. By Lemma 1.8, there exists a map 〈gk〉 ∈ [g]
such that 〈gk〉 � C = j−1M ′kiMrX � C and Nuc(K(〈gk〉(D))) ∼= Nuc(D) for every
D ∈ � (X)\{C} with D∩ Im(rX) = ∅. Select one such 〈gk〉 ∈ [g] for each k ∈ H (V)
and [g] ∈ G0(X), and let G1(X) denote the collection of all these 〈gk〉 ∈ End(X).
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Lemma 6.12. For any Y ∼5 X ∼5 Z,
(1) if, for a p2r-map f ∈ End(Y ) and y ∈ Y , there exists a c2r-map or an r-
map g ∈ End(Y ) for which y ∈ Im(g) and fg is an r-map, then ωY Zf(y) =
ψY Z(f)ωY Z(y);

(2) ωY Z(Im(f)) = Im(ψY Z(f)) for any p2r-map f ∈ End(Y );
(3) if for a p2r-map f ∈ End(Y ) and y ∈ Y there exists a dp-subspace M � y

isomorphic to Nuc(K(y)) and such that ∆f ⊆ f(M), then there exist r-maps

g0, g1 ∈ End(Y ) and p2r-maps f0, f1 ∈ End(Y ) such that g1 ∈ [rY ], f0 ∈
ψXY (G1(X)), Im(g0) ∩K(y) =M , f1(Im(f0)) = Im(f), and fg0 = f1f0g1;

(4) if ωYXψXY (f)ωXY � Im(rX) = ωZXψXZ(f)ωXZ � Im(rX) for every f ∈
G1(X), then ωY Zg = ψY Z(g)ωY Z for every p2r-map g ∈ End(Y );

(5) |G1(X)| � n6(V).

�����. To prove (1) we apply Lemma 6.11(4). Then

ωY Zf(x) = ωY Zfg(x) = ψY Z(fg)ωY Z(x) = ψY Z(f)ωY Zg(x) = ψY Z(f)ωY Z(x),

and (1) is proved.

Let f ∈ End(X) be a p2r-map. Then there are non-equivalent r-maps g0, g1 < f

such that Im(f) = Im(g0)∪Im(g1) and Im(ψY Z(f)) = Im(ψY Z(g0))∪Im(ψY Z(g1))—
see Lemma 3.1 and Statements 3.11(3) and 3.12(2). By Lemma 6.11(4),
ωY Z(Im(gi)) = Im(ψY Z(gi)) for i = 0, 1 and the proof of (2) is complete.

To prove (3) first assume that Y = X . By (v1), there exists an [f ′] ∈ G0(X) such

that Im(f ′) ∼= Im(f). Denote M ′ = Im(f) ∩ K(∆f), then M ′ satisfies (b). Since
M is a Stone nucleus of K(y) such that ∆f ⊆ f(M), we conclude that the map

k = jM ′fi−1M belongs to H (V).
Set f0 = 〈f ′k〉 ∈ G1(X) and N ′ = K(∆f ′) ∩ Im(f ′). Since Im(f0) = Im(f ′) ∼=

Im(f), from Statement 3.9(1) and Lemma 1.8 we obtain an f1 ∈ End(X) such that
f1j

−1
N ′ = j−1M ′ , f1(Im(f0)) = Im(f) and f1(z) = z for any z ∈ Ext(Im(f)). Let

Cr, Cf ∈ � (X) have their Stone nuclei isomorphic to M and let Cr ∩ Im(rX) = ∅ =
Cf ∩Im(f). Then the setM∪(Im(g′)\Cf ) is a Stone kernel of X , and, by Statement
2.1(4), there is an r-map g1 ∈ [rX ] such that g1(Cf ) ⊆ Cr, ig1(M)g1 � M = iM ,
g1(Im(f) \ Cf ) = Im(rX) \ Cr and f1f0g1(x) = x for any x ∈ Im(f) \ Cf . The last
property holds because f1(z) = z for any z ∈ Ext(Im(f)). Since f � M = j−1M ′kiM �
M = f1j

