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Abstract. In this paper we extend the concept of an L-fuzzy (characteristic) left
(resp. right) ideal of a ring to a semiring R, and we show that each level left (resp. right) ideal
of an L-fuzzy left (resp. right) ideal µ of R is characteristic iff µ is L-fuzzy characteristic.
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Following the introduction of fuzzy sets by L.A. Zadeh ([9]), the fuzzy set the-

ory developed by Zadeh himself and others can be found in mathematics and
many applied areas. In 1982, W. Liu ([5]) defined and studied fuzzy subrings as

well as fuzzy ideals in rings. Subsequently, T.K. Mukherjee and M.K. Sen ([6]),
K.L.N. Swamy and U.M. Swamy ([7]), and Zhang Yue ([8]) fuzzified certain stan-

dard concepts/results on rings and ideals. The concept of semirings was introduced
by H. S. Vandiver in 1935 and has since then been studied by many authors (e.g.,

[1, 2, 3, 4]). In this paper we extend the concept of an L-fuzzy (characteristic)
left (resp. right) ideal of a ring to a semiring R, and we show that each level left

(resp. right) ideal of L-fuzzy left (resp. right) ideal µ of R is characteristic iff µ is
L-fuzzy characteristic. It should be noted that usually the transiton from rings to

semirings is a delicate matter requiring careful adjustment of definitions and results
in order to succeed.

By a semiring we shall mean a set R endowed with two associative binary opera-
tions called addition and multiplication (denoted by + and ·, respectively) satisfying
the following conditions:

(i) addition is a commutative operation,

(ii) there exists 0 ∈ R such that x+ 0 = x and x0 = 0x = 0 for each x ∈ R,
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(iii) multiplication distributes over addition both from the left and from the right.

From now on we write R and S for semirings. A non-empty subset A of R is a
left (resp. right) ideal if x, y ∈ A and r ∈ R imply that x + y ∈ A and rx ∈ A

(resp. xr ∈ A). If A is both left and right ideal of R, we say A is a two-sided
ideal, or simply, ideal of R. A mapping f : R → S is called a homomorphism if

f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y) for all x, y ∈ R. We note that if
f : R → S is an onto homomorphism and if A is a left (resp. right) ideal of R, then

f(A) is a left (resp. right) ideal of S.

Throughout this paper L = (L, �,∧,∨) will be a completely distributive lattice,
which has the least and the greatest elements, say 0 and 1, respectively. Let X be
a non-empty (usual) set. An L-fuzzy set in X is a map µ : X → L, and F (X) will

denote the set of all L-fuzzy sets in X . If µ, ν ∈ F (X), then µ ⊆ ν if and only if
µ(x) � ν(x) for all x ∈ X , and µ ⊂ ν if and only if µ ⊆ ν and µ �= ν. It is easily

seen thatF (X) = (F (X),⊆,∧,∨) is a completely distributive lattice, which has the
least and the greatest elements, say 0 and 1, respectively in natural manner, where
0(x) = 0, 1(x) = 1 for all x ∈ X .

Given any two sets X and X ′, let µ ∈ F (X) and let f : X → X ′ be any function.

We define ν ∈ F (X ′) by

ν(y) =

{
sup

x∈f−1(y)
µ(x) iff−1(y) �= ∅, y ∈ X ′,

0 otherwise,

and we call ν the image of µ under f , written f(µ). For any ν ∈ F (f(X)), we define

µ ∈ F (X) by µ(x) = ν(f(x)) for all x ∈ X , and we call µ the preimage of ν under
f which is denoted by f−1(ν).

Definition 1. An L-fuzzy set µ(∈ F (R)) is called an L-fuzzy left (resp. right)
ideal of R if for all x, y ∈ R,

(i) µ(x+ y) � min{µ(x), µ(y)},
(ii) µ(xy) � µ(y) (resp. µ(xy) � µ(x)).

An L-fuzzy set µ is an L-fuzzy ideal of R if and only if it is both L-fuzzy left and
right ideal of R. It follows from the definition of the semiring that if µ is an L-fuzzy

left (resp. right) ideal of R, then µ(0) � µ(x) for all x ∈ X . As the idea of a semiring
is a generalization of the idea of a ring, the notion of L-fuzzy left (resp. right) ideal

of a semiring is also a generalization of the notion of L-fuzzy left (resp. right) ideal in
rings. Hence, every L-fuzzy left (resp. right) ideal of a ring is L-fuzzy left (resp. right)

ideal of a semiring. But the converse need not at all be true. Consider the following
example.
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Example 2. (a). Let R := {0, 1, 2, 3} be a set with two associative binary
operations:

+ 0 1 2 3

0 0 1 2 3

1 1 1 2 3

2 2 2 2 3

3 3 3 3 2

· 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 1 1

3 0 1 1 1

Then we can easily see that (R; +, ·) is a semiring. Define an L-fuzzy set µ : R → L

by µ(3) < µ(2) < µ(1) < µ(0). Then µ is an L-fuzzy left ideal of the semiring R,
but µ is not an L-fuzzy left (ring-) ideal of R, since µ(x − y) is not defined for any

x, y ∈ R.
(b). The semiring of non-negative real numbers with respect to addition and

multiplication is of great practical importance and yet is not a ring, nor can both
operations be transformed simultaneously to obtain a ring. For this semiring there

are many L-fuzzy ideals of natural interest. (E.g., with respect to the study of the
exponential distribution in probability theory for example.)

