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SOLUTION OF THE NEUMANN PROBLEM

FOR THE LAPLACE EQUATION

Dagmar Medková,* Praha

(Received April 24, 1996)

Abstract. For fairly general open sets it is shown that we can express a solution of the
Neumann problem for the Laplace equation in the form of a single layer potential of a
signed measure which is given by a concrete series. If the open set is simply connected
and bounded then the solution of the Dirichlet problem is the double layer potential with
a density given by a similar series.
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Suppose that G ⊂ �m (m � 2) is an open set with a compact boundary ∂G. If h
is a harmonic function on G such that

∫

H

| gradh| dHm <∞

for all bounded open subsets H of G we define the weak normal derivative NGh of
h as a distribution

〈ϕ,NGh〉 =
∫

G

gradϕ · gradh dHm

for ϕ ∈ D (= the space of all compactly supported infinitely differentiable functions
in �m ). Here Hk is the k-dimensional Hausdorff measure normalized so that Hk is

the Lebesgue measure in �k . We formulate the Neumann problem for the Laplace
equation with a boundary condition µ ∈ C ′ (= the Banach space of all finite signed

Borel measures with support in ∂G with the total variation as a norm) as follows:

* Supported by GAČR Grant No. 201/96/0431
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determine a harmonic function h on G for which NGh = µ. We wish to find the

function h in the form of the single layer potential

U ν(x) =
∫

�m

hx(y) dν(y),

where ν ∈ C ′,

hx(y) = (m− 2)−1A−1|x− y|2−m for m > 2,

A−1 log |x− y|−1 for m = 2,

A is the area of the unit sphere in �m . The single layer potential U ν is a harmonic
function in G for which the weak normal derivative NGU ν has sense. The operator

NGU : ν �→ NGU ν is a bounded linear operator on C ′ if and only if V G < ∞,
where

V G = sup
x∈∂G

vG(x),

vG(x) = sup

{∫

G

gradϕ · gradhx dHm ; ϕ ∈ D , |ϕ| � 1, sptϕ ⊂ �m − {x}
}

(see [9]). There are more geometrical characterizations of vG(x) in [9] which ensure

V G <∞ for G convex or for G with ∂G ⊂
k⋃

i=1
Li, where Li are (m− 1)-dimensional

Ljapunov surfaces i.e. of class C1+α (see [16]).
If z ∈ �m and θ is a unit vector such that the symmetric difference of G and

the half-space {x ∈ �m ; (x − z) · θ > 0} has m-dimensional density zero at z then
nG(z) = θ is termed the interior normal of G at z in Federer’s sense. If there is no

interior normal of G at z in this sense, we denote by nG(z) the zero vector in �m .
The set {y ∈ �m ; |nG(y)| > 0} is called the reduced boundary of G and will be
denoted by ∂̂G.
If G has a finite perimeter (which is fulfilled if V G < ∞) then Hm−1(∂̂G) < ∞

and
vG(x) =

∫

∂̂G

|nG(y) · gradhx(y)| dHm−1(y)

for each x ∈ �m . Throughout the paper we shall assume that V G <∞.
Denote C = �m − clG and suppose for a while that ∂C = ∂G. For x ∈ �m ,

f ∈ C , where C is the space of all bounded continuous functions on ∂G equipped

with the maximum norm, we may define

WGf(x) = dG(x)f(x) −
∫

∂G

f(y)nG(y) · gradhx(y) dHm−1(y),
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where

dG(x) = lim
r→0+

Hm

(
U (x; r) ∩G

)

Hm

(
U (x; r)

)

is the m-dimensional density of G at the point x and U (x; r) = {y ∈ �m ; |x− y| <
r}. (If V G < ∞ then there is dG(x) for all x ∈ �m (see [9], Lemma 2.9).) The

double layer potential WGf is a function harmonic on �m − clG and continuous on
∂G. Besides that WG : f �→ WGf is a bounded operator on C and NGU is the

dual operator of WG. If WGf = g on ∂G then WGf is a solution of the Dirichlet
problem on C with the boundary condition g (see [9], Theorem 2.19).

If we denote TG = 2WG − I, where I is the identity operator, then the Dirichlet

problem for C and the Neumann problem for G lead to the dual equations

(I + TG)f = 2g,(1)

(I + TG)∗ν = 2µ.(2)

Here L∗ denotes the dual operator to the operator L.

