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Abstract. For fairly general open sets it is shown that we can express a solution of the
Neumann problem for the Laplace equation in the form of a single layer potential of a
signed measure which is given by a concrete series. If the open set is simply connected
and bounded then the solution of the Dirichlet problem is the double layer potential with
a density given by a similar series.
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Suppose that G C R™ (m > 2) is an open set with a compact boundary 9G. If h
is a harmonic function on G such that

/ | grad h| d7, < oo
H

for all bounded open subsets H of G we define the weak normal derivative N¢h of
h as a distribution

(o, N9h) = / grad ¢ - grad h d.77;,
a

for ¢ € Z (= the space of all compactly supported infinitely differentiable functions
in R™). Here % is the k-dimensional Hausdorff measure normalized so that .77 is
the Lebesgue measure in R¥. We formulate the Neumann problem for the Laplace
equation with a boundary condition p € ¥’ (= the Banach space of all finite signed
Borel measures with support in G with the total variation as a norm) as follows:

* Supported by GACR Grant No. 201/96/0431
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determine a harmonic function h on G for which N¢h = . We wish to find the
function A in the form of the single layer potential

U(z) = / he(y) dv(y),
where v € €,

he(y) = (m—2)"tA e —y[>™™  form > 2,
A oglz —y[™t  form =2,

A is the area of the unit sphere in R™. The single layer potential % v is a harmonic
function in G for which the weak normal derivative N¢% v has sense. The operator
N¢% : v NY%v is a bounded linear operator on ¢ if and only if V¢ < oo,
where

VY = sup v%(x),
z€0G

v () = sup{/ gradp - grad h, d7%,; v € P,|¢| < 1,spto C R™ — {x}}
G

(see [9]). There are more geometrical characterizations of v“(z) in [9] which ensure

k
V& < oo for G convex or for G with 0G C |J L;, where L; are (m — 1)-dimensional
i=1
Ljapunov surfaces i.e. of class C1T¢ (see [16]).

If z € R™ and € is a unit vector such that the symmetric difference of G' and
the half-space {x € R™; (z — z) -0 > 0} has m-dimensional density zero at z then
n%(z) = 0 is termed the interior normal of G' at z in Federer’s sense. If there is no
interior normal of G at z in this sense, we denote by n“(z) the zero vector in R™.
The set {y € R™; |n%(y)| > 0} is called the reduced boundary of G' and will be
denoted by dG.

If G has a finite perimeter (which is fulfilled if VC < o0) then ,_1(0G) < oo
and

o9 (z) = / In®(y) - grad hu (4)| d A1 (y)
oG

for each € R™. Throughout the paper we shall assume that V¢ < cc.
Denote C' = R™ — clG and suppose for a while that 0C = 0G. For z € R™,
f € €, where ¥ is the space of all bounded continuous functions on dG equipped

with the maximum norm, we may define

WEf(x) = da(x)f(x) — ] (y)n(y) - grad ha(y) A1 (y),
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where

o (U (1) NG)
dg(z) = ,Er& o (% (7))

is the m-dimensional density of G at the point x and % (z;r) = {y € R™; |z —y| <
r}. (If V¢ < oo then there is dg(z) for all z € R™ (see [9], Lemma 2.9).) The
double layer potential W f is a function harmonic on R™ — cl G and continuous on
OG. Besides that W& : f — WS f is a bounded operator on € and N¢% is the
dual operator of W&. If WEf = g on G then WEf is a solution of the Dirichlet
problem on C with the boundary condition g (see [9], Theorem 2.19).

If we denote T¢ = 2W& — I, where I is the identity operator, then the Dirichlet
problem for C' and the Neumann problem for G lead to the dual equations

1) (I+TY)f =29,
(2) (I +T%* v =2pu.

Here L* denotes the dual operator to the operator L.

If L is a bounded linear operator on the Banach space X we denote by || L]|ecss
the essential norm of L, i.e. the distance of L from the space of all compact linear
operators on X. If |7%|.ss < 1 then G has a finite number of components and the
equation (I +7T)*v = 2y has a solution if and only if u(0H) = 0 for each bounded
component H of G. The equation (I+7%)f = 2g has a solution for each g € ¢ if and
only if G is unbounded and connected. (See [9].) It is well-known that this condition
is fulfilled for sets with a smooth boundary (of class C**®) and for convex sets (see
[9], [12]). J. Radon proved this condition for a set with bounded rotation in the plane
(particularly for a set with a piecewise smooth boundary without cusps) (see [21],
[22]). But this condition does not hold even for rectangular domains (i.e. formed by
rectangular parallelepipeds) in R? (see [10]). If G C R? is a rectangular domain then
there is a norm || || on € equivalent to the maximum norm such that || 79| <1

(see [10], [1]). This condition is equivalent to

(3) Tess(TY) < 1,

where the essential radius of the bounded linear operator L on the Banach space X
is defined by )
Tess(L) = liminf (||L™[less) ™
n—oo

(see [4]).
If X is a real Banach space we denote by "X the complexification of X. If L is
a linear operator on X we extend L to "X by L(z +iy) = Lz + iLy. According to
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[26], Chapter IX, Theorem 2.1 and Theorem 1.3 the operator A\ — T'¢ is a Fredholm
operator on "¢ for all complex A with |[A| > 1 if and only if (3) holds.