Proposition 3. Let µ ∈ F (R). Then µ is an L-fuzzy left (resp. right) ideal of

R if and only if, for any t ∈ L such that µt �= ∅, µt is a left (resp. right) ideal of R,

where µt = {x ∈ R | µ(x) � t}, which is called a level subset of µ.

�����. If µ is an L-fuzzy left (resp. right) ideal of R, it is easy to see that µt �= ∅
is a left (resp. right) ideal of R. Conversely, let all µt �= ∅ be left (resp. right) ideal
of R. Then for all x, y ∈ R, we have x, y ∈ µmin{µ(x),µ(y)}, so x+ y ∈ µmin{µ(x),µ(y)}.

Thus µ(x + y) � min{µ(x), µ(y)}. Noticing that x ∈ µµ(x), we obtain rx ∈ µµ(x)

(resp. xr ∈ µµ(x)) for all r ∈ R. It follows that µ(rx) � µ(x) (resp. µ(xr) � µ(x)).

Therefore µ is an L-fuzzy left (resp. right) ideal of R. �

If µ is an L-fuzzy left (resp. right) ideal of R, we call µt (�= ∅) a level left
(resp. right) ideal of µ. If µ ∈ F (R) is an L-fuzzy left (resp. right) ideal of R,

then the set Rµ = {x ∈ R | µ(x) � µ(0)} is a left (resp. right) ideal of R.

Theorem 4. Let A be any left (resp. right) ideal of R. Then there exists an

L-fuzzy left (resp. right) ideal µ of R such that µt = A for some t ∈ L.

�����. If we define a L-fuzzy set in R by

µ(x) =

{
t ifx ∈ A,

0 otherwise
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for some t ∈ L, then it follows that µt = A. For given s ∈ L we have

µs =





µ0(= R) ifs = 0,

µt(= A) ifs � t,

∅ ift < s � 1.
Since A and R itself are left (resp. right) ideals of R, it follows that every non-empty
level subset µs of µ is a left (resp. right) ideal of R. By Proposition 3, µ is an L-fuzzy

left (resp. right) ideal of R, which satisfies the conditions of the theorem. �

Theorem 5. Let µ ∈ F (R) be an L-fuzzy left (resp. right) ideal of R. Then

two level left (resp. right) ideals µs, µt (with s < t in L) of µ are equal if and only if

there is no x ∈ R such that s � µ(x) < t.

�����. Suppose s < t in L and µs = µt. If there exists a x ∈ R such that

s � µ(x) < t, then µt is a proper subset of µs, a contradiction. Conversely, suppose
that there is no x ∈ R such that s � µ(x) < t. Note that s < t implies µt ⊆ µs.

If x ∈ µs, then µ(x) � s, and so µ(x) � t because µ(x) �< t. Hence x ∈ µt, and
µs = µt. This completes the proof. �

For any µ ∈ F (R) we denote by Im(µ) the image set of µ.

Theorem 6. Let µ ∈ F (R) be an L-fuzzy left (resp. right) ideal of R. If

Im(µ)= {t1, t2, . . . , tn}, where t1 < t2 < . . . < tn, then the family of left (resp. right)

ideals µti (i = 1, . . . , n) constitutes the collection of all level left (resp. right) ideals
of µ.

�����. If t ∈ L with t < t1, then µt1 ⊆ µt. Since µt1 = R, we have µt = R and
µt = µt1 . If t ∈ L with ti < t < ti+1 (1 � i � n − 1), then there is no x ∈ R such

that t � µ(x) < ti+1. It follows from Theorem 5 that µt = µti+1 . This shows that for
any t ∈ L with t � µ(0), the level left (resp. right) ideal µt is in {µti | 1 � i � n}.
This completes the proof. �

Theorem 7. An onto homomorphic preimage of an L-fuzzy left (resp. right)

ideal is an L-fuzzy left (resp. right) ideal.

�����. Let f : R → S be an onto homomorphism. Let ν ∈ F (S) be an L-fuzzy
left ideal and let µ be the preimage of ν under f . Then for any x, y ∈ R,

µ(x + y) = ν(f(x + y))

= ν(f(x) + f(y))

� min{ν(f(x)), ν(f(y))}
= min{µ(x), µ(y)}
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and µ(xy) = ν(f(xy)) = ν(f(x)f(y)) � ν(f(y)) = µ(y). This shows that µ is an

L-fuzzy left ideal of R. The other cases are similar. �

Proposition 8. Let f be a mapping from a set X to a set Y , and let µ ∈ F (X).

