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1. Introduction

Pseudo-symmetric ideals and pseudo-symmetric semigroups were studied for the
first time by A. Anjaneyulu in 1980 ([2]). The aim of this paper is to establish some

further properties of such ideals and semigroups. Also, the radicals of a pseudo-
symmetric ideal of an arbitrary semigroup will be characterized. In fact, we will see

that the concept of “pseudo-symmetricity” plays an important role in the study of
radicals of semigroups.

Let S be a semigroup and I an ideal of S. Then we have the following well known

definitions:

(i) I is prime ⇐⇒ for all x, y ∈ S, xSy ⊆ I implies x ∈ I or y ∈ I;

(ii) I is completely prime ⇐⇒ for all x, y ∈ S, xy ∈ I implies x ∈ I or y ∈ I;

(iii) I is semiprime ⇐⇒ for all x ∈ S, xSx ⊆ I implies x ∈ I;

(iv) I is completely semiprime ⇐⇒ for all x ∈ S, x2 ∈ I implies x ∈ I.

In addition, if S has a zero element 0, then

(v) I is nilpotent ⇐⇒ In = 0 for some integer n > 0;

(vi) I is nil ⇐⇒ x is nilpotent for all x ∈ I;

(vii) I is locally nilpotent ⇐⇒ the subsemigroup generated by any finite number of
elements of I is nilpotent.

The following radicals occured in J. Bosák [3]. Let S be a semigroup and A an

ideal of S. Then we define:
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(i) RA(S): the union of all ideals of S nilpotent with respect to A, i.e., RA(S) =⋃

i∈∧
Ii, where Ii is an ideal of S for each i and Ini

i ⊆ A for some ni � 1;

(ii) MA(S): the intersection of all prime ideals of S containing A;
(iii) LA(S): the union of all ideals of S locally nilpotent with respect to A;

(iv) R∗
A(S): the union of all ideals of S nil with respect to A;

(v) NA(S): the set of all elements of S nilpotent with respect to A;

(vi) CA(S): the intersection of all completely prime ideals of S containing A.

The following beautiful result was also given in J. Bosák [3].

Lemma 1.1. ([3] Theorem 2) Let A be an ideal of a semigroup S. Then

(i) A ⊆ RA(S) ⊆ MA(S) ⊆ LA(S) ⊆ R∗
A(S) ⊆ NA(S) ⊆ CA(S) ⊆ S;

(ii) there exists a periodic semigroup U with a zero element 0 such that

0 ⊂ R0(U) ⊂ M0(S) ⊂ L0(S) ⊂ R∗
0(S) ⊂ N0(S) ⊂ C0(S) ⊂ S,

where “⊂” means the proper inclusion.

Remark 1.2. Let A be an ideal. Then, by Lemma 1.1, we can see that all the
above radicals, except NA(S) are ideals of S.

Remark 1.3. It is clear that

RA(S) = {x ∈ S | 〈x〉n ⊆ A for some integer n > 0},

where 〈x〉 means the principal ideal generated by x.

Definition 1.4. Let S be a semigroup and T a non-empty subset of S. We
call T a pseudo-symmetric subset of S if for all x, y ∈ S, xy ∈ T implies xSy ⊆ T .

An ideal A of S is called a pseudo-symmetric ideal if A is also a pseudo-symmetric
subset. A semigroup S is said to be pseudo-symmetric if every ideal of S is pseudo-

symmetric.

Remark 1.5. All normal, quasi-commutative, left zero, right zero semigroups
and bands are pseudo-symmetric semigroups (see [2] and [7]).

The following example shows that a pseudo-symmetric subset of S need not be a
subsemigroup of S.

Example 1.6. Let S = {0, a, b, c} with the following Cayley table:

0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 a a
c 0 0 0 a
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Then T = {0, c} is clearly a pseudo-symmetric subset but not a subsemigroup of S.

In this paper, we will prove that CA(S) = RA(S) if A is a pseudo-symmetric ideal

of the semigroup S. We will also give a characterization for the radical NA(S) to be
an ideal of S. Some results in [1] are generalized.

2. Pseudo-symmetric ideals

We first discuss the relationships among prime, completely prime and pseudo-

symmetric ideals.

Proposition 2.1. Let S be a semigroup. Then the following statements hold:

(i) Every completely prime ideal is both prime and pseudo-symmetric.