A. Rathsfeld showed in [23], [24] that (3) holds for a polyhedral cone in R*. (Com-
pare with the analogical result in [7].)The condition (3) holds even for G C R*® with
a piecewise smooth boundary (see [14]).

It is shown in this article that if 7¢ is quasicompact (i.e. ress(T¢) < 1) then cl G
has a finite number of components. The Neumann problem for G with the boundary
condition p € €’ has a solution if and only if ¢ (0H) = 0 for each bounded component
H of c1 G. We can take this solution in the form of the single layer potential % v where
v € €' is a solution of the equation (I +T%)*v = 2. The equation (I +T)f = 2g
has a solution for each g € ¥ if and only if cl G is unbounded and connected.

But how to calculate a solution of the equation (1) or (2)? If G is convex then the

(4) > (=T (2n)

represents a solution of (2) for each p € ¢’ such that u(0G) = 0.

The attempt to justify the convergence of the series obtained from the equation (1)
led C. Neumann to his investigation [17]-[19] of contractivity (for convex domains)
of the operator T called by him the operator of the arithmetical mean. Neumann’s
method led to further investigation of domains with a smooth boundary by J. Plemelj
(cf. [20]). His approach forms the basis of this paper.

The aim of this article is to prove that if G satisfies (3) then a solution of the
Neumann problem for G with the boundary condition 1 € ¥’ can be taken in the
form of the single layer potential v where v is given by the series

p Y [T T = (19

n=0

If R™ — G is unbounded and connected then we can take v even in the form of the
series (4). This condition is necessary for the convergence of the series (4) for each
1 € €' for which there is a solution of the Neumann problem with the boundary
condition u. If 0C' = 0G and clG is unbounded and connected then a solution of
the Dirichlet problem for C' with the boundary condition g € ¥ can be taken in the
form of the double layer potential W& f where

oo

g+ (—T9)"T - T%g.

n=0

f
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Lemma 1. If (3) holds then the set .# of all isolated points of OG is finite and

0< inf dg(X)< dg(X) < 1.
B

Proof. (See proof of Theorem 4.1 in [9].) Since T'“ is quasicompact there are
a natural number n and a compact linear operator K on % such that

(5) (T)" + K| < 1.

By the Radon theorem K can be arbitrarily closely approximated by finite dimen-
sional operators of the form

q
Kf = Z<fayk>g0k
k=1
with ¢ € € and vy, € €’ (see 9], pp. 102-103; compare Chapter V in [25]). Clearly,
there is K of the form

q1 q2
Kf = {fo)oe+ > vef(un)

k=1 k=1

where M = {y1,...,Yq,} CIG, ¢, € €, Yy, € €, vy, € €', v does not charge single
point sets and (5) is true.
Denote

ki(z,y) = —2n%(y) - grad ha(y)
for z, y € 0G. For fixed z € OG and a natural number p we define k,(z,y) by the
recurrent formula

kpri(z,y) = [ ka(w, 2)kp(2,y) A1 (2).
oG
By the inductive method we prove that for a fixed x the function k,(x,y) is defined
for J4,_1-a.a. y € 0G, vanishes outside G and

/ |y (2, )| d 1 (y) < 22 (VE)P.
G
Since (2 da(z) — 1) = 0 on JG we obtain by the inductive method

(TP f(x) = (2de(z) — 1)7 f(2) + (2da(z) — 1) /8 y k1(z,y) f(y) A1 (y)

2de) =) [ (o)1) AKoa () 4.

+(2do@) =) [ a0 a0

+/ kp(z,y) f(y) dotm_1(y).
filel
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Put

Z 2dg(x jkj(w,y).

Then
(T9)" f(z) = (2dg(z) — 1)" f(x) +/ k(z,y) f(y) A —1(y).
oG

Denote by A, the measure

[ 1ax = (19" 1),

Then for x € 0G — M
q1 q1 q2

\ At S ee@] <+ S ee@l + 3 @)
k=1 k=1 k=1

q1 q2
= ‘ Az + Z npk(x)uk + Zwk(l‘)(syk

— sup {|(T%)" f(a) + Kf()]; f € €.If| <1} < [(T%)" +K].