−1
N ′ kig1(M)g1 � M = f1f0g1 � M and because f is an idempotent we conclude

that f1f0g1 � (M ∪ (Im(f)\Cf)) = f � (M ∪ (Im(f)\Cf)). By Statement 2.1(1) and
2.1(4), there exists an r-map g0 with g1g0 = g1 and Im(g0) =M∪(Im(f)\Cf ). Then
for any x ∈ X , f1f0g1(x) = f1f0g1g0(x) = fg0(x) because g0(x) ∈M ∪ (Im(f) \Cf ).
Therefore (3) holds for Y = X .
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If Y ∼5 X and f ∈ End(Y ) satisfies the hypothesis, then ψY X(f) is a p2r-map be-
cause ψYX is a C-isomorphism, by Lemma 6.5. Let h ∈ End(Y ) be any r-map such
that M ⊆ Im(h) ⊆ Im(f) ∪M . Then, by Lemma 6.11, ωYXh = ψY X(h)ωYX and
hence ωYX(M) is a nucleus. From (1) we obtain that ωYXf(x) = ψY X(f)ωYX(x)

for every x ∈ Im(h) \ M . If g < f is any r-map then gfh = fh, and hence
∆ψY X(f) ⊆ ψY X(f)(Im(ψY X(h))). Therefore ∆ψYX(f) ⊆ ψYX(f)(ωY X(M)), and

the hypothesis of (3) is satisfied by ψY X(f). From the first part of the proof it then
follows that (3) holds.

We turn to (4). Let f ∈ End(Y ) be a p2r-map and y ∈ Y . If there is a g ∈ End(Y )
that is either an r-map or a c2r-map for which fg is an r-map, then (1) implies that

ωY Zf(y) = ψY Z(f)ωY Z(y). If there is no such g, then there is a Stone nucleus
N � y isomorphic to Nuc(K(y)) such that ∆f ⊆ f(N). By (3), there exist r-maps

g0, g1 ∈ End(Y ) and p2r-maps f0, f1 ∈ End(Y ) such that N ⊆ Im(g0), g1 ∈ [rY ],
f1(Im(f0)) = Im(f), f0 ∈ ψXY (G1(X)), and fg0 = f1f0g1. From f1(Im(f0)) = Im(f)
and (1) it follows that ωY Zf1(u) = ψY Z(f1)ωY Z(u) for every u ∈ Im(f0). The
hypothesis ωY ZψXY (f0) � Im(rY ) = ψXZ(f0)ωY Z � Im(rY ) for f0 ∈ G1(X) and

Lemma 6.11(4) imply that ωY Zf1f0g1(y) = ψY Z(f1f0g1)ωY Z(y) because Im(rY ) =
Im(g1). But then

ωY Zf(y) = ωY Zfg0(y) = ωY Zf1f0g1(y) = ψY Z(f1f0g1)ωY Z(y)

= ψY Z(fg0)ωY Z(y) = ψY Z(f)ωY Zg0(y) = ψY Z(f)ωY Z(y),

and (4) is proved.

The definition of G1(X) implies (5) immediately. �

We now define the sixth equivalence ∼6 on S as follows.

Y ∼6 Z if and only if Y ∼5 Z and
ωYXψXY (f)ωXY � Im(rX) = ωZXψXZ(f)ωXZ � Im(rX) for every f ∈ G1(X).

Lemma 6.13. If the equivalence ∼5 has s5 classes, then ∼6 has at most s52n6(V)
classes.

If Y ∼6 Z, then ψY Z(f)ωY Z = ωY Zf for every f that is an r-map or a 2r-map.

�����. By Lemma 6.12(2), Im(ωYXψXY (f)ωXY ) = Im(f) for all f ∈ G1(X)

and Y ∼5 X . Let k : Im(f)→ Im(f) denote the non-identity involution with k(z) =
z for all z ∈ Im(f) \∆f . By Lemma 6.11(1), ωXY and ωYX have the dp-property,
and hence either ωYXψXY (f)ωXY = f or ωYXψXY (f)ωXY = kf . But then Lemma
6.12(5) implies the first claim and Lemma 6.12(4) implies the second. �
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Lemma 6.14. If Y ∼6 Z and y ∈ Im(κY )∩Mid(Y ), then ωY Z is either an order

isomorphism or an order anti-isomorphism of κ−1Y {y} onto κ−1Z {ϕY Z(y)}.
�����. The statement follows from Lemma P.6, (1) and (3) of Statement 3.9,

and Lemma 6.7(5). �

Now we define the seventh equivalence ∼7. We set

Y ∼7 Z if and only if Y ∼6 Z and ωY Z is order preserving.

