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ALMOST HYPER-HERMITIAN STRUCTURES IN BUNDLE SPACES

OVER MANIFOLDS WITH ALMOST CONTACT 3-STRUCTURE

Francisco Martín Cabrera, Tenerife

(Received December 29, 1995)

Abstract. We consider almost hyper-Hermitian structures on principal fibre bundles with
one-dimensional fiber over manifolds with almost contact 3-structure and study relations be-
tween the respective structures on the total space and the base. This construction suggests
the definition of a new class of almost contact 3-structure, which we called trans-Sasakian,
closely connected with locally conformal quaternionic Kähler manifolds. Finally we give a
family of examples of hypercomplex manifolds which are not quaternionic Kähler.

1. Introduction

An almost hyper-Hermitian (quaternion-Hermitian) manifold is a Riemannian
4n-manifold which admits a reduction of its frame bundle to the subgroup Sp(n)

(Sp(n) Sp(1)) of SO(4n). These two types of manifolds are of special interest be-
cause Sp(n) and Sp(n) Sp(1) are included in the list of Berger ([1]) of the possible

holonomy groups of locally irreducible Riemannian manifolds that are not locally
symmetric. An almost hyper-Hermitian (quaternion-Hermitian) manifold is said to

be hyper-Kähler (quaternionic Kähler), if its reduced holonomy group is a subgroup
of Sp(n), n � 1 (Sp(n) Sp(1), n > 1). The terms “quaternionic Kähler” and “hyper-

Kähler” were introduced by Calabi and Ishihara in 1973. A few years before, Kuo
([13]) defined a new type of geometric structure closely related to both quaternion-

Hermitian and almost hyper-Hermitian structures, the almost contact 3-structure.
A particular and interesting class of almost contact 3-structure is the Sasakian 3-

structure. Riemannian manifolds with Sasakian 3-structure are called 3-Sasakian
manifolds. They are Einstein and (4n + 3)-dimensional and have many links with

quaternionic Kähler and hyper-Kähler manifolds. In fact, if the distribution formed
by the three Killing vector fields of a Sasakian 3-structure is regular then the space
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of leaves is quaternionic Kähler, which was shown by Ishihara in 1973 ([8]). Later

in 1975, Konishi ([11]) proved the existence of a Sasakian 3-structure on a certain
principal SO(3) bundle over any quaternionic Kähler manifold of positive scalar cur-
vature. Recently, Boyer, Galicki and Mann ([3]) have shown that for any quaternionic

Kähler manifold M of positive scalar curvature there exists a commutative diagram

U
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�

ι�
∗/�2

M
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�
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�
�

��
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where U is hyper-Kähler (the Swann bundle associated to M [19]), Z is Kähler-
Einstein (the twistor space associated to M [18]) and S is 3-Sasakian (the Konishi

bundle associated to M [11]). The map ι : S → U is the inclusion of a level set of
a natural real valued function while the other maps are fibrations where each map

is denoted by its associated fiber.
In this paper we consider principal fibre bundles with one-dimensional structure

group over manifolds with almost contact metric 3-structures. On the total bundle
space we construct an almost hyper-Hermitian structure defined from an arbitrary

connection form and the almost contact metric 3-structure of the base. In this
context, we find relations among classes of the almost hyper-Hermitian structure,

classes of the almost contact metric 3-structure and the curvature of the connection
form. These relations lead us to consider a new class of almost contact 3-structure,

called trans-Sasakian, which is closely connected with locally conformal quaternionic
Kähler structures. Finally, the mentioned relations have suggested us a construction

of a family of hypercomplex manifolds which are not quaternionic semi-Kähler.

2. Quaternion-Hermitian structures

Quaternion-Hermitian manifolds have been broadly treated by diverse authors (see
[2], [8], [18], and [19]). In this section we review some basic definitions, known facts

and prove some new results.
A 4n-dimensional manifold M (n > 1) is said to be quaternion-Hermitian if M

is equipped with a Riemanniann metric 〈 , 〉 and a rank-three subbundle J of the
endomorfism bundle EndTM such that locally J has an adapted basis J1, J2, J3
with J2i = −1, J1J2 = J3 = −J2J1 and 〈JiX, JiY 〉 = 〈X, Y 〉, for i = 1, 2, 3. This is
equivalent to saying that M has a reduction of its structure group to Sp(n) Sp(1).
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At each point of a 4n-dimensional quaternion-Hermitian manifold there is a local

orthonormal frame field, called adapted frame, given in the following way:

{E1, . . . , En, J1E1, . . . , J1En, J2E1, . . . , J2En, J3E1, . . . , J3En}.

From the three local two-forms F i(X, Y ) = 〈X, JiY 〉, one may define a global four-
form Ω by the local formula

(2.1) Ω = F 1 ∧ F 1 + F 2 ∧ F 2 + F 3 ∧ F 3.

The following lemma will be useful later.

Lemma 2.1. Let M be a quaternion-Hermitian 4n-manifold (n > 1) and α a

skew-symmetric p-form on M (p � 2). Then α ∧ Ω = 0 if and only if α = 0.

�����. Throughout the proof (i, j, k) is always a cyclic permutation of (1, 2, 3),
r, s = 1, . . . , n with r �= s and we consider an adapted local frame of M ordered as

in (2.1). First, from

α ∧ Ω(Es, JiEs, Er, J1Er, J2Er, J3Er) = 0,

α ∧ Ω(JjEs, JkEs, Er, J1Er, J2Er, J3Er) = 0,

α ∧ Ω(Er, JiEr, Es, J1Es, J2Es, J3Es) = 0,

α ∧ Ω(JjEr, JkEr, Es, J1Es, J2Es, J3Es) = 0,

we have

3α(Es, JiEs) + α(Er , JiEr) + α(JjEr, JkEr) = 0,

3α(JjEs, JkEs) + α(Er, JiEr) + α(JjEr, JiEr) = 0,

α(Es, JiEs) + α(JjEs, JkEs) + 3α(Er, JiEr) = 0,

α(Es, JiEs) + α(JjEs, JkEs) + 3α(JjEr, JkEr) = 0.