Put
q1

Kf(y) =Y er@){f i)
k=1
Then (TG) + K is a bounded operator on . Let now ¢ € €, |o] < 1. Since for
redG—-—M

I(TE)" + K||

Az +Zg0k

(T () + Rl ]

the continuity of the function (T'¢)"o+ K yields ||(TC)"p(x)+ K o(z)|| < |[(T9)"+
K|| for x € cl(0G — M). For fixed z € cl(0G — M) and a natural number k put
vr(y) = max(0,1 — kly — x|). Then we obtain from (5) that |2dg(z) — 1" =
Jim [(T9)"px () + Kop(x)] < (TC)™ + K| < 1. Since G — .7 C cl(G — M) we
have .4 C M, .7 is finite and the inequality in the lemma holds. O

Lemma 2. If re(T%) < 1 then %, 1(0G) < oo, H#5,_1(0G — gG) =0.

Proof. Since G has a finite perimeter and 0 < dg(z) < 1 for J%,-a.a. © € 0G
by Lemma 1, we obtain %, _1(0G) < oo and J%,_1(0G — G) = 0 by the Gauss-
Green theorem (see [3], Theorem 4.5.6). O
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Note 1. Denote G = intclG. Then %”m(é - G) =0, oG = 0C, VG < 00,
NG = NC. Ifv ¢ €', v(M) =0 for M C 0G — OG then NYYv(M) = v(M) for
M C 0G — 0G. If Tess(T®) < 1 then we obtain ress(Té) < 1 because 9G and G
differ only at finitely many isolated points of G by Lemma 1. So, throughout the
rest of the paper we will assume that 0G = 9C.

Lemma 3. If W€ is Fredholm then cl G has a finite number of components.

Proof. Suppose the opposite. Then we are going to construct such a sequence
{A;} of nonempty closed subsets of cl G that c1G — A; is closed, A; 11 g Aj and A;
has infinitely many components. Put A; = clG. For a given A; we construct A4
in the following way. Since A; is not connected there are nonempty closed disjoint
sets C, D such that C UD = A;. If H is a component of A; then CNH, HN D
are closed sets. Since H is connected, necessarily CNH = () or H N D = () and thus
either H C C or H C D. Now we denote by A;,1 one of the sets C', D which has
infinitely many components.

If there is a natural number ¢ such that A; is bounded we put B; = A; for j > 1.
If A; is unbounded for each j we put ¢ = 1, B; = c1G — A;. Now we choose for every
J = 4 a function ¢; € 2 such that ¢; = 1 on a neighbourhood of B; and ¢; = 0 on
a neighbourhood of c1G — B;. If v € " then

(NCUv)(0B;) = (pj, N®Uv) = /Ggradgpj -gradZv = 0.

So N¢% (¢") has an infinite codimension in ¢”. Since N9% is the dual operator of
W the operator N9% is Fredholm, too, by [26], Chapter VII, Theorem 3.5. This
is a contradiction. O

Note 2. If re(TF) < 1 then reg(TC) < 1 because TC = —TC. So, if 7ess(TF) <
1 then clG and R™ — G have a finite number of components by Lemma 3 and [26],
Chapter IX, Theorem 2.1 and Theorem 1.3.

Definition. We shall denote by % the subspace of those p € ¢” for which there
exists a (finite) continuous function Z.p on R™ such that %Z.pu = % 1 on R™ — 9G.

Lemma 4. Let p be a positive integer and A a complex number with |\ >
Tess(TY). Then any p € 6" satisfying the homogeneous equation

(T + A1) =0
necessarily belongs to €.

Proof. The lemma is an easy generalization of [9], Theorem 4.10 and we can
obtain it by repeating all reasonings in [9], §4. O
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Notation. Let us define a function 6 on R™ as follows:

0(z) = exp (|z|* — 1)71 for |z| < 1,

For § > 0 put

with hs € R chosen so that

Clearly, 65 € 2 for each 4.

If f is locally integrable over R™ we denote

Rsf(x) = Rmf(y)ezs(x —y)dAn(y), xeR™.