The relation ∼7 is an equivalence because of Lemmas 6.11(3) and 6.14. From Lemma
6.14 and from Im(κY ) ∩Mid(Y ) ⊆ Im(rY ) ∩Mid(Y ), we get the claim below.

Lemma 6.15. If the equivalence ∼6 has s6 classes then the equivalence ∼7 has
at most s62n4(V) classes.

If Y ∼7 Z, then ωY Z has the dp-property, preserves order, and satisfies

ψY Z(f)ωY Z = ωY Zf for every f ∈ End(Y ) that is an r-map or a 2r-map.
For any Y, Z ∈ S with Y ∼7 Z, we now define

λY Z(y) =

{
ωY Z(y) for every y ∈ Y \Def(Y ),
d(ψY Z(f)) if f ∈ End(Y ) is a dr-map and d(f) = y ∈ Def(Y ).

Lemma 6.16. Let S7 be a class of the seventh equivalence. Then, for any

Y, Z ∈ S7, the map λY Z : Y → Z is a correctly defined bijection that extends ωY Z
in such a way that

(1) λY Z(K(Im(rY ))) = K(Im(rZ));
(2) λY Z(C) = εY Z(C) for every C ∈ � (Y ) with Im(rY ) ∩ C = ∅;
(3) if also U ∈ S7 then λY U = λZUλY Z , and λUY λY U is the identity mapping

of Y .

�����. By Statement 2.3(1), for any x ∈ Def(X) there exists a dr-map f with
d(f) = x. Then, by Statement 2.3(6a), ψY Z(f) is a dr-map, and Statement 2.3(6b)

ensures the correctness of the definition of λY Z . Moreover, from Statements 2.3(6a),
2.3(6b), 2.3(1) and Lemma 6.11(1) it follows that the map λY Z is a bijection of Y

onto Z, and that λY Z extends ωY Z .
Since λY Z extends ωY Z , from ψY Z(rY ) = rZ and Statement 4.9(6) it follows that

λY Z maps K(Im(rY )) onto K(Im(rZ)).
If Im(rY ) ∩K(x) = ∅ for x ∈ Def(Y ), then by Statement 2.1(6) and Lemma 2.2

there is a dr-map f such that d(f) = x and Im(f)\K(x) ⊆ Im(rY ). From Statements
2.3(6b) and 4.9(6) it then follows that λY Z(x) = d(ψXY (f)) ∈ εY Z(K(x)).
Finally, λY U = λZUλY Z follows from ψY U = ψZUψY Z and ωY U = ωZUωY Z , and

λUY λY U = idY because ψUY ψY U and ωUY ωY U are identity maps. �
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For any Y ∈ S and every x ∈ Def(Y ) we now define a subset ζY (x) of Im(rY ) by

ζY (x) = {κY (y) | x, y are comparable in Y }.

Lemma 6.17. Let x0, x1 ∈ Def(Y ). Then
(1) ζY (x0) = ζY (x1) if and only if there exist dr-maps f0, f1 such that fif1−i =

fi, d(fi) = xi and qK(xi) = qK(x1−i)f1−i for i = 0, 1;
(2) for any Z ∈ S with Y ∼7 Z we have ζY (x0) = ζY (x1) if and only if

ζZλY Z(x0) = ζZλY Z(x1).

�����. If ζY (x0) = ζY (x1), then, using Statements 2.1(4) and 2.3(7), we obtain
the required dr-maps fi for i = 0, 1.

Conversely, if fif1−i = fi then fi(x0) = fi(x1) = xi for i = 0, 1. From qK(xi) =
qK(x1−i)fi−1 it then follows that ζY (x0) = ζ(x1).