From these equations α(Er, JiEr) = α(JjEr, JkEr) = α(Es, JiEs) = α(JjEs, JkEs)

= 0. Secondly, we consider

α ∧ Ω(Es, J1Es, J2Es, Er, J1Er, J2Er) = 0,

α ∧ Ω(Es, J3Es, J1Es, Er, J3Er, J1Er) = 0,

α ∧ Ω(Es, J2Es, J3Es, Er, J2Er, J3Er) = 0,

α ∧ Ω(J1Es, J2Es, J3Es, J1Er, J2Er, J3Er) = 0,
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then we have

α(Es, Er) + α(J1Es, J1Er) + α(J2Es, J2Er) = 0,

α(Es, Er) + α(J1Es, J1Er) + α(J3E1, J3Er) = 0,

α(Es, Er) + α(J2Es, J2Er) + α(J3E1, J3Er) = 0,

α(J1Es, J1Er) + α(J2Es, J2Er) + α(J3E1, J3Er) = 0.

Hence, α(Es, Er) = α(JiE1, JiEr) = 0. At this point, we can conclude α = 0. �

Remark 2.2. In [12] it is shown that α∧Ω = 0 implies α = 0, when α is a p-form
such that p+ 4 � n+ 1.

If Ω is parallel with respect to the Levi-Civita connection ∇ of 〈 , 〉, then the
holonomy group of M is a subgroup of Sp(n) Sp(1) (n > 1) and M is said to be
quaternionic Kähler. The quaternionic Kähler condition is equivalent to the existence

of three local one-forms α1, α2, α3 such that

(2.2) ∇Ji = αi ⊗ Jj − αk ⊗ Jk

for all cyclic permutations (i, j, k) of (1, 2, 3) ([8]). If the exterior derivative dΩ
vanishes, M is said to be quaternionic almost-Kähler. In [19] it is shown that every

quaternionic almost-Kähler manifold of dimension � 12 is quaternionic Kähler. The
dimension eight is included in the following result.

Proposition 2.3. Let M be a quaternion-Hermitian 4n-manifold (n > 1). Then
the following statements are equivalent:

i) M is quaternionic Kähler.

ii) dΩ = 0 and dF i = ai ∧ F i + bi ∧ F j + ci ∧ F k.

iii) There exist three local one-forms α1, α2, α3 such that dF i = αi∧F j −αk ∧F k

where (i, j, k) is a cyclic permutation of (1, 2, 3).

�����. The equivalence of the first two statements was established in [19].

Taking (2.2) into account, it is easy to see that the third statement follows from the
first. Finally, it is a straightforward computation that the second statement follows

from the third. �

The quaternionic nearly-Kähler condition, i.e., dΩ = 5∇Ω, is equivalent to the
quaternionic Kähler condition ([20]). If the coderivative δΩ vanishes, M is said to

be quaternionic semi-Kähler. In [2] it is shown that δΩ = − ∗ dkΩn−1, where k

is constant and ∗ denotes Hodge’s star operator. Then every quaternionic almost-
Kähler manifold is quaternionic semi-Kähler. The converse is also true for dimension
eight.
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A quaternion-Hermitian 4n-manifold M (n > 1) is said to be locally conformal

quaternionic Kähler, if dF i = α∧F i+αi ∧F j −αk ∧F k for all cyclic permutations
(i, j, k) of (1, 2, 3) and some one-forms α, α1, α2, α3. In this case dΩ = 2α ∧ Ω and
using Lemma 2.1 we have dα = 0, then locally α = df . If we consider the metric

e−f 〈 , 〉, the structure considered on a neighborghood of a point is also quaternion-
Hermitian and satisfies the third statement of Proposition 2.3. Moreover, if we have

dΩ = 2αU ∧Ω = 2αV ∧Ω for all points of U ∩V , U , V open sets ofM , by Lemma 2.1
αU = αV on U ∩ V , then the one-form α is global.

An almost hyper-Hermitian structure on M is a quaternion-Hermitian structure

such that the subbundle J has an adapted basis J1, J2, J3 of global tensor fields.
In this case, M has a reduction of its structure group to Sp(n). If M has an almost

hyper-Hermitian structure such that F 1, F 2, F 3 are closed, M is said to be hyper-
Kähler. Hitchin [6] showed that this implies that J1, J2, J3 are integrable and hence

the holonomy group is contained in Sp(n). An alternative condition to impose on an
almost hyper-Hermitian structure is that J1, J2, J3 all be integrable. In this case the

manifold M is said to be hypercomplex (hyper-Hermitian). A manifold M is said
to be locally conformal hyper-Kähler, if M has an almost hyper-Hermitian structure

such that dF i = α∧F i for some one-form α. In this case α is closed and we can do a
local conformal change of the metric such that the almost hyper-Hermitian structure

considered on a neigborhood of the point is hyper-Kähler for the new metric.

3. Almost contact 3-structures

In this section we show, together with some definitions and known facts (see [13],

[14], some new results about almost contact 3-structures which will be used later.
An almost contact structure (ϕ, ξ, η) on a differentiable manifold is an aggregate

consisting of a tensor field ϕ of type (1, 1), a vector field ξ and a one-form η which
satisfy η(ξ) = 1, ϕ2 = −I + ξ ⊗ η, where ⊗ means the tensor product and I is the

identity tensor.