If L is a bounded linear operator on the Banach space X we denote by ‖L‖ess
the essential norm of L, i.e. the distance of L from the space of all compact linear

operators on X . If ‖TG‖ess < 1 then G has a finite number of components and the
equation (I + TG)∗ν = 2µ has a solution if and only if µ(∂H) = 0 for each bounded

component H of G. The equation (I+TG)f = 2g has a solution for each g ∈ C if and
only if G is unbounded and connected. (See [9].) It is well-known that this condition
is fulfilled for sets with a smooth boundary (of class C1+α) and for convex sets (see

[9], [12]). J. Radon proved this condition for a set with bounded rotation in the plane
(particularly for a set with a piecewise smooth boundary without cusps) (see [21],

[22]). But this condition does not hold even for rectangular domains (i.e. formed by
rectangular parallelepipeds) in �3 (see [10]). If G ⊂ �3 is a rectangular domain then
there is a norm ||| ||| on C equivalent to the maximum norm such that

∣∣‖TG‖
∣∣
ess

< 1
(see [10], [1]). This condition is equivalent to

(3) ress(TG) < 1,

where the essential radius of the bounded linear operator L on the Banach space X
is defined by

ress(L) = liminf
n→∞

(
‖Ln‖ess

) 1
n

(see [4]).

If X is a real Banach space we denote by ∧X the complexification of X . If L is
a linear operator on X we extend L to ∧X by L(x + iy) = Lx + iLy. According to
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[26], Chapter IX, Theorem 2.1 and Theorem 1.3 the operator λI −TG is a Fredholm

operator on ∧C for all complex λ with |λ| � 1 if and only if (3) holds.
A. Rathsfeld showed in [23], [24] that (3) holds for a polyhedral cone in �3 . (Com-

pare with the analogical result in [7].)The condition (3) holds even for G ⊂ �3 with
a piecewise smooth boundary (see [14]).

It is shown in this article that if TG is quasicompact (i.e. ress(TG) < 1) then clG
has a finite number of components. The Neumann problem for G with the boundary

condition µ ∈ C ′ has a solution if and only if µ(∂H) = 0 for each bounded component
H of clG. We can take this solution in the form of the single layer potentialU ν where

ν ∈ C ′ is a solution of the equation (I + TG)∗ν = 2µ. The equation (I + TG)f = 2g
has a solution for each g ∈ C if and only if clG is unbounded and connected.

But how to calculate a solution of the equation (1) or (2)? If G is convex then the
series

(4)
∞∑

n=0

[
(−TG)∗

]n
(2µ)

represents a solution of (2) for each µ ∈ C ′ such that µ(∂G) = 0.

The attempt to justify the convergence of the series obtained from the equation (1)
led C. Neumann to his investigation [17]–[19] of contractivity (for convex domains)

of the operator TG called by him the operator of the arithmetical mean. Neumann’s
method led to further investigation of domains with a smooth boundary by J. Plemelj

(cf. [20]). His approach forms the basis of this paper.

The aim of this article is to prove that if G satisfies (3) then a solution of the

Neumann problem for G with the boundary condition µ ∈ C ′ can be taken in the
form of the single layer potential U ν where ν is given by the series

µ+
∞∑

n=0

[
(−TG)∗

]n[
I − (TG)∗]µ.

If �m −G is unbounded and connected then we can take ν even in the form of the

series (4). This condition is necessary for the convergence of the series (4) for each
µ ∈ C ′ for which there is a solution of the Neumann problem with the boundary

condition µ. If ∂C = ∂G and clG is unbounded and connected then a solution of
the Dirichlet problem for C with the boundary condition g ∈ C can be taken in the

form of the double layer potential WGf where

f = g +
∞∑

n=0

(
− TG

)n
(I − TG)g.
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Lemma 1. If (3) holds then the set I of all isolated points of ∂G is finite and

0 < inf
x∈∂G−I

dG(X) � sup
x∈∂G−I

dG(X) < 1.

�����. (See proof of Theorem 4.1 in [9].) Since TG is quasicompact there are

a natural number n and a compact linear operator K on C such that

(5) ‖
(
TG

)n
+K‖ < 1.

By the Radon theorem K can be arbitrarily closely approximated by finite dimen-

sional operators of the form

K̃f =
q∑

k=1

〈f, νk〉ϕk

with ϕk ∈ C and νk ∈ C ′ (see [9], pp. 102–103; compare Chapter V in [25]). Clearly,

there is K of the form

Kf =
q1∑

k=1

〈f, νk〉ϕk +
q2∑

k=1

ψkf(yk)

where M = {y1, . . . , yq2} ⊂ ∂G, ϕk ∈ C , ψk ∈ C , νk ∈ C ′, νk does not charge single

point sets and (5) is true.
Denote

k1(x, y) = −2nG(y) · gradhx(y)

for x, y ∈ ∂G. For fixed x ∈ ∂G and a natural number p we define kp(x, y) by the
recurrent formula

kp+1(x, y) =
∫

∂G

k1(x, z)kp(z, y) dHm−1(z).