Then Rsf € 2. If | f(y)| < 8 holds for 4%,-almost all y € R™ then the inequality

[R5 f(x)] < B

is true for any x € R™. If f is continuous then Rsf converges locally uniformly to f
for § — 0.
Finally, for each € > 0 let

B® = {z € R™; dist(z,0G) > ¢}.
Lemma 5. Suppose that € 4’ and € > 0. Then
lim Rs%pu=%pu
6—04
holds quasi - everywhere in R™ and for each 6 € (0,¢) we have Rs% = % v on Be.
Proof. See [15], proof of Lemma 22. O

Lemma 6. Suppose ,(0G) = 0. Let p € ¢.. In the case m = 2 suppose
moreover that p(R™) = 0. Then

sup / | grad Rs% p|* A4, < oo,
5€(0,1) Jrm

/ | grad % p|? A, < .
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Proof. Since
lim |Zwp(z) =0

|| — o0

there is 8 € R such that |%.u| < 3. Fix R > 1 such that 0G C % (0; R). Suppose
r > 2R, § € (0,1). By the Gauss-Green theorem we get

© [ R~ a0 ) - grad (R ) 4 ()
0% (0;r)
= / |grad (Rs% p(z))|? 474, (2)
U (0;7)
+ / (Rs () A (Rs % () A ().
% (05r)

Let ¢ € 2 satisfy |p| < 1 on R™ and ¢ = 1 on % (0;2R). By Lemma 5 the
function Rs% v is harmonic on R™ — %7(0;2R) and we conclude that

(M) / (Rs (@) A (R () d Ao ()
w (0;1)

= / o(2) (R 1(2)) A(Rs% () A ().

It is well-known that A%y = —p in the sense of distributions. Since RsZ pu =
05 * (% ) is the convolution of the functions 05 and % p we have A(Rs% ) = 05 *
(A% 1) = Os+(—p) in the sense of distributions (compare [27]). Since ¢(Rs% 11) € 9
we have

(8) /m () (Rs U 11(x)) A (Rs% () A7, (2)
_ /  Ro(oRs p)(@) du(a).

Since |Rs;% 1] < 0, because |% p| < f on R™ — 9G and 7;,(0G) = 0, we get from
(6), (7) and (8) the estimate

| lerad Rsttu@)P st < Bl + [ Rs@plgrad B ul At (2
w (0;r) 16}

0;7)

e+ [ wllgmad % Ak
O;r

3

1 12 m— m
< Bl + 65 g Ar™ 1 < 27l

by Lemma 5. Hence
) | lemad Rewu oty < 275,
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Lemma 5 yields
511%1 grad Rs % p(x) = grad % u(x)
—U4

whenever € R™ —9J@G. Since 74, (0G) = 0, Fatou’s lemma may be applied to assert
Jam | grad % p* < 25| ull. O

Lemma 7. Suppose 7, (0G) = 0. Let vy, v2 € €.. In the case m = 2 suppose
moreover that v;(R™) =0 for i = 1,2. Then

U1 dNG%Vg = / grad Z vy - grad % vo A7, .
G G

Proof. (Compare with [15].) Let ¢ be an infinitely differentiable function in
R, 0< v <1,9(t) =1fort e (0,1) and ¢(t) =0 for t € (2,00). For § >0, z € R™
put

Ys(z) = ¢(0lz),
ps(x) = vs(2)(Rs %1 ) ().
Since %11 is continuous, ps converge to %.v1 uniformly on G for § — 0. Since

ps € P we have
(10)

U AN U vy = lim Vs AN“% vy = lim grad @s - grad % ve A5,
9G 6—04 9G 6—04 G

We are going to prove
(11) / |grad 52 d.s%, < K for 6 € (0,3).

Choose dp € (0,1/2) such that 9G C % (0;1/(20p)). Let § € (0,00). Denote by x
the characteristic function of the set % (0;2/0) — % (0;1/6). Since Rs%Uv1 = %11
on R™ — % (0;1/dp) by Lemma 5 we have

/ | grad @5\2 ds4, = |5 grad(Rs%.v1) + (Rs.11) grad 1/15\2 ds4,

Rm™

< / [|gradR5@/CV1|+\@/V1|Xsup|w’\6]2d<%ﬂm
</ \gradR(;gZ/ul\Qd%ﬂm

+ / [(sup [1/])262| 21| + 2/ 11|6| grad Z v | sup ||| d. .
W (0:2/5)— (0:1/5)
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Since there is a positive constant L such that

L
(o) < s,
| grad Z v (x)] < P

for each z € R™ — % (0;1/80) we have
/ | grad ps|* d., < / | grad Rs% vy |* ., + AST 2 sup [¢)'|L3(2 + sup ']
m RTH

and (11) holds according to Lemma 6.
According to [28], Chapter V, §2, Theorem 1 there are fi,..., fin € L2(R™) and
a sequence 0, \, 0 such that

) 0
(12 Jm [ (Geen o = [ s,
holds for each g € Lo(R™) and k = 1,...,m. Since Lemma 6 yields %%1/2 €
Ly (R™) we obtain from (10) and (12)

/ U, ANSU vy = /ka T U)W,

It suffices to prove that f = %@/ vi. Let g € Lo(R™) have a compact support
disjoint with 0G. Then

0 U vy A,

frgddtn = im [ gl ast = [ g
rm Oxg

o o O,
by Lemma 5. Since 4%, (0G) = 0, the set of such g is dense in Ly(R™). Since
d—gk%ul € Ly(R™) by Lemma 6, we have fi, = %%1/1. O

Lemma 8. IfG is bounded then there is a positive v € € such that (T¢)*v = —v
and % v is constant in G.