A (4n + 3)-manifold M (n � 1) possesses an almost contact metric 3-structure,
if M has a Riemannian metric 〈 , 〉 and three almost contact structures, (ϕi, ξi, η

i),

i = 1, 2, 3, satisfying

ηi(ξj) = δi
j , ϕi(ξj) = −ϕj(ξi) = ξk, ηi ◦ ϕj = −ηj ◦ ϕi = ηk,

ϕi ◦ ϕj − ηj ⊗ ξi = −ϕj ◦ ϕi + ηi ⊗ ξj = ϕk, 〈ϕiX, ϕiY 〉 = 〈X, Y 〉,

for any cyclic permutation (i, j, k) of (1, 2, 3) and any X , Y vector fields on M . In
this case, the structure group of M admits a reduction to Sp(n)× I3. At each point
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of a (4n + 3)-manifold with an almost contact metric 3-structure there is a local

orthonormal frame field, called adapted frame, given in the following way:

(3.1) {E1, . . . , En, ϕ1E1, . . . , ϕ1En, ϕ2E1, . . . , ϕ2En, ϕ3E1, . . . , ϕ3En, ξ1, ξ2, ξ3}.

Let F i be the two-forms given by F i(X, Y ) = 〈X, ϕiY 〉. Associated to an almost
contact metric 3-structure there is a four-form given by

(3.2) Ω = F 1 ∧ F 1 + F 2 ∧ F 2 + F 3 ∧ F 3.

For almost contact 3-structures it is also needed to consider the three-form

(3.3) Ψ = η1 ∧ F 1 + η2 ∧ F 2 + η3 ∧ F 3.

We will make use of the following lemma in the sequel.

Lemma 3.1. Let M be a (4n + 3)-manifold (n � 1) with an almost contact
3-structure and α a skew-symmetric two-form on M . Then

i) α ∧Ψ = 0 if and only if α = 0.
ii) C12 ◦C13(α⊗ Ω) = 0 if and only if α = 0, where C denotes the metric contrac-
tion.

�����. Throughout the proof (i, j, k) is always a cyclic permutation of (1, 2, 3),

r, s = 1, . . . , n with r �= s and we consider an adapted local frame of M or-
dered as in (3.1). i) First, we develop α ∧ Ψ(Er, Es, ξ1, ξ2, ξ3) = 0, then we get

3α(Er, Es) = 0. Secondly, we consider α ∧ Ψ(ξi, Er, ϕ1Er, ϕ2Er, ϕ3Er) = 0, α ∧
Ψ(Er, ϕiEr, ξ1, ξ2, ξ3) = 0 and α ∧Ψ(ϕjEr, ϕkEr, ξ1, ξ2, ξ3) = 0, then we have

α(Er, ϕiEr) + α(ϕjEr, ϕkEr) = 0,

α(ξj , ξk) + 3α(Er, ϕiEr) = 0,

α(ξj , ξk) + 3α(ϕjEr, ϕkEr) = 0.

From these equations, α(ξj , ξk) = 0, α(Er , ϕiEr) = 0 and α(ϕjEr, ϕkEr) =
0. Finally, we consider α ∧ Ψ(ξi, ξj , Er, ϕiEr, ϕjEr) = 0 and get α(ξi, ϕiEr) +

α(ξj , ϕjEr) = 0. Hence, α(ξ1, ϕ1Er) = −α(ξ2, ϕ2Er) = α(ξ3, ϕ3Er) = −α(ξ1, ϕ1Er)
= 0. In a similar way, we can get α(ξi, Er) = 0, α(ξi, ϕjEr) = 0 and α(ξi, ϕkEr) = 0.

So we conclude α = 0.
ii) From C12 ◦C13(α⊗ Ω)(ξi, ξj) = 0, we get

(3.4)
n∑

l=1

α(El, ϕkEl) +
n∑

l=1

α(ϕiEl, ϕkEl) = 0.
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Now, from C12 ◦C13(α ⊗ Ω)(Er , ϕiEr) = 0, C12 ◦C13(α ⊗ Ω)(Er , ϕjEr) = 0 and

C12 ◦C13(α⊗ Ω)(Er , ϕkEr) = 0, taking (3.4) into account, we get

α(ξi, ξj)− α(Er, ϕkEr) + 2α(ϕiEr, ϕjEr) = 0,

α(ξi, ξj)− α(ϕiEr, ϕjEr) + 2α(Er , ϕkEr) = 0.

From these equations we have

(3.5) −α(ξi, ξj) = α(ϕiEr, ϕjEr) = α(Er, ϕkEr).

Now using (3.5) in (3.4) we obtain −2nα(ξi, ξj) = 0. Hence

(3.6) 0 = α(ξi, ξj) = α(ϕiEr, ϕjEr) = α(Er , ϕkEr).

Let us compute successively C12 ◦C13(α⊗Ω)(ξ1, ϕ1Er), C12 ◦C13(α⊗Ω)(ξ2, ϕ2Er)

and C12 ◦C13(α⊗ Ω)(ξ3, ϕ3Er), obtaining

α(ξ2, ϕ2Er) + α(ξ3, ϕ3Er) = 0,

α(ξ1, ϕ1Er) + α(ξ3, ϕ3Er) = 0,

α(ξ1, ϕ1Er) + α(ξ2, ϕ2E3) = 0.

From these equations we get

(3.7) α(ξ1, ϕ1Er) = α(ξ2, ϕ2Er) = α(ξ3, ϕ3Er) = 0.

In a similar way we can obtain

(3.8) α(ξi, Er) = α(ξj , ϕkEr) = α(ξk, ϕjEr) = 0.

If the dimension of M is seven, the proof is already concluded. Let us complete

the proof for dimension higher than seven. From C12 ◦C13(α ⊗ Ω)(Er, Es) = 0 and
C12 ◦C13(α⊗ Ω)(ϕiEr, ϕiEs) = 0 we have

α(ϕ1Er, ϕ1Es) + α(ϕ2Er, ϕ2Es) + α(ϕ3Er, ϕ3Es) = 0,

α(Er , Es) + α(ϕjEr, ϕjEs) + α(ϕkEr, ϕkEs) = 0.

These equations yield

(3.9) α(Er, Es) = α(ϕ1Er, ϕ1Es) = α(ϕ2Er, ϕ2Es) = α(ϕ3Er, ϕ3Es) = 0.