To prove (2), it suffices to note that ψY Z(fi) is a dr-map exactly when fi is a
dr-map, that d(ψY Z(fi)) = λY Z(xi) for i = 0, 1, and then apply (1). �

For any class S7 of ∼7 choose an X ∈ S7. For every Y ∈ S7 we intend to define
a mapping µY from Im(ζX) into the set of all subsets of Im(rX) as follows: for any

A ∈ Im(ζX) we set µY (A) = ϕY XζY λXY (x), where x ∈ Def(X) and ζX(x) = A.

Lemma 6.18. If Y, Z ∈ S7 then:

(1) µY is a correctly defined one-to-one mapping;

(2) if µY = µZ , then λY Z has the dp-property and, for any u ∈ Def(Y ) and any
v ∈ Y \Def(Y ),

(a) u < v exactly when λY Z(u) < λY Z(v);
(b) v < u exactly when λY Z(v) < λY Z(u);

and, for any two min-defective or max-defective u, v ∈ Def(Y ),
(c) u � v exactly when λY Z(u) � λY Z(v).

�����. (1) follows from Lemma 6.17(2).

For (2), let y ∈ Def(Y ). Then there exists an x ∈ Def(X) with λXY (x) = y, and
hence

µY (ζX(x)) = ϕY X(ζY (λXY (x))) = ϕYX(ζY (y)).

Thus, from µY = µZ we get

ϕZX(ζZ(λY Z(y))) = ϕZX(ζZ(λXZ(x))) = µZ(ζX(x))

= µY (ζX(x)) = ϕY X(ζY (y)) = ϕZX(ϕY Z(ζY (y))),
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and hence ζZ(λY Z(y)) = ϕY Z(ζY (y)) = λY Z(ζY (y)) because λY Z � Im(rY ) =
ϕY Z is one-to-one. Furthermore, Ext(y) = Ext(K(y)) ∩ κ−1Y (ζY (y)). By Lemma
6.16(1) and 6.16(2), and from the definition of λY Z we obtain λY Z(Ext(K(y))) =
Ext(K(λY Z(y))). Since λY Z extends τY Z , and from Lemmas 6.9(3) and 6.11(2), it

follows that

λY Z(κ
−1
Y (ζY (y)) ∩ Ext(Y )) = κ−1Z (λY Z(ζY (y))) ∩ Ext(Z).

Therefore

λY Z(Ext(y)) = Ext(K(λY Z(y))) ∩ κ−1Z (λY Z(ζY (y)))
= Ext(K(λY Z(y))) ∩ κ−1Z (ζZ(λY Z(y))) = Ext(λY Z(y)),

and hence λXY has the dp-property.

Assume that u ∈ Def(Y ) and v ∈ Mid(K(u))\Def(Y ). Then ((u]∪ [u))∩E(v) = ∅
if and only if κY (v) ∈ ζY (u). Since λY Z has the dp-property, we have λY ZκY (v) =
κZλY Z(v), and hence κZ(λY Z(v)) ∈ ζZ(λY Z(u)) because ζZλY Z(u) = λY ZζY (u).
Using Statement 2.3(8), we conclude that u < v exactly when λY Z(u) < λY Z(v),

and v < u exactly when λY Z(v) < λY Z(u).

The claim in (2c) follows from (1) and (2) of Statement 2.3. �

Now we define the eighth equivalence ∼8 by

Y ∼8 Z if and only if Y ∼7 Z and µY = µZ .

The claim below easily follows.

Lemma 6.19. If the equivalence ∼7 has s7 classes then the equivalence ∼8 has
at most s7(2n2(V))! classes.

If Y ∼8 Z then λY Z has the dp-property, preserves the order on E(y) for any
y ∈ Y which is not doubly defective, and preserves the order between the defective

and the non-defective elements.

Lemma 6.20. If Y ∼8 Z, then λY Z is an order isomorphism or an order anti-
isomorphism of the set of all doubly defective elements of Y onto the set of all doubly

defective elements of Z.

�����. The statement follows from Lemma 3.8, (2) and (3) of Statement 3.9,
and Lemma P.6. �
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Lemma 6.21. If Y ∼8 Z, then

λY Zf = ψY Z(f)λY Z

for every f ∈ End(Y ) which is an r-map, or a dr-map, or a 2r-map.