Then for every t ∈ L, t �= 0,

(f(µ))t =
⋂

0<s<t

f(µt−s).

�����. Let t ∈ L, t �= 0. If y ∈ (f(µ))t, then

t � (f(µ))(y) = sup
z∈f−1(y)

µ(z).

This means that there exists x0 ∈ f−1(y) such that µ(x0) > t−s for every s ∈ L with
0 < s < t, and so y = f(x0) ∈ f(µt−s). Therefore y ∈ ⋂

0<s<t
f(µt−s). Conversely, let

y ∈ ⋂
0<s<t

f(µt−s). Then y ∈ f(µt−s) for every s ∈ L with 0 < s < t, which implies

that there exists x0 ∈ µt−s such that y = f(x0). It follows that µ(x0) � t − s and
x0 ∈ f−1(y), so that

(f(µ))(y) = sup
z∈f−1(y)

µ(z) � sup
0<s<t

{t− s} = t.

Hence y ∈ (f(µ))t, and we complete the proof. �

Theorem 9. Let f : R → S be an onto homomorphism and let µ be an L-fuzzy

left (resp. right) ideal of R. Then the homomorphic image f(µ) of µ under f is an

L-fuzzy left (resp. right) ideal of S.

�����. In view of Proposition 3 it is sufficient to show that each non-empty

level subset of f(µ) is a left (resp. right) ideal of S. Let (f(µ))t be a non-empty
level subset of f(µ) for every t ∈ L. If t = 0 then (f(µ))t = S. Assume t �= 0.
By Proposition 8, (f(µ))t =

⋂
0<s<t

f(µt−s). Hence f(µt−s) is non-empty for each

0 < s < t, and so µt−s is a nonempty level subset of µ for every 0 < s < t. Since

µ is an L-fuzzy left (resp. right) ideal of R, it follows from Proposition 3 that µt−s

is a left (resp. right) ideal of R. Since f is an onto homomorphism, f(µt−s) is a

left (resp. right) ideal of S. Hence (f(µ))t being an intersection of a family of left
(resp. right) ideals is also a left (resp. right) ideal of S. The proof is complete. �

Definition 10. A left (resp. right) ideal A of R is said to be characteristic if
f(A) = A for all f ∈ Aut(R), where Aut(R) is the set of all automorphisms of
R. An L-fuzzy left (resp. right) ideal µ of R is said to be L-fuzzy characteristic if
µ(f(x)) = µ(x) for all x ∈ R and f ∈ Aut(R).
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Theorem 11. Let µ be an L-fuzzy left (resp. right) ideal of R and let f : R → R

be an onto homomorphism. Then the mapping µf ∈ F (R), defined by µf (x) =
µ(f(x)) for all x ∈ R, is an L-fuzzy left (resp. right) ideal of R.

�����. For any x, y ∈ R, we have

µf (x+ y) = µ(f(x+ y))

= µ(f(x) + f(y))

� min{µ(f(x)), µ(f(y))}
= min{µf (x), µf (y)}

and

µf (xy) = µ(f(xy))

= µ(f(x)f(y))

� µ(f(y)) (resp. µ(f(x)))

= µf (y) (resp. µf (x)).

Hence µf is an L-fuzzy left (resp. right) ideal of R. �

Theorem 12. If µ is an L-fuzzy characteristic left (resp. right) ideal of R, then

each level left (resp. right) ideal of µ is characteristic.

�����. Let µ be an L-fuzzy characteristic left (resp. right) ideal of R and
let f ∈ Aut(R). For any t ∈ L, if y ∈ f(µt), then µ(y) = µ(f(x)) = µ(x) � t for

some x ∈ µt with y = f(x). It follows that y ∈ µt. Conversely, if y ∈ µt, then
t � µ(y) = µ(f(x)) = µ(x) for some x ∈ R with y = f(x). It follows that y ∈ f(µt).

�

To prove the converse of Theorem 12, we need the following lemma.

Lemma 13. Let µ be an L-fuzzy left (resp. right) ideal of R and let x ∈ R.

Then µ(x) = t if and only if x ∈ µt and x �∈ µs for all s > t.

�����. Straightforward. �

Theorem 14. Let µ be an L-fuzzy left (resp. right) ideal of R. If each level left

(resp. right) ideal of µ is characteristic, then µ is L-fuzzy characteristic.

�����. Let x ∈ R and f ∈ Aut(R). If µ(x) = t ∈ L, then by Lemma 13 x ∈ µt

and x �∈ µs for all s > t. Since each level left (resp. right) ideal of µ is characteristic,
f(x) ∈ f(µt) = µt. Assume µ(f(x)) = s > t. Then f(x) ∈ µs = f(µs). Since f

is one-to-one, it follows that x ∈ µs, a contradiction. Hence µ(f(x)) = t = µ(x),
showing that µ is L-fuzzy characteristic. �
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