In a similar way we can get

(3.10) α(Er, ϕiEs) = α(ϕiEr, Es) = α(ϕjEr, ϕkEs) = α(ϕkEr, ϕjEs) = 0.

From (3.6), (3.7), (3.8), (3.9) and (3.10) we conclude α = 0. �
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If Ω and Ψ are parallel with respect to the Levi-Civita connection, the almost

contact 3-structure is said to be cosymplectic. If Ω and Ψ are closed, we say that
M has an almost-cosymplectic 3-structure. If the forms Ω and Ψ are coclosed, i.e.,
δΩ = δΨ = 0, we say thatM has a semi-cosymplectic 3-structure. An almost contact

metric 3-structure is said to be hypernormal, if the three almost contact structures
are normal, i.e., Nϕi + 2dη

i ⊗ ξi = 0, where Nϕi is the Ninjenhuis tensor of ϕi, i.e.,

Nϕi = ϕ2i [X, Y ] + [ϕiX, ϕiY ]− ϕi[ϕiX, Y ]− ϕi[X, ϕiY ].

If we suppose that the two-forms F 1, F 2, F 3 and the one-forms η1, η2, η3 are closed,

we say that M has a hypercosymplectic 3-structure. One can use Hitchin’s argument
to deduce that in this case the three almost contact structures are normal. Therefore,

the three almost contact structures are cosymplectic, i.e., ∇F i = 0 and ∇ηi = 0,
i = 1, 2, 3 ([5]).

Definition 3.2. An almost contact metric 3-structure is said to be a-Sasakian
(a ∈ �, a �= 0), if it is hypernormal and dηi = aF i. When a = 1, the almost contact

3-structure is said to be Sasakian. A hypercosymplectic structure can be considered
a 0-Sasakian structure.

Definition 3.3. An almost contact metric 3-structure is said to be trans-
Sasakian, if

dF i = α ∧ F i + αi ∧ F j − αk ∧ F k,

dηi = aF i + riF
j − rkF k + α ∧ ηi + αi ∧ ηj − αk ∧ ηk

for some a, r1, r2, r3 differentiable local functions, α, α1, α2, α3 local one-forms onM

and for all (i, j, k) cyclic permutations of (1, 2, 3). In this case we have dΩ = 2α∧Ω
and dΨ = 2α ∧Ψ+ aΩ.

Lemma 3.4. Let M be a (4n+ 3)-manifold (n � 1) with a trans-Sasakian struc-
ture. Then the local functions a, r1, r2, r3 and the local forms α, α1, α2, α3 given

in Definition 3.3 are global.

�����. Let us suppose aU , r1U , r2U , r3U , αU , α1U , α
2
U , α

3
U defined on U and

aV , r1V , r2V , r3V , αV , α1V , α
2
V , α

3
V defined on V , where U , V are no disjoint open

sets of M . On U ∩ V we have aU = aV = dηi(E, ϕiE), riU = riV = dηi(E, ϕjE),
where E is a unitary vector orthogonal to ξ1, ξ2, ξ3. Therefore a, r1, r2, r3 are global

differentiable functions onM . Now, from dΨ = 2α∧Ψ+aΩ we have (αU−αV )∧Ψ =
0. By Lemma 3.1, αU = αV . Therefore α is a global one-form. Finally, from

552



Definition 3.3 we have

0 = (αi
U − αi

V ) ∧ F j − (αk
U − αk

V ) ∧ F k,

0 = (αi
U − αi

V ) ∧ ηj − (αk
U − αk

V )α
k ∧ ηk.

If E is a unitary vector orthogonal to ξ1, ξ2 and ξ3 we have

0 = ((αi
U − αi

V ) ∧ F j − (αk
U − αk

V ) ∧ F k)(ξr, E, ϕjE) = −αi
U (ξr) + αi

V (ξr),

where r = 1, 2, 3. Moreover,

0 = ((αi
U − αi

V ) ∧ ηj − (αk
U − αk

V )α
k ∧ ηk)(E, ξj) = αi

U (E)− αi
V (E).

Hence, αi
U = αi

V . Then the forms α1, α2 and α3 are global. �

4. Almost hyper-Hermitian structures in principal fibre bundles

over manifolds with almost contact 3-structure

From now on, M will be a (4n + 3)-manifold (n � 1) with an almost contact
metric 3-structure (ϕi, ξi, η

i, 〈 , 〉), i = 1, 2, 3 and X(M) will denote the Lie algebra
of C∞ vector fields on M . Let ω be an arbitrary connection form on M , where

M =M(M, G, π) denotes a principal fibre bundle with a one-dimensional connected
structure group G and projection π. We use XH and A∗ to denote the horizontal

lift of X ∈ X(M) and the fundamental vector field with respect to A ∈ g, where g is
the Lie algebra of G. Then we have ([10])

[A∗, XH ] = 0, [A∗, B∗] = 0,(4.1)

ω([XH , Y H ]) = −2Ω̂(XH , Y H), h[XH , Y H ]p = [X, Y ]Hp

for A, B ∈ g, X, Y ∈ X(M), where Ω̂ denotes the curvature form of ω and h is the

horizontal component of a vector in TpM .

Making use of the connection form ω and the almost contact 3-structure on M ,
(ϕi, ξi, η

i, 〈, 〉), one can define three almost complex structures J1, J2, J3 on M in

the following way ([21]):

(4.2) (Ji)p = −ωp(Xp)(ξH
i )p + (ϕiπ(p)π∗pXp)H + ηi

π(p)(π∗pXp)ξ̂∗p , i = 1, 2, 3,

where p is a point of M , ξ̂ ∈ g with ξ̂ �= 0 and η̂ is the dual form of ξ̂.

553



Let 〈 〉0 be the tensor metric field on M given by 〈 〉0 = π∗〈 〉+ η̂ω⊗ η̂ω. In [15] it

is shown that each Ji is almost Hermitian with respect to 〈 〉0. By a straightforward
computation one can check that J1J2 = J3 = −J2J1. Then we have:

Proposition 4.1. (J1, J2, J3, 〈 〉0) is an almost hyper-Hermitian structure on M .