�����. If f ∈ End(Y ) is an r-map or 2r-map then by Lemmas 6.13 and 6.18(2),
λY Zf = ψY Z(f)λY Z . Thus assume that f ∈ End(Y ) is a dr-map. By the above, for
an r-map r(f) < f we have λY Zr(f) = ψY Z(r(f))λY Z and therefore it suffices to

show that ψY Z(f)(λY Z(x)) = d(ψY Z(f)) exactly when f(x) = d(f). Since f(x) =
d(f) implies that x ∈ Def(X), Statement 2.3(6b) and 2.3(11) completes the proof.

�

Lemma 6.22. If Y ∼8 Z then λY Z is continuous.

�����. By Corollary 3.6 and Lemma P.2, the set

{f−1{z} | z ∈ Im(f), f ∈ End(Z) is an r-map or a dr-map or a 2r-map}

is a subbase of the topology on Z. Further, an endomorphism f of Z is an r-map
(or a 2r-map, or a dr-map) if and only if ψZY (f) is an r-map (or a 2r-map, or a dr-

map, respectively). By Lemma 6.21, λZY f = ψZY (f)λZY for any f ∈ End(Z) which
is an r-map or a dr-map or a 2r-map. Since λY Z is a bijection and λZY = λ−1Y Z ,

for any such f and each z ∈ Im(f) we have λ−1Y Z(f−1{z}) = ψZY (f)−1(λ
−1
Y Z{z}) =

ψZY (f)−1(λZY {z}). Thus λ−1Y Z(f−1{z}) is clopen in Y , and hence λY Z is continuous
by Lemma P.3. �

In a dp-space Y ∈ � � , let u ∈ Im(rY ) ∩ Min(Y ) and v ∈ Im(rY ) ∩ Max(Y )
be such that u < v and Ext(K(u)) = {u, v}. It is clear that comparable x ∈
κ−1Y {u} ∩Mid(Y ) = Bu and y ∈ κ−1Y {v} ∩Mid(Y ) = Tv must satisfy x < y. If there

are no such comparable pairs, or if x < y for all x ∈ Bu, y ∈ Tv with y ∈ K(x), we
say that the pair {u, v} is degenerate.

Lemma 6.23. Let Y, Z ∈ � � ∩ S and Y ∼8 Z. Then, for any u ∈ Im(rY ) ∩
Min(Y ) and v ∈ Im(rY ) ∩Max(Y ) with u < v, one of the following two possibilities

occurs:

(1) the pairs {u, v} and {λY Z(u), λY Z(v)} are non-degenerate, in which case, for
any x ∈ κ−1Y {u} ∩Mid(Y ) and y ∈ κ−1Y {v} ∩Mid(Y ) we have x < y exactly

when λY Z(x) < λY Z(y);
(2) the pairs {u, v} and {λY Z(u), λY Z(v)} are degenerate.

538



�����. Since Y, Z ∈ � � , the hypothesis of Lemma 3.10 is (vacuously) satisfied.

If {u, v} is non-degenerate and x ∈ Bu, y ∈ Tv then, by Lemmas 3.10 and 6.19,
we have x < y if and only if λY Z(x) < λY Z(y), and {λY Z(u), λY Z(v)} is a non-
degenerate pair because λY Z has the dp-property. �

Finally, we define the ninth equivalence ∼9 by

Y ∼9 Z if and only if Y ∼8 Z and λY Z is an order isomorphism.

For Y ∈ � � , u ∈ Im(rY ) ∩Min(Y ) and v ∈ Im(rY ) ∩Max(Y ), a comparable pair
{u, v} that is not a component of Im(rY ) falls into one of the two cases described by
Lemma 6.23. Under (1) of Lemma 6.23, the order on κ−1Y {u, v} is fully determined,
while under (2), there are two possible orders on this set. If {u, v} is a component of
Im(rY ) then, according to Lemma 6.20, there are two possible orders on κ

−1
Y {u, v}.

The lemma below now easily follows.