Proof. According to [11], Chapter II, §1 and §4 there is a positive measure
v on clG, a constant L and a Borel set K of null capacity such that v = L on
clG—K. Since #;,—1(K) = 0 by [11], Theorem 3.13 and % v is lower semicontinuous
by [11], Theorem 1.3, we obtain v < L in G. Since v is super-mean-valued
by [11], Theorem 1.4 we have Zv = L in G. Since A% v = —v in the sense of
distributions (see [9], Remark 5.7) and A%Z v = 0 in G obviously v is supported
by 0G. If ¢ € 2 then (p, N°Uv) = Jogrady - grad %vds;, = 0 and thus
[(T9)* +Iv=iN“%v =0. O
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Lemma 9. Ifv € ¢, v(R™) = 0 then (N% v)(R™) = 0.

Proof. If G is bounded, choose ¢ € 2, ¢ = 1 on a neighbourhood of clG.
Then
(NCUv)(R™) = (o, NYUv) = / grady - gradZ v = 0.
G

If G is unbounded then C' is bounded. Since

NCYv = %[I + (T v = %[I — (T = %(2[ —~ N

we have

(NCU ) (R™) = v(R™) — (N % v)(R™) = 0.

1
2
0

Lemma 10. Let \;, Ay be complex numbers, vy, vy € "¢’ v;(R™) # 0, NCU v; =
A\iv; for i = 1,2. Then Ay = As.
Proof. Put "6} = {u € "¢';u(R™) = 0}. Then there are u € "%} and

a complex number « such that

Vg = avy + 4.

Then
Aoy + NG%M = NG%(ayl +u) = NCU vy = Xavg = Xoary + Agfl.
Hence
(M — Xo)avy = Aop — NG%[L.
Since Aoyt — NC% pu € "6} by Lemma 9, necessarily (\; — A2) = 0. O

Proposition 1. Suppose ress(T¢) < 1. Let A be an eigenvalue of (T)*, || > 1.
Then X € {—1;1}.

Proof. Choose v € 4", an eigenvector corresponding to the eigenvalue .
Since (T%)* = —(T°)* Lemma 8 yields that there is a positive measure y € ¢’ such
that (T9)*u = —u for G bounded and (T%)*; = u for C bounded. If v(R™) # 0
then A € {—1;1} by Lemma 10.

Suppose v(R™) = 0. Denote by o the complex conjugate of v. Since v € 6. by
Lemma 4 we obtain from Lemma 2 and Lemma 7

1 A+1
/ |grad % v|? = U dNC Uy = = Uod(TC 4+ 1)y = Al U, dv
G oG oG oG
A1 A+1
. % Yo d(NCUv + Neuv) = 222 [ | gradwv)?
oG R™
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If
/ |grad Zv|> # 0

then 0 < (A + 1) <1 and A € {—1;1} because || > 1. If

/ |gradZv]®> =0
then % v is constant on G and on C. Since %,.v is continuous and

‘ l‘im |%v(z)| =0
we have % v = 0. Since /%, (0G) = 0 by Lemma 2 we obtain v = 0 by [11], Theorem
1.12 and Theorem 1.12’, which is a contradiction. O

Lemma 11. Let v € "¢, v(R™) # 0, (T9)*v = Av, A # 0. Then there is no
p € "¢" such that [\ — (T¢)*|pu=v.

Proof. Suppose that there is such a u € ¢”. Then there are a complex number
aand 4 € 65 = {0 € "¢’; o(R™) = 0} such that 4 = av + p/. Then v =
(A — (T9)*]p= [M — (T9)*]i’ € "€} by Lemma 9, which is a contradiction. [

Proposition 2. Suppose res(T¢) < 1. Let A be an eigenvalue of the operator
(TS)*, let v € "€’ be a corresponding eigenvector. If|\| > 1 then there is no u € "¢”
such that

(AT — (TG)*]M =.