(ii) Let A be a pseudo-symmetric ideal of S. Then A is prime ⇐⇒ A is completely

prime.

(iii) Let A be a prime ideal of S. Then A is pseudo-symmetric ⇐⇒ A is completely

prime.

�����. (i) This statement is easy to observe. We hence omit the proof.

(ii) This result follows from Lemma 1 in [2].

(iii) (=⇒) Let A be a pseudo-symmetric ideal of S. If xy ∈ A for some x, y ∈ S,

then xSy ⊆ A. Since A is prime, we have x ∈ A or y ∈ A. This shows that A is
completely prime.

⇐=) This part follows immediately from (i). �

In general, we have the following diagram:

prime ideal pseudo-symmetric ideal

completely prime ideal

3

4

1
2�

Example 2.2. Let S = {0, a, . . . , an−1} be a semigroup with an = 0. Then
S clearly is a commutative semigroup and {0} is a pseudo-symmetric ideal which is
neither prime nor completely prime. This shows that 2 and 4 are valid in the above
diagram. The following example shows that 1 and 3 hold in the above diagram.
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Example 2.3. Let S = {0, e, f, a, b} be a set with the following Cayley table:

0 e f a b
0 0 0 0 0 0
e 0 e 0 0 b
f 0 0 f a 0
a 0 a 0 0 f
b 0 0 b e 0

Then S is a 0-simple semigroup. Clearly, {0} is a prime ideal but not a pseudo-
symmetric ideal of S because ef = 0 but ebf = b �= 0. It is obvious that {0} is not
completely prime.

A semigroup S is called a left (right) duo semigroup if every left (right) ideal of
S is a two sided ideal. We call S a duo semigroup if S is both a left and a right duo

semigroup.
We now describe the relationship between the one-side duo semigroup and the

pseudo-symmetric semigroup.

Proposition 2.4. A left (right) duo semigroup is pseudo-symmetric.

�����. Let S be a left duo semigroup. Clearly, for any x ∈ S, x ∪ Sx is a
left ideal of S containing x. Then we have xS ⊆ x ∪ Sx for all x ∈ S since S is a

left duo semigroup. Now, let A be an arbitrary ideal of S with xy ∈ A for some
x, y ∈ S. Then we have xSy ⊆

(
x ∪ Sx

)
y ⊆ xy ∪ Sxy ⊆ A. This shows that A is a

pseudo-symmetric ideal and hence S is a pseudo-symmetric semigroup.
Similarly, we can prove that if S is a right duo semigroup then S is a pseudo-

symmetric semigroup. �

The following example illustrates that a pseudo-symmetric semigroup need not be
a left (right) duo semigroup.

Example 2.5. Let S = {0, a, b, c} be a set with the following Cayley table:

0 a b c
0 0 0 0 0
a 0 0 a 0
b 0 0 b 0
c 0 a a c

Then it is clear that

(i) S contains five ideals, namely, I1 = {0}, I2 = {0, a}, I3 = {0, a, c}, I4 = {0, a, b}
and I5 = S. These ideals are all pseudo-symmetric;

(ii) S is neither a left nor a right duo semigroup since bS = {0, b} and Sc = {o, c}
are not ideals of S.
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3. Radicals

Lemma 3.1. Let S be a semigroup and A an ideal of S. Then

(i) for any x ∈ S, x ∈ NA(S)⇐⇒ x2 ∈ NA(S);

(ii) for any x, y ∈ S, xy ∈ NA(S)⇐⇒ yx ∈ NA(S).

�����. (i) If x ∈ NA(S) then there exists n > 0 such that xn ∈ A. Since A is
an ideal, we have x2n = (x2)n ∈ A. This leads to x2 ∈ NA(S).

Conversely, if x2 ∈ NA(S), then there exists n > 0 such that (x2)n = x2n ∈ A.
Therefore, x ∈ NA(S).

(ii) Let xy ∈ NA(S). Then we have (xy)n ∈ A for some n > 0. We can assume
that n � 2. Since x(yx)n−1y = (xy)n ∈ A, (yx)n+1 ∈ A. Therefore, yx ∈ NA(S).

The converse can be proved similarly. �

The following theorem is the main theorem of this paper. It shows that the concept
“pseudo-symmetricity” is essential for the radical NA(S) to become an ideal of S.