Lemma 6.24. If S ⊆ � � and the equivalence ∼8 has s8 classes, then the
equivalence ∼9 has at most s82n8(V) classes. If Y ∼9 Z, then λY Z : Y −→ Z is a

dp-isomorphism.

Theorem 6.25. If P (V) ⊆ � � , then V is n-determined for some finite n.

�����. By Lemmas 6.2, 6.3, 6.4, 6.5, 6.10, 6.13, 6.15, 6.19 and 6.24, there exists
a finite cardinal

m � n1(V)n5(V)n7(V)((n3(V) + n4(V))!)(n4(V)!)(2n2(V)!)2n4(V)+n6(V)+n8(V)

such that the equivalence ∼9 has at most m classes. �

7. Conclusion

This section completes the proof of Main Theorem, and shows why the set

{n(V) | V ⊆ R is finitely generated }

has no finite upper bound.

We begin with a proof of the latter claim.

For any integer n > 0, let An be the dp-space on the set {0, 1, . . . , 2n+ 1} whose
order is given by 2i < 2i+ 1 > 2i+ 2 for i = 0, 1, . . . , n− 1 and 2n < 2n+ 1.
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Lemma 7.1. For any n > 0, the algebra D(An) dual to the dp-space An is rigid
and regular.

�����. Since Mid(An) = ∅, the algebra D(An) is regular, and End(An) =
Aut(An) because An is connected. If a, b ∈ An then |Max(a)| = 1 for a = 0 alone,
and |Min(b)| = 1 only for b = 2n+1. Since the unique order path connecting a to b
passes through all elements of An, the identity is the only endomorphism of An. �

For every positive integer n, let Vn be the variety of dp-algebras generated by the
duals D(Ai) of all Ai with i � n.

Corollary 7.2. The finitely generated variety Vn ⊆ R contains at least n + 2
non-isomorphic equimorphic algebras.

We still need to show that (1) of Main Theorem implies (3).

Remark. For any X ∈ �� and any x ∈ X , the dp-subspace Qx = {x} ∪
Ext(K(x)) of X is the Priestley dual of a subdirectly irreducible algebra, and the
dual Q of any finite subdirectly irreducible algebra satisfies |Q \ Ext(Q)| � 1, see
[4]. According to [11], for X,X ′ ∈ �� , the algebras D(X) and D(X ′) generate
the same variety if and only if, up to dp-isomorphisms, the sets {Qx | x ∈ X} and
{Qx′ | x′ ∈ X ′} coincide.

Let V be an � �-variety, and let P (V) ⊆ � � . Then, by [11] and Remark 1.9, there
exists a finite order connected dp-space X ∈ P (V) such that Mid(X) = {x, y, z},
where x is min-defective, y is max-defective, z is non-defective, and x < z < y. Let

Y denote the finite dp-space on the set X \ {z} whose order is obtained from the
order of X by the removal of comparability x < y. Then Y ∈ P (V).
Let 	2 denote the category whose objects are all triples (D, a, b), where D is a

Priestley space in which a ∈ Min(D) and b ∈ Max(D) are incomparable elements,
and whose morphisms f : (D, a, b)→ (D′, a′, b′) are all continuous, order preserving
mappings for which f(a) = a′ and f(b) = b′. By [6], the category dual to 	2 is

universal.
We now define a functor L : 	2 −→ P (V) as follows. For any object (D, a, b) ∈

	2 we set L (D, a, b) = (D ∪ Y,�, τ), where D and Y are disjoint. The order �
of L (D, a, b) is the joint extension of the respective orders on Y and D in which

u < d < v whenever d ∈ D, u ∈ Min(z) and v ∈ Max(z) in X , and x � b, a � y.
The topology τ of L (D, a, b) is the extension of the topology on D by the discrete

topology on Y . For any morphism f : (D, a, b) −→ (D′, a′, b′), we define L (f) to
be the extension of f by the identity map of Y . Routine calculations show that

L (D, a, b) is a dp-space and L (f) is a dp-map, and from the remark above it follows
that L (D, a, b) ∈ P (V).
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Lemma 7.3. L : 	2 −→ P (V) is a functor and if f : L (D, a, b) −→ L (D′, a′, b′)

is a dp-map satisfying f(x) = x and f(y) = y, then f(D) ⊆ D′ and the restriction

of f to D is a 	2-morphism from (D, a, b) to (D′, a′, b′) ⊂ L (D′, a′, b′).