Proof. According to Lemma 11 it suffices to suppose v(R™) = 0. Suppose that
there exists such a p. According to Proposition 1 we have

1
(13) NC%v =0, NYUpu= —5

or

1
NC%v =0, N°%u= -

We can suppose that p € ¢/, v € €'. Lemma 4 yields that p € €., v € €.. If (13)
holds we obtain by Lemma 7 and Lemma 2

1
0= / UpdN“Uv — | UvdNCUp== | Uvdv
aG oG 2 Jac
1 1
== %Cud[NGOZ/V—i—NCy]:—/ | grad % v|? d.,.
2 Joc 2 Jrm
Since ‘ l‘im |% v(x)| = 0 we have Z.v = 0. Since J,(0G) = 0 we have v = 0 by
T |—00
[11], Theorem 1.12 and Theorem 1.12'; which is a contradiction. The other case is

analogical. O
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Proposition 3. Let X be a complex Banach space and T a bounded linear
operator on X. Suppose that Ai,..., A\, are different complex numbers such that
min{|Ar], ..., M|} > 7 > ress(T). Suppose that o(T) N {X; |\ > 7} C {A1,..., A}
and Ker(\;1 — T) = Ker (\;I — T)?) for j = 1,...,k, where o(T) denotes the
spectrum of the operator T' and Ker(A\;I — T') is the null space of the operator
(MI —T). Denote

k
(A=2j) for k > 1,

<.
[ V)

1 for k=1,
FRRLOELLS

Then there are constants M > 0, ¢ € (0;1) such that for eachy € (M I —T)(X) and
any natural number n we have

(14) 1AL T)"P(T)yll < Mq"||y]

and the series
(15) p@g{ y+Af§: ATITY P(T }

is a solution of the equation

(16) (MI—T)z =

Proof. Puto; =c(T)N{N\;j}forj=1,...,k Putopi1 =0o(T)—{A1,..., A}
Let P; be the spectral projection corresponding to the spectral set o; for j =
.,k +1 (see [26], Chapter VI, §4). Then P; + ...+ Pyy1 = I and X is a direct
sum of the spaces P (X),..., Pyy1(X).
Since T maps Pr4+1(X) into Pi41(X) and the restriction of T on Py41(X) has a
spectral radius smaller then or equal to r there are constants K > 0 and ¢ € (0,1)
such that

(17) 1T )"yl < Kq"|lyll
for each y € Ppy1(X).

Fix j € {1,...,k}. If 0; = 0 then P; = 0 and P;(X) = {0} = Ker(\;1 —T),
Ker P; = (MI—T)(X). Now, let 0; = {)\;}. Since ress(I') < |A;| the operator
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(MI —T) is Fredholm with index 0 by [26], Chapter VII, Theorem 5.4. Accord-
ing to [26], Chapter V, Theorem 2.3 the operator (\;I — A)? is Fredholm with
index 0,t00. Since codim(\;I — T)(X) = dimKer()\;I — T') = dim Ker(\;I — T)? =
codim(\;I — T)2(X) and (M1 —T)*(X) € (M —T)(X) we have (A1 —T)%(X) =
(MI—T)(X). By [8], Satz 50.2 we have P;(X) = Ker(\;I—-T), KerP; =
= T)(X).

Now let y € (M I — T)(X). Since (A1 I —T)(X) = Ker P; we have

k+1

y=>_ Py.
j=2
Since P;(X) = Ker(A\jI —T) for j = 2,...,k and thus P(T)P;y = 0. We obtain

IO )" P(T)yll = |\ )" P(T) Porayll < K¢ (1P(D)] (| Perall 1yl

because P(T)Py41(X) C Prt1(X). The series (15) converges and

(MI = T)P(A\) M Q(TD)y + A Z(A;1T>”P<T>y]

= P(\1) 7Py — P(T y—l—z AT P(T)y = > (AT'T)"P(T)y] = y.

Lemma 12. Suppose ress(T“) < 1. Denote by Hu, ..., H, the components of
clG. Suppose that v € ¢ satisfies N¢% v = 0. Then there are c1,...,c, € R' such
that % v = ¢; on int H;.

Proof. Suppose that v(R™) = 0. Since v € €. by Lemma 4 we obtain from

Lemma 7

0= %cudNG%V:/ | grad % v|* d.7,.
oG G
Therefore % v is constant on each component of G. Since %,v is continuous and

Uv =U.v on R™ — 0G, % v is constant on int H;.
Suppose now that v(R™) # 0. If G is bounded, Lemma 8 yields that there is
A\ € € such that N\ = 0, A\(R™) # 0 and % ) is constant on G. Thus

v(R™) v(R™)
%V_A(R )02//\+02/( A(Rm)x>

is constant on int H;.
If G is not bounded, Lemma 8 yields that there is A € €', A(R™) # 0 such that

TEN= T\ =),
which is a contradiction with Lemma 10. O
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Theorem 1. Suppose that res(T¢) < 1. If p € €’ then the Neumann problem
with the boundary condition p has a solution if and only if u € 6 (= the space of
such v € €' for which v(0H) = 0 for each bounded component H of clG). We can
take a solution in the form of the single layer potential % v where

(18) v=pn+ > [TV [ - (T p.