Theorem 3.2. Let A be an ideal of a semigroup S. Then the following statements

are equivalent:

(i) NA(S) is an ideal of S.

(ii) NA(S) is a pseudo-symmetric ideal of S.
(iii) NA(S) is a pseudo-symmetric subset of S.

(iv) NA(S) is a one-side ideal of S.
(v) R∗

A(S) = NA(S) = CA(S).

�����. (ii) =⇒ (iii) and (v) =⇒ (i) are clear.
(i) =⇒ (ii). Assume that NA(S) is an ideal of S. Then, by Lemma 3.1 (ii), for any

x, y ∈ S we know that xy ∈ NA(S) implies yx ∈ NA(S). Suppose that yx ∈ NA(S)

for some x, y ∈ S. Since NA(S) is an ideal of S we have (yx)s ∈ NA(S) for any
s ∈ S. Thus, by using Lemma 3.1(ii) again, we have xsy ∈ NA(S). This shows that

xSy ⊆ NA(S). Consequently, NA(S) is a pseudo-symmetric ideal of S.
(iii) =⇒ (iv). Let NA(S) be a pseudo-symmetric subset of S. Then, by Lemma

3.1, for all x ∈ NA(S) and s ∈ S, we have

x ∈ NA(S) =⇒ x2 ∈ NA(S) =⇒ xsx ∈ NA(S)

=⇒ x(xs) ∈ NA(S) =⇒ xs(xs) = (xs)2 ∈ NA(S) =⇒ xs ∈ NA(S).

This shows that NA(S) is a right ideal of S. The fact that NA(S) is a left ideal can
be proved similarly.

(iv) =⇒ (v). Without loss of generality, we may assume that NA(S) is a left ideal
of S. Then for all x ∈ NA(S) and all s ∈ S we have sx ∈ NA(S). It follows from
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Lemma 3.1(ii) that xs ∈ NA(S). This shows that NA(S) is an ideal of S. Therefore,

R∗
A(S) = NA(S). Also, it is obvious that NA(S) is a completely semiprime ideal
of S. Thus, it follows from Theorem II. 3.7 in [6] that NA(S) is the intersection of
some completely prime ideals of S and so NA(S) ⊇ CA(S). By using Lemma 1.1, we

obtain NA(S) = CA(S). �

Theorem 3.3. Let A be an ideal of a semigroup S. Then the following statements

are equivalent:

(i) NA(S) = A.

(ii) A is completely semiprime.

(iii) A = RA(S) =MA(S) = LA(S) = R∗
A(S) = NA(S) = CA(S).

�����. (i) =⇒ (ii). Assume that NA(S) = A and x2 ∈ A. Thus x2 ∈ NA(S)
and so x ∈ NA(S) = A by Lemma 3.1. This shows that A is completely semiprime.

(ii) =⇒ (i). Let A be completely semiprime. We only need to prove that NA(S) ⊆
A. For any x ∈ NA(S) there exists n > 0 such that xn ∈ A. This leads to

(
x

n
2
)2
or(

x
n+1
2

)2∈ A. As a consequence, we have x
n
2 or x

n+1
2 ∈ A. Notice that n

2 ,
n+1
2 < n, so

by induction on n, we can eventually obtain that x ∈ A. This shows that NA(S) = A.

(iii) =⇒ (i). Clear.
(i) =⇒ (iii). By Theorem 3.2 and Lemma 1.1 we can easily obtain the required

result. �

The following theorem gives a condition for the radicals described by J. Bosák in
[3] to be equal.

Theorem 3.4. Let S be an arbitrary semigroup and A a pseudo-symmetric ideal

of S. Then the following equalities hold:

RA(S) =MA(S) = LA(S) = R∗
A(S) = NA(S) = CA(S).

�����. In view of Lemma 1.1 and Theorem 3.2, we only need to prove that

NA(S) ⊆ RA(S). For this purpose, we let x ∈ NA(S) and s ∈ S. Then we have
xn ∈ A for some n � 1. If n = 1 then clearly x ∈ A ⊆ RA(S). If n > 1, then

we let S1 be the semigroup adjoint with an identity 1. Since the ideal A is pseudo-
symmetric, we have 〈x〉xn−1 = (S1xS1)xn−1 ⊆ S1A ⊆ A. By using induction on n,

we can easily obtain that 〈x〉n−1 x ⊆ A. Thus,

〈x〉n = 〈x〉n−1 (S1xS1) =
(
〈x〉n−1 S1x

)
S1 ⊆

(
〈x〉n−1 x

)
S1 ⊆ A.