�����. A verification that L is a functor is straightforward.
If f : L (D, a, b) −→ L (D′, a′, b′) is a dp-map with f(x) = x and f(y) = y then

x = f(x) � f(b) and f(a) � f(y) = y because f preserves order, and f(a) ∈ E(f(b))
because f has the dp-property. Hence f(a), f(b) ∈ D′ and thus f(a) = a′ and

f(b) = b′, by the definition of the order on Y ∪D′. The map f has the dp-property,
and hence f(D) ⊆ D′. �

Let E = {(Di, ai, bi) | i ∈ I} be any family of objects from 	2. For simplicity’s

sake, let Di ∩ Y = ∅ and Di ∩Dj = ∅ whenever i, j ∈ I are distinct. Let (Z ′,�, τ)
be the disjoint union of all L (Di, ai, bi) with i ∈ I, let � be the union of the
individual orders of L (Di, ai, bi), and let the topology τ be the union of topologies
on L (Di, ai, bi). For any finite I we set K (E ) = (Z ′,�, τ). If I is infinite then
K (E ) = (Z ′ ∪ {z′},�, σ) where z′ /∈ Z ′, the order � extends the order of Z ′ in
such a way that z′ is incomparable to any member of Z ′, and σ is the one-point

compactification of τ by {z′}. Set Z = Z ′ when I is finite, and Z = Z ′ ∪ {z′} when
I is infinite, so that Z is the underlying set of K (E ) in either case. To simplify the

notation, all elements of Y ⊂ L (Di, ai, bi) will also carry the index i.

Lemma 7.4. If E is a family of 	2-objects, then K (E ) ∈ P (V). If f ∈
End(K (E )) satisfies f(xi) = xj and f(yi) = yj then f(Di) ⊆ Dj and the domain-

range restriction of f to Di and Dj is a 	2-morphism from (Di, ai, bi) to (Dj , aj, bj).

�����. Since L (D, a, b) ∈ P (V) for every (D, a, b) ∈ E and because K (E ) is a
disjoint union of all L (D, a, b) with (D, a, b) ∈ E for any finite E , and K (E ) is the

one-point compactification of a disjoint union of all L (D, a, b) with (D, a, b) ∈ E for
any infinite E , the remark concerning subdirectly irreducibles implies that K (E ) ∈
P (V).
If f(xi) = xj and f(yi) = yj then the domain-range restriction of f toL (Di, ai, bi)

and L (Dj , aj , bj) is a dp-morphism from L (Di, ai, bi) to L (Dj , aj , bj). This follows
from Lemma 7.3 because these subspaces are closed order components of K (E ). �

A family E = {(Di, ai, bi) | i ∈ I} of 	2-objects is mutually rigid when for all
i, j ∈ I, if f : (Di, ai, bi) −→ (Dj , aj , bj) is a 	2-morphism, then j = i and f is the
identity map on Di. Since 	2 is dually universal, arbitrarily large mutually rigid

families E ⊆ 	2 exist.
For any I ′ ⊆ I, let K (E , I ′) be the dp-space obtained from K (E ) by setting

xi < yi for every i ∈ I ′. Thus xi and yi are comparable in K (E , I ′) exactly when
i ∈ I ′, and the remainder is unchanged from K (E ).
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Lemma 7.5. If E is a mutually rigid family of objects in 	2 then K (E , I ′) ∈
P (V) and End(K (E , I ′)) = End(K (E )) for any I ′ ⊆ I.