Moreover, there are constants M > 0, q € (0;1) such that
(19) [T ) [T = (T9) )l < M |||

for each p € 6 and any natural number j.
If R™ — G is unbounded and connected then

(20) I[(~=TS)*] ull < M|l

for each i € 6§ and any natural number j and

(21) V= Z [(=T%)*] 2p.

J

The series (21) converges for each p € % if and only if R™ — G is unbounded and
connected.

Proof. Let u € %', h be a solution of the Neumann problem with the boundary
condition p. Let H be a bounded component of clG. Since cl G has a finite number
of components by Lemma 3, we can choose ¢ € 2 such that ¢ =1 on H and ¢ =0
on clG — H. Then

w(OH) = (p,u) = /Ggradh -grad ¢ = 0.
Let Hy,..., H, be all bounded components of clG. We are going to prove that
NCu(€')={pec€; woH;,) =0;i=1,...,p}.
Since % v is a solution of the Neumann problem with the boundary condition N¢% v

we have
NC% (€'Y c{pne¥; w(dH;) =0;i=1,...,p}.
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Since
p=codim{u € ¢'; w(OH;) =0;i=1,...,p} < codimNGGZ/(%') = dimKer N®%

because N¢% is a Fredholm operator with index 0, it suffices to prove that
dimKer N¢% < p.

If v € Ker N°% then v € 6! by Lemma 4 and %,.v remains constant on each
component of c1G by Lemma 12. If G is unbounded and Hj is the unbounded
component of clG then %,v must vanish on Hy. This is clear provided m > 2,
because then % v tends to zero at infinity, while for m = 2 the relation

lim |Zv(x)+ %V(@G) log|z|| =0

|z|— o0

shows that the potential % v can remain constant on Hy only if ¥(0G) = 0 when its
limit at infinity equals zero.

If ve@, v=0in G, Zv converges to 0 at infinity then %_v is a harmonic
function in R™ — 0G which vanishes on 0G and converges to 0 at infinity, hence
Uv =%v =01in R™ — 9G. Since 4,(0G) = 0 by Lemma 2, we obtain v = 0 by
[11], Theorem 1.12, Theorem 1.12’.

If there is no p € €’ with u(0G) # 0 such that % p vanishes identically on G then
dimKer N% < p. Suppose now that there exists such a p. Then m = 2 and G
is bounded. We are going to prove that there is no v € ¢”’, v(0G) = 0 such that
%v =1on G. It yields that dimKer N¢% < p.

Fix r > 1 large enough to guarantee clG C % (0;r) and consider a probability
measure S distributed on 0% (0;r) with a constant density with respect to #1. As
is noticed in [9], Remark 5.10,

1 1
UH = —log— on % (0;7) D clG.
2r r
Fubini’s theorem implies the reciprocity law

(22) / UvdH = U F dv.
R2

R2

Now % v (being harmonic on R? — cl G and tending to 1 at (R? — clG) and to zero
at infinity) remains positive on R? — clG D 9% (0;r), so that the left-hand side of
(22) is positive, while the right-hand side equals v(0G) 4 log L = 0. (Compare [9],
proof of Proposition 5.11.)
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‘We have proved that there is a solution of the Neumann problem with the boundary
condition p € ¢ if and only if 1 € € and we can take a solution in the form of the
single layer potential % v where

[T+ (T9*]v =2p.

Propositions 1, 2 and 3 yield the relations (18), (19), (20), (21).
Suppose now that R™ — G is not unbounded and connected. Since clC has a
bounded component and Tess(T¢) = 7ess(T) we have

[T — (T (€)= [I+(T)](€)=NU%€") G ¢

Since I—(T'%)* is a Fredholm operator with index 0 by [26], Chapter IX, Theorem 2.1,
Theorem 1.3 and Chapter VII, Theorem 3.5, there is a u € €', u # 0 such that
(TC)* 1w = p. Since p = $NY% p we have p1 € 6;. But the series (21) diverges. [

Example 1. Consider G = % (0;7) C R?. For f € €, x € OG we can calculate

1 y—=
TG f(z) = —2 y. _y-z
fo=-2 [ sl E s anw
- LRl -2y 1
—— [ g TR ) = —5 [ )G,
Hence
(T)* = w(0G).A,
where

/ faw = rasw).
oG

2nr oG

Using Theorem 1 we obtain that for y € %’ for which u(0G) = 0 we can take
a solution of the Neumann problem with the boundary condition p in the form

1 1
—/ log —— dpu(y).
T Jow (0;r) |z —yl

Example 2. Consider G = R? — % (0;7). Since T¢ = —T¢ we obtain from
Example 1 that
(T)* = w(0G).A,

where

faw =+ [ fu)as).