Therefore, x ∈ RA(S). The proof is completed. �
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We would like to point out here that the converse of Theorem 3.4 is not true. This

can be illustrated by the following example:

Example 3.5. Let S = {0, a, b, c} be a set with the following Cayley table:

0 a b c
0 0 0 0 0
a 0 0 a 0
b 0 0 b 0
c 0 a 0 c

Then S is a semigroup. Moreover, we have the following:

(i) S contains five ideals, namely, I1 = {0}, I2 = {0, a}, I3 = {0, a, b}, I4 = {0, a, c}
and I5 = S.

(ii) All the above ideals except {0} are pseudo-symmetric ideals.
(iii) I1 and I2 are not prime ideals, but I3, I4 and I5 are all completely prime ideals.

(iv) R0(S) = I2 = C0(S).

By Proposition 2.4, we can immediately deduce the following result obtained by
A. Anjaneyulu in [1].

Corollary 3.6. ([1] Proposition 1.3) For any ideal A in a left (right) duo semi-
group S, we have RA(S) =MA(S) = NA(S).

Finally, we discuss the one-sided primary ideal given in [1].

Definition 3.7. ([1]) Call an ideal A of a semigroup S left (right) primary
provided that the following conditions hold:

(i) IfX , Y are ideals of S such thatXY ⊆ A and Y �⊆ A (X �⊆ A) then X ⊆ MA(S)
(Y ⊆ MA(S));

(ii) MA(S) is a prime ideal of S.

The following theorem gives a characterization for a pseudo-symmetric ideal to be
a one-sided primary ideal.

Theorem 3.8. Let S be a semigroup and A a pseudo-symmetric ideal of S. Then

A is left primary if and only if the following condition holds:

(∗) for all x, y ∈ S, xy ∈ A and y �∈ A imply xn ∈ A for some n > 0.

�����. =⇒) Suppose that A is a left primary ideal of S and xy ∈ A with y �∈ A.
Then, since A is pseudo-symmetric and xy ∈ A, we have 〈x〉 〈y〉 = S1(xS1S1y)S1 ⊆
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S1AS1 ⊆ A. Thus, by Definition 3.7, we have 〈x〉 ⊆ MA(S). By Theorem 3.4 we

have MA(S) = NA(S). This implies that x ∈ NA(S) and so xn ∈ A for some n � 1.
Hence, (∗) holds.
⇐=) Suppose that (∗) holds. Then we have the following situations:
(i) X and Y are ideals of S with XY ⊆ A but Y �⊆ A. Then there exists an element

y ∈ Y but y �∈ A such that for all x ∈ X , xy ∈ XY ⊆ A. By (∗) and Theorem
3.4, we immediately obtain that x ∈ MA(S) for all x ∈ X . This implies that

X ⊆ MA(S).
(ii) Assume that xy ∈ MA(S). Then we have xy ∈ NA(S) and hence we can find a

smallest positive integer n such that (xy)n ∈ A. If n = 1 then xy ∈ A. By (∗)
we have xk ∈ A for some integer k > 0 or y ∈ A. This means that x ∈ MA(S)

or y ∈ MA(S). Now, we assume that n > 1. We have the following cases:
Case (i). If y(xy)n−1 �∈ A, then by (∗) and x

(
y(xy)n−1

)
= (xy)n ∈ A we

have xn ∈ A for some n > 0. This implies that x ∈ NA(S) =MA(S).

Case (ii). If y(xy)n−1 ∈ A then since (xy)n−1 �∈ A, we have y ∈ NA(S) =
MA(S).

Hence, in all cases we must have x ∈ MA(S) or y ∈ MA(S). This shows that
MA(S) is completely prime, and so MA(S) is prime. �

By Proposition 2.4, we re-deduce the following result in [1]:

Corollary 3.9. ([1] Theorem 2.4) If S is a one-side duo-semigroup then an ideal
A of S is left primary if and only if (∗) holds.

Remark 3.10. It is well known that every ideal of a one-side duo semigroup has
a primary decomposition. Unfortunately, we can not extend this result to pseudo-

symmetric semigroups. (See [1] Example 2.2)
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