�����. The remark on subdirectly irreducibles shows that K (E , I ′) ∈ P (V).
First, note that the topologies of K (E ) and K (E , I ′) coincide on Z and that, for

any v ∈ Z, Ext(v) in K (E ) is the same as Ext(v) in K (E , I ′), and v < w in K (E )

just when v < w in K (E , I ′) for any v, w ∈ Z such that {v, w} /∈ {{xi, yi} | i ∈ I}.
Let f ∈ End(K (E ))∪End(K (E , I ′)). Then f−1(xi) ⊆ {xj | j ∈ I} and f−1(yi) ⊆

{yj | j ∈ I} for any i ∈ I. Denote {t} = Min(x), {u} = Max(y) in X . Then
{ti} = Min(xi), {ui} = Max(yi), xi < ui and ti < yi for all i ∈ I in both K (E ) and

K (E , I ′).
Next we note that for any i ∈ I, if f(xi) /∈ {xj | j ∈ I}, then f(xi) = f(ti), and

if f(yi) /∈ {yj | j ∈ I} then f(yi) = f(ui) because f has the dp-property. Hence if
f(xi) /∈ {xj | j ∈ I} or f(yi) /∈ {yj | j ∈ I} then f(xi) � f(yi) in both K (E ) and

K (E , I ′). Since E is a mutually rigid family, we conclude from Lemma 7.4 that if
f(xi) = xj and f(yi) = yk then i = j = k. Thus f is continuous, has the dp-property

and preserves the order in both K (E ) and K (E , I ′).
Whence End(K (E )) = End(K (E , I ′)). �

Theorem 7.6. If V is an � �-variety of dp-algebras and P (A) /∈ � � for some

A ∈ V, then V is not α-determined for any cardinal α.

�����. Let α be a cardinal. The category 	2 is dually universal [6], and
hence it contains a mutually rigid family E of cardinality α. Since K (E , I ′) is
isomorphic to K (E , I ′′) exactly when |I ′| = |I ′′|, Lemma 7.5 implies that P (V)
must contain a family of non-isomorphic equimorphic dp-spaces of cardinality |{β |
β < α is a cardinal}| for every cardinal α. �

The proof of Main Theorem is now complete.

Remark. Let 
 be the class formed by all X ∈ � � for which, for any min-

defective x ∈ X , max-defective y ∈ X and non-defective z ∈ X , [x) ∩ E(z) = ∅ =
(y]∩E(z) implies [x)∩(y]∩E(z) = ∅. Arguments presented here can be used to show
that 
 is ℵ1-determined, that is, every class C ⊆ 
 of equimorphic non-isomorphic
dp-spaces is countable. This result, of course, does not affect Main Theorem, because

P (V) ⊆ 
 implies P (V) ⊆ � � for any variety V.

Concluding remarks. Let V be a finitely generated variety V of distributive
double p-algebras. The result of [10] quoted in the introduction says that V is
universal exactly when it contains a nucleus C ∈ V with a three-element order
componentM of Mid(P (C)) for which the identity map is the only dp-endomorphism
of P (C) extending the identity map of M .
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If, for every nucleus C ∈ V, the union M ⊆ Mid(P (C)) of all order components
having at least three elements fails to have such extension property, then the ar-
guments of [10] imply that V has arbitrarily large algebras whose endomorphism
monoids have a finitely bounded size. Since Theorem 2.4 says that every infinite

member of any � �-variety V has infinitely many endomorphisms, it seems natural
to ask about the remaining case, that in which all order components of Mid(P (C)) of

any nucleus C ∈ V have at most two elements. We conjecture that any such variety
V will contain infinite algebras with finite endomorphism monoids, or, equivalently,
that Theorem 2.4 cannot be strengthened. This conjecture is supported, somewhat
indirectly, by properties of the construction presented in this section. In fact, we also

believe that no finitely generated varietyV ⊆ � � is α-determined for any cardinal α.
Our third conjecture concerns finitely generated varieties of double Heyting alge-

bras. It appears that any such variety will be n-determined for some finite n = n(V).
The key question here is whether or not an analogue of Lemma 3.1 holds for double

Heyting algebras.
Finally, we note that Theorem 1.5, the principal application of Lemma 1.3, and

Theorem 1.7 imply that

every directly indecomposable homomorphic image D of any algebra A ∈
V ⊆ � � is a subdirect power of (finite) retracts of D.

Is there a reasonably transparent algebraic reason why this is true? And what other

familiar finitely generated varieties other than varieties of double Heyting algebras
may have this property?
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