EYe 2nr Jaa
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Using Theorem 1 we obtain that for u € ¥’ we can take a solution of the Neumann
problem with the boundary condition x in the form

1 1 p(R™ 1
- / log du(y) — ( 5 ) / log dt (y).
T Jow oy 1T =Yl 47 Jow oy 1T — Yl

1 1
—/ log —— dJA (y) — log
2nr Jow oy 17— Yl ||

is a harmonic function on G' which vanishes on 9G by [9], Remark 5.10 and tends to

Since

zero at infinity it vanishes in G. Thus

1 1 p(R™ 1
- / log dpu(y) — ( )log—
T Jow oy 1T =Yl 2n ||

is a solution of the Neumann problem with the boundary condition pu.

Theorem 2. Suppose that ress(TG) < 1 and cl G is unbounded and connected.
Then there are constants M > 0, ¢ € (0;1) such that

(23) I(=TCY (I —T)f|| < M| f]

for each f € € and any natural number j. The solution of the Dirichlet problem for
C with the boundary condition g € € is the double layer potential

1 Yy—x

Wef) == [ Flun®)-

fy =z

where

oo

(24) g+ (-T)(I-T1%g.

7=0

Proof. Since M +T¢ is a Fredholm operator with index 0 for |A| > 1, we have
a(T9) N {X\;|\| = 1} C {~1;1} by Proposition 1, [28], Chapter VIII, §6, Lemma 1
and [26], Chapter VII, Theorem 3.5. Since there is a natural number n and a linear
compact operator K on "¢ such that ||(7¢)" + K|| < 1 we obtain from [13], Lemma
2 that o ((T)") N{A;|A| > 1} is an isolated subset of o ((T%)"). Since o ((T9)") =
{A\"; X € o(T%)} by [28], Chapter VIII, §7, the set o(T%) N {\; |[A\| > 1} is an
isolated subset of o(T'%). Theorem 1 yields that (I +7%)*(¢") = ¢”. Since (I +T%)
is a Fredholm operator of index 0 we have Ker ((1 +T¢)*) = {0}. Since I + T is
a Fredholm operator we have (I + T%)(%) = € by [28], Chapter VII, §5. Now, the
assertion of the theorem is a consequence of Proposition 3. O

781



Note 3. Suppose that r.s(7¢) < 1, clG is unbounded and connected, g € €.
Let M, g be the constants from Theorem 2. Since

1
sup [WEh(a)| < 1] (V€ + 3)
zeC 2
for each h € € by [9], Theorem 2.16, we obtain from Theorem 2

1. .
sup [Wg;(x)| < M(VE + 5)d’ 9]
zeC 2

where
9; = (-TO)(1 T,
So, the series
oo
W +> W;
§=0

converges absolutely uniformly on C' to W& f, the solution of the Dirichlet problem
for C' with the boundary condition g, where f is given by (24). Besides,

sup [WE | < (VO + 1)(1 TS 1t Zqu) Il

zeC j=1

Note 4. Fix z9 € 0% (0;1). Then —1lg|z — o] is a solution of the Neumann
problem for % (0; 1) with the boundary condition d,, (= the Dirac measure supported
in {z0}). But the function —2lg|z — x| is not bounded in % (0;1). So, for the
Neumann problem we cannot obtain the same estimates as for the Dirichlet problem
in Note 3. Nevertheless, if 7ss(7¢) < 1 then there exists ¢ € (0;1) such that for
each compact K C G there is a constant Mg such that

sup |% p(x)| < Mi||pll,
rzeK

sup |% pj ()| < Mg’ |||
reK

for each p € 6, where
wi = [T [T = (@) ]p

so that the series

%M+Z%uj

=0

782



converges locally uniformly in G to the solution of the Neumann problem with the
boundary condition p and

sup ‘%,u(x) + Z U 1 (x)
zeK =0

1
< Mic(1+ =)l
I—q
Note 5. Denote by 7 the restriction of 47, _1 to dG. Denote by L1(5¢) the
space of all functions f measurable with respect to J# such that

/ f|dA < oo
oG

For f € L1(¢) denote by vy € €’ the measure

Uf(M): fd%
M

If f € L1(H) then
(T) vy = vy

where

@) = T'fw) = 5 [ nle) o rw) 4 ).

ly — z|™

Suppose that 7ess(T¢) < 1. If f € Li(#) and vy € 6 then
> .
g=r+ (T -T)f
§=0

converges in L1 () and % v, is a solution of the Neumann problem with the bound-
ary condition vy.
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