Let us denote by F
i
and F i the respective two-forms defined from the i-th almost

complex structure on M and the i-th almost contact structure on M . Analogously,
Ω and Ω represent the respective four-forms on M and M . The three-form on M is

denoted by Ψ as in Section 2. The relations among all these forms is given in the
following lemma.

Lemma 4.2. We have
i) F

i
= π∗F i + η̂ω ∧ π∗ηi, i = 1, 2, 3;

ii) Ω = π∗Ω+ 2η̂ω ∧ π∗Ψ.

�����. Using (4.2) we get

F
i
(XH , Y H) = F i(X, Y ) ◦ π, F

i
(XH , ξ̂∗) = −ηi(X) ◦ π, F

i
(A∗, Y ∗) = 0

for X, Y ∈ X(M) and A, B ∈ g. Now it is immediate that π∗F i+ η̂ω∧π∗ηi coincides
with F

i
. We can deduce ii) using i), (2.1), (3.2) and (3.3). �

From now on {E1, E2, . . . , E4n+3} will be an adapted frame of M ordered as in

(3.1) and we will write ω, Ω̂ instead of η̂ω, η̂Ω̂. The curvature form Ω̂ is tensorial
of (Ad, g) type, where Ad is the adjoint representation. But here, the Lie group G

is abelian, hence we have Ω̂pg(XH
pg, Y

H
pg ) = Ω̂p(XH

p , Y H
p ) for all p ∈ M , g ∈ G and

X, Y ∈ X(M). Thus we can define a two-form on M , denoted also by Ω̂, given by

Ω̂(X, Y ) = Ω̂(XH , Y H).

Now we consider ∇ and ∇, the respective Levi-Civita connections of 〈 〉0 and 〈 〉.
From the Koszul formula ([10]) using (4.1) we obtain the following lemma.

Lemma 4.3. For A, B ∈ g and X, Y ∈ X(M), we have

i) ∇A∗B∗ = 0,

ii) ∇XH A∗ = ∇A∗XH =
1
2
η̂(A)

4n+3∑
i=1
Ω̂(XH , EH

i )E
H
i ,

iii) ∇XH Y H = −1
2
(Ω̂(XH , Y H))∗ + (∇XY )H .

The covariant derivative of F
i
in terms of F i, ηi and ω is given in the next lemma.

Lemma 4.4. For X, Y, Z ∈ X(M) we have
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i) ∇ξ̂∗(F
i
)(ξ̂∗, XH) =

1
2
Ω̂(ξH

i , XH),

ii) ∇ξ̂∗(F
i
)(XH , Y H) = −1

2
{Ω̂(XH , (ϕiY )

H) + Ω̂((ϕiX)
H , Y H)},

iii) ∇XH (F
i
)(ξ̂∗, Y H) = ∇X(ηi)(Y ) ◦ π − 1

2
Ω̂(XH , (ϕiY )

H),

iv) ∇XH (F
i
)(Y H , ZH) = ∇X(F i)(Y, Z) ◦ π +

1
2
(X � Ω̂ ∧ ηi)(Y, Z) ◦ π,

where � denotes the interior product.

�����. We have

∇ξ̂∗(F
i
)(ξ̂∗, XH) = ξ̂∗F

i
(ξ̂∗, XH)− F

i
(∇ξ̂∗ ξ̂

∗, XH)− F
i
(ξ̂∗,∇ξ̂∗X

H).

By Lemma 4.2 i) and Lemma 4.3 i) the first and second summands vanish. Now
using again Lemma 4.3 ii) and Lemma 4.2 i) we have

∇ξ̂∗(F
i
)(ξ̂∗, XH) = −1

2

4n+3∑

j=1

Ω̂(XH , EH
j )η

i(Ej) ◦ π.

But ηi(Ej) = 0 if Ej �= ξi and ηi(ξi) = 1, hence we have i). Part ii) is deduced in a
similar way using Lemma 4.3 ii) and taking ξ̂∗F

i
(XH , Y H) = ξ̂∗(F i(X, Y ) ◦ π) = 0

into account.
To show iii) we use Lemma 4.2 and Lemma 4.3 ii) and iii) to reach

∇XH (F
i
)(ξ̂∗, Y H) = Xηi(Y ) ◦ π − 1

2

4n+3∑

j=1

Ω̂(XH , EH
j )F

i(Ej , Y ) ◦ π − ηi(∇XY ) ◦ π.

From this equality iii) is immediate. Part iv) can be proved in a similar way, taking

Lemma 4.2 and Lemma 4.3 into account. �

In the following results we relate the almost hyper-Hermitian structure of M with

the almost contact 3-structure on M . First, from Lemma 4.4 one easily gets the
following result.

Theorem 4.5. Two of the following conditions imply the remaining one:
(a) The almost hyper-Hermitian structure on M is hyper-Kähler.

(b) The almost contact metric 3-structure of M is hypercosymplectic.

(c) The curvature form Ω̂ of the connection one-form ω vanishes.

As a direct consequence of the fact proved in [21, Proposition 3.1, p. 178] the
following theorem can be obtained.

Theorem 4.6. Two of the following conditions imply the remaining one:
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(a) The almost hyper-Hermitian structure of M is hypercomplex.

(b) The almost contact metric 3-structure of M is hypernormal.

(c) The curvature form Ω̂ of the connection one-form ω is the pullback by π of a

two-form on M belonging to sp(n), the Lie algebra of Sp(n)× I3, i.e.,

Ω̂(ϕiX, ϕiY ) = Ω̂(X, Y )

for all X, Y ∈ X(M) and i = 1, 2, 3.

Theorem 4.7. Two of the following conditions imply the remaining one:
(a) The almost hyper-Hermitian structure of M is locally conformal hyper-Kähler.

(b) The almost contact metric 3-structure of M is a-Sasakian.

(c) The curvature form Ω̂ of the connection one-form ω vanishes.

�����. First, let us suppose that M has an a-Sasakian 3-structure and the
curvature form Ω̂ = 0. From Lemma 4.2 we have dF

i
= −aω ∧ F

i
. Hence we have

that M is locally conformal hyper-Kähler.
Now, we suppose a) and c), i.e., Ω̂ = 0 and dF

i
= α ∧ F

i
, i = 1, 2, 3. From the

argument given in [6], it is immediate that M is hypercomplex. By Theorem 4.6 it
follows that M has a hypernormal 3-structure. On the other hand, for all p ∈ M

there is a local section through p, σ : U → π−1(U) and TpM = Tpσ(U)⊕ Tpπ
−1(x),

where x = π(p). On σ(U), the one-form α can be expressed as α = α − fw, where

α is α restricted to Tqσ(U) and f(q) = −αq(ξ̂∗q ), for all q ∈ σ(U). From Lemma 4.2,
we have

α ∧ π∗F i − ω ∧ (α ∧ π∗ηi + fπ∗F i) = π∗ dF i − ω ∧ π∗ dηi.

Therefore, dF i = σ∗α ∧ F i, dηi = σ∗α ∧ ηi + σ∗f F i. In [16, Theorem 2.4, p. 192]
it is proved that for a normal almost contact structure satisfying these equations

we have σ∗α = δηiηi, i = 1, 2, 3. Hence σ∗α = 0 and σ∗f is locally constant. In
conclusion, M has an a-Sasakian 3-structure.

Finally, from a) and b), taking Lemma 4.2 into account, we have

α ∧ π∗F i − ω ∧ (α ∧ π∗ηi + fπ∗F i) = Ω̂ ∧ π∗ηi − a ω ∧ π∗F i,

where α = α− fω on σ(U) as before. Then

σ∗α ∧ π∗ηi + (a− σ∗f)π∗F i = 0, σ∗α ∧ F i − Ω̂ ∧ π∗ηi = 0.

Hence, σ∗α = 0, a = σ∗f and Ω̂ ∧ ηi = 0. If Xp and Yp are vectors orthogonal to

ξip, then 0 = Ω̂p ∧ ηi
p(Xp, Yp, ξip) = Ω̂p(Xp, Yp). On the other hand, from Theorem

4.6 we have Ω̂(ϕiX, ϕiY ) = Ω̂(X, Y ). Then Ω̂(ξi, X) = 0. Therefore Ω̂(X, Y ) =

Ω̂(X − ηi(X)ξi, ϕiY − ηi(Y )ξi) = 0, noting that X − ηi(X)ξi is orthogonal to ξi.
Hence Ω̂ vanishes. �
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Now the covariant derivative of Ω is expressed in terms of Ω, Ψ and ω.

Lemma 4.8. For X, Y, Z, U, V ∈ X(M) we have

∇ξ̂∗(Ω)(ξ̂
∗, XH , Y H , ZH) = A (C13 Ω̂⊗Ψ)(X, Y, Z) ◦ π,(4.3)

∇ξ̂∗(Ω)(X
H , Y H , ZH , UH) =

1
2
A (C13 Ω̂⊗ Ω)(X, Y, Z, U) ◦ π,(4.4)

∇XH (Ω)(ξ̂∗, Y H , ZH , UH) = 2∇X(Ψ)(Y, Z, U) ◦ π(4.5)

+
1
2
C13 Ω̂⊗ Ω(X, Y, Z, U) ◦ π,

∇XH (Ω)(Y H , ZH , UH , V H) = ∇X(Ω)(Y, Z, U, V ) ◦ π(4.6)

+ (X � Ω̂) ∧Ψ(Y, Z, U) ◦ π,

where A denotes the skew-symmetrization of a tensor, C the metric contraction, Ω̂

the curvature form of ω and � the interior product.

�����. It follows by a straightforward computation, taking Lemma 4.2 and

Lemma 4.3 into account. �

For the exterior derivative and the coderivative of Ω we have the following expres-

sions.

Lemma 4.9. For all X, Y, Z ∈ X(M) we have

i) dΩ = π∗ dΩ + 2Ω̂ ∧ π∗Ψ− 2ω ∧ π∗ dΨ;

ii) δΩ(XH , Y H , ZH) = δΩ(X, Y, Z) ◦ π;

iii) δΩ(ξ̂∗, XH , Y H) = −2δΨ(X, Y ) ◦ π + 1
2 C12 ◦C13(Ω̂ ⊗ Ω)(X, Y ) ◦ π, where C

denotes the metric contraction.

�����. The expression i) is a direct consequence of Lemma 4.2. Let us prove

ii): if {E1, E2, . . . , E4n+3} is an adapted frame of M , then {EH
1 , EH

2 , . . . , EH
4n+3, ξ̂

∗}
is an adapted frame of M , hence we have

δΩ(XH , Y H , ZH) = −∇ξ̂∗Ω(ξ̂
∗, XH , Y H , ZH)−

4n+3∑

j=1

∇EH
j
Ω(EH

j , XH , Y H , ZH).

From (4.3) and (4.6) we get ii). To show iii) we have

δΩ(ξ̂∗, XH , Y H) = −∇ξ̂∗Ω(ξ̂
∗, ξ̂∗, XH , Y H)−

4n+3∑

j=1

∇EH
j
Ω(EH

j , ξ̂∗, XH , Y H),
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and using (4.6) we get

δΩ(ξ̂∗, XH , Y H) = 2
4n+3∑

j=1

∇Ej (Ψ)(Ej , X, Y )

+
1
2

4n+3∑

j,k=1

Ω̂(EH
j , EH

k )Ω(Ej , Ek, X, Y ) ◦ π,

then iii) follows. �

Next, we give a relation between a quaternionic semi-Kähler structure and a semi-
cosymplectic 3-structure.

Theorem 4.10. Two of the following conditions imply the remaining one:

(a) The almost hyper-Hermitian structure on M is quaternionic semi-Kähler.

(b) The almost contact metric 3-structure on M is semi-cosymplectic.

(c) The curvature form Ω̂ of ω vanishes.

�����. It follows directly from Lemma 4.9 and Lemma 3.1. �

Theorem 4.11. Two of the following conditions imply the remaining one:

(a) The almost hyper-Hermitian structure on M is quaternionic Kähler.

(b) The almost contact metric 3-structure on M is cosymplectic.

(c) The curvature form Ω̂ of ω vanishes.

�����. It follows from (4.3), (4.4), (4.5), (4.6) and Theorem 4.10. �

To study the quaternionic almost Kähler case, we need before to prove the following
statement.

Proposition 4.12. Let M be a (4n + 3)-manifold (n � 1). Then every almost
cosymplectic 3-structure on M is semi-cosymplectic.

�����. We consider the product manifold M × � where � is the set of real

numbers. We take the projection map ω on the second factor as the connection form.
We consider the almost hyper-Hermitian structure on M × � defined, as in (4.2),

from ω and the almost contact 3-structure on M . By Lemma 4.9, the almost hyper-
Hermitian structure onM×� is quaternionic almost-Kähler. By the argument given
in [2], M × � is quaternionic semi-Kähler. Using now Theorem 4.10 we deduce that
M has a semi-cosymplectic 3-structure. �
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Theorem 4.13. Two of the following conditions imply the remaining one:
(a) The almost hyper-Hermitian structure on M is quaternionic almost Kähler.

(b) The almost contact metric 3-structure on M is almost cosymplectic.

(c) The curvature form Ω̂ of ω vanishes.

�����. It follows from Lemma 4.9, Theorem 4.10 and Proposition 4.12. �

Theorem 4.14. Two of the following conditions imply the remaining one:
(a) The almost hyper-Hermitian structure of M is locally conformal quaternionic

Kähler.

(b) The almost contact metric 3-structure of M is trans-Sasakian.

(c) The curvature form Ω̂ of ω vanishes.

�����. First, let us suppose that M has a trans-Sasakian 3-structure and the

curvature form Ω̂ = 0. From Lemma 4.2 we have

dF
i
= (π∗α− π∗aω) ∧ F

i
+ (π∗αi − π∗riω) ∧ F

j − (π∗αk − π∗rkω) ∧ F
k
.

Hence we have that M is locally conformal quaternionic Kähler.

Now, we suppose a) and c), i.e., Ω̂ = 0 and dF
i
= α∧F

i
+αi∧F

j −αk ∧F
k
. For

all p ∈ M there is a local section through p, σ : U → π−1U and TpM = Tpσ(U) ⊕
Tpπ

−1(x), where x = π(p). On σ(U), the one-forms α, αi can be expressed as
α = α − fw, αi = αi − riw where α and αi are α and αi restricted to Tqσ(U) and

f(q) = −αq(ξ̂∗q ), ri(q) = −αi
q(ξ̂

∗
q ) for all q ∈ σ(U). From Lemma 4.2, we have

π∗ dF i − ω ∧ dηi = α ∧ π∗F i + αi ∧ π∗F j − αk ∧ π∗F k

− fω ∧ π∗F i − riω ∧ π∗F j − rkω ∧ π∗F k

− ω ∧ α ∧ π∗ηi − ω ∧ αi ∧ π∗ηj − ω ∧ αk ∧ π∗ηk.

Therefore

dF i = σ∗α ∧ F i + σ∗αi ∧ F j − σ∗αk ∧ F k,

dηi = σ∗f F i + σ∗ri F j − σ∗rk F k + σ∗α ∧ ηi + σ∗αi ∧ ηj − σ∗αk ∧ ηk.

Hence M has a trans-Sasakian 3-structure.

Finally, from a) and b), taking Lemma 4.2 into account, we have

α∧π∗Ω−fω∧π∗Ω−2ω∧α∧π∗Ψ = π∗β∧π∗Ω+Ω̂∧π∗Ψ−2ω∧π∗β∧π∗Ψ−aω∧π∗Ω

where α = α − fω on σ(U) as before and β, a are the one-form and the function

given in the definition of a trans-Sasakian 3-structure. Then

(β − σ∗α) ∧ Ω+ Ω̂ ∧Ψ = 0, (β − σ∗α) ∧Ψ+ (a− σ∗f)Ω = 0.
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If a − σ∗f = 0, then taking Lemma 3.1 into account, we have β − σ∗α = 0. Then

Ω̂ ∧Ψ = 0 and using again Lemma 3.1 we have Ω̂ = 0.
If a− σ∗f �= 0, then

0 = − 1
a− σ∗f

(β − σ∗α) ∧ (β − σ∗α) ∧Ψ+ Ω̂ ∧Ψ = Ω̂ ∧Ψ.

Now, taking Lemma 3.1 into account, we have Ω̂ = 0. �

Corollary 4.15. Let M be a connected (4n+ 3)-manifold (n � 1) with a trans-
Sasakian 3-structure, i.e.,

dF i = α ∧ F i + αi ∧ F j − αk ∧ F k,

dηi = aF i + riF
j − rkF k + α ∧ ηi + αi ∧ ηj − αk ∧ ηk

for all (i, j, k) cyclic permutations of (1, 2, 3). Then α is closed and a is constant.

�����. We consider M × � with the projection map ω on the second factor
as a connection form. On M × � we have a quaternion-Hermitian structure defined

as in (4.2). By Theorem 4.14, M × � is locally conformal quaternionic Kähler and
dΩ = 2α ∧ Ω, where α = π∗α− aω. Then dα = 0 and da = 0. �

5. Examples

I. Trivial principal fibre bundles over 3-Sasakian manifolds

In [4] it is shown that any 3-Sasakian homogeneous space is one of the following
homogeneous spaces:

Sp(n)
Sp(n− 1) ≡ S

4n−1,
Sp(n)

Sp(n− 1)×� 2
≡ �P 4n−1,

SU(m)
S(U(m− 2)×U(1)) ,

SO(k)
SO(k − 4)× Sp(1) ,

G2
Sp(1)

,
F4
Sp(3)

,
E6
SU(6)

,
E7

Spin(12)
,
E8
E(7)

,

where n � 1, Sp(0) is the identity group, m � 3 and k � 7.
By Theorem 4.7, we have the following locally conformal hyper-Kähler manifolds:

S4n−1× S1, �P 4n−1 × S1, SU(m)
S(U(m− 2)×U(1)) × S

1,
SO(k)

SO(k − 4)× Sp(1) × S
1,

G2
Sp(1)

× S1, F4
Sp(3)

× S1, E6
SU(6)

× S1, E7
Spin(12)

× S1, E8
E(7)

× S1,
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where n > 1, m > 3 and k � 7. This is an alternative way of obtaining these
examples given in [17].

II. Nontrivial principal fibre bundles over a (4n+ 3)-dimensional torus

Let us recall the following well known theorem about classification of principal

circle bundles.

Theorem 5.1. ([9, p. 35]) There is a one-to-one correspondence between equiv-
alence classes of principal circle bundles over a manifold M and the cohomology

group H2(M,�). Furthermore, given an integral closed two-form Ω̂ on M, there is
a principal circle bundle π : M → M with a connection form ω such that Ω̂ is the

curvature of ω (π∗(Ω̂) = dω).

We consider a (4n+ 3)-dimensional torus �4n+3 (n � 1). Let {α1, α2, . . . , α4n+3}
a basis for one-forms such that each αi is integral and closed. On �4n+3 we consider

the metric tensor field given by 〈 〉 =
4n+3∑
l=1

αl ⊗ αl and the almost contact metric

3-structure consisting of

– the (1, 1) tensor fields

ϕi =
n∑

l=1

{Ein+l ⊗ αl − El ⊗ αi+l + Ekn+l ⊗ αjn+l(5.1)

− Ejn+l ⊗ αkn+l + E4n+k ⊗ α4n+j − E4n+j ⊗ α4n+k},

where {E1, . . . , E4n+3} is the orthonormal frame dual of {α1, . . . , α4n+3} and
(i, j, k) is a cyclic permutattion of (1, 2, 3);

– the one-forms η1 = α4n+1, η2 = α4n+2 and η3 = α4n+3;

– the vector fields ξ1 = E4n+1, ξ2 = E4n+2 and ξ3 = E4n+3.

Since each αi is closed, it can be checked that (ϕi, η
i, ξi, 〈 〉) is a hypercosymplectic

3-structure. Hence we can also claim that �4n+3 has a hypernormal 3-structure.

By Theorem 5.1 we have a nontrivial principal circle bundle π : M → �
4n+3

corresponding to [Ω̂] ∈ H2(�4n+3,�), where

(5.2) Ω̂ = Sijk

n∑

l=1

{αl ∧ αin+l − αjn+l ∧ αkn+l}

andS denotes the cyclic sum. There is a connection one-form ω onM with curvature

dω = π∗(Ω̂). We will also denote π∗(Ω̂) by Ω̂.

We consider on M the almost hyper-Hermitian structure (J1, J2, J3, 〈 〉0) defined
as in (4.2) from the connection form ω and the almost contact 3-structure of �4n+3.
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Theorem 5.2. On the (4n + 4)-dimensional manifold M (n � 1) there is a
hypercomplex structure which is not quaternionic semi-Kähler.

�����. Since we have a hypernormal 3-structure on �4n+3, we only need to

check condition c) of Theorem 4.6, i.e.,

(5.3) Ω̂(ϕiX, ϕiY ) = Ω̂(X, Y )

for X, Y ∈ X(�4n+3) and i = 1, 2, 3. Note that conditions (5.3) are bilinear, so

we only have to check those conditions for any pair (Er, Es) of the adapted frame
{E1, . . . , E4n+3}.
From the expression (5.2) of Ω̂, taking (5.1) into account, we have

(5.4) 0 = Ω̂(E4n+j , Er) = Ω̂(ϕiE4n+j , ϕiEr),

where i, j = 1, 2, 3 and r = 1, 2, . . . , 4n+ 3.

From now on r, s = 1, 2, . . . , n, r �= s and (i, j, k) is a cyclic permutation of (1, 2, 3).
From (5.2), taking (5.1) into account, we get

(5.5) Ω̂(Er, Es) = Ω̂(ϕiEr, ϕiEs) = Ω̂(Ein+r , Ein+s) = 0.

Similarly we have

Ω̂(Er , Ejn+s) = Ω̂(ϕiEr, ϕiEjn+s) = Ω̂(Ejn+r , Ekn+s)(5.6)

= Ω̂(ϕiEjn+r , ϕiEkn+s) = 0.

Now using again expression (5.2) of Ω̂ and taking (5.1) into account, we have

(5.7) Ω̂(Er, Ein+r) = Ω̂(ϕiEr, ϕiEin+r) = 1.

In a similar way we have

Ω̂(Er , Ejn+r) = Ω̂(ϕiEr, ϕiEjn+r) = −1,(5.8)

Ω̂(Er, Ekn+r) = Ω̂(ϕiEr, ϕiEknr) = 1,(5.9)

Ω̂(EH
jn+r , Ekn+r) = Ω̂(ϕiEjn+r , ϕiEkn+r) = −1.(5.10)

From (5.4), (5.5), (5.6), (5.7), (5.8), (5.9) and (5.10) we can claim that conditions
(5.3) are satisfied. Then by Theorem 4.6 the almost hyper-Hermitian structure onM

is hypercomplex. If M were an quaternionic semi-Kähler manifold then by Theorem
4.10, Ω̂ would vanish, which is a contradiction. �
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[14] D.Monar: 3-estructuras casi contacto. Tesis Doctoral, Serv. de Public. Univ. de La

Laguna (1987).
[15] Y.Ogawa: Some properties on manifolds with almost contact structures. Tôhoku Math.
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