By the inductive method we prove that for a fixed x the function kp(x, y) is defined

for Hm−1-a.a. y ∈ ∂G, vanishes outside ∂̂G and
∫

∂G

|kp(x, y)| dHm−1(y) � 2p(V G)p.

Since
(
2 dG(x) − 1

)
= 0 on ∂̂G we obtain by the inductive method

(TG)pf(x) =
(
2 dG(x)− 1

)p
f(x) +

(
2 dG(x)− 1

)p−1
∫

∂G

k1(x, y)f(y) dHm−1(y)

+
(
2 dG(x) − 1

)p−2
∫

∂G

k2(x, y)f(y) dHm−1(y) + . . .

+
(
2 dG(x) − 1

) ∫

∂G

kp−1(x, y)f(y) dHm−1(y)

+
∫

∂G

kp(x, y)f(y) dHm−1(y).
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Put

k(x, y) =
n∑

j=1

(
2 dG(x)− 1

)n−j
kj(x, y).

Then (
TG

)n
f(x) =

(
2 dG(x) − 1

)n
f(x) +

∫

∂G

k(x, y)f(y) dHm−1(y).

Denote by λx the measure

∫
f dλx =

(
TG

)n
f(x).

Then for x ∈ ∂G−M

∥∥∥∥λx +
q1∑

k=1

ϕk(x)νk

∥∥∥∥ � ‖λx +
q1∑

k=1

ϕk(x)νk‖+
q2∑

k=1

|ψk(x)|

=

∥∥∥∥λx +
q1∑

k=1

ϕk(x)νk +
q2∑

k=1

ψk(x)δyk

∥∥∥∥

= sup
{
|(TG)nf(x) +Kf(x)| ; f ∈ C , |f | � 1

}
� ‖

(
TG

)n
+K‖.

Put

K̃f(y) =
q1∑

k=1

ϕk(y)〈f, νk〉.

Then
(
TG

)n
+ K̃ is a bounded operator on C . Let now ϕ ∈ C , |ϕ| � 1. Since for

x ∈ ∂G−M

|(TG)nϕ(x) + K̃ϕ(x)| �
∥∥∥∥λx +

q1∑

k=1

ϕk(x)νk

∥∥∥∥ � ‖(TG)n +K‖

the continuity of the function (TG)nϕ+K̃ϕ yields ‖(TG)nϕ(x)+K̃ϕ(x)‖ � ‖(TG)n+

K‖ for x ∈ cl(∂G −M). For fixed x ∈ cl(∂G −M) and a natural number k put
ϕk(y) = max(0, 1 − k|y − x|). Then we obtain from (5) that |2 dG(x) − 1|n =
lim

k→∞
|(TG)nϕk(x) + K̃ϕk(x)| � ‖(TG)n +K‖ < 1. Since ∂G−I ⊂ cl(∂G−M) we

have I ⊂M , I is finite and the inequality in the lemma holds. �

Lemma 2. If ress(TG) < 1 then Hm−1(∂G) <∞, Hm−1(∂G− ∂̂G) = 0.

�����. Since G has a finite perimeter and 0 < dG(x) < 1 for Hm-a.a. x ∈ ∂G
by Lemma 1, we obtain Hm−1(∂̂G) < ∞ and Hm−1(∂G − ∂̂G) = 0 by the Gauss-
Green theorem (see [3], Theorem 4.5.6). �
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Note 1. Denote G̃ = int clG. Then Hm(G̃ − G) = 0, ∂G̃ = ∂C, V G̃ < ∞,
N G̃ = NG. If ν ∈ C ′, ν(M) = 0 for M ⊂ ∂G − ∂G̃ then NGU ν(M) = ν(M) for

M ⊂ ∂G − ∂G̃. If ress(TG) < 1 then we obtain ress(T G̃) < 1 because ∂G and ∂G̃
differ only at finitely many isolated points of ∂G by Lemma 1. So, throughout the

rest of the paper we will assume that ∂G = ∂C.

Lemma 3. If WG is Fredholm then clG has a finite number of components.

�����. Suppose the opposite. Then we are going to construct such a sequence
{Aj} of nonempty closed subsets of clG that clG−Aj is closed, Aj+1 � Aj and Aj

has infinitely many components. Put A1 = clG. For a given Aj we construct Aj+1

in the following way. Since Aj is not connected there are nonempty closed disjoint

sets C, D such that C ∪ D = Aj . If H is a component of Aj then C ∩ H , H ∩D
are closed sets. Since H is connected, necessarily C ∩H = ∅ or H ∩D = ∅ and thus
either H ⊂ C or H ⊂ D. Now we denote by Aj+1 one of the sets C, D which has
infinitely many components.

If there is a natural number i such that Ai is bounded we put Bj = Aj for j � i.
If Aj is unbounded for each j we put i = 1, Bj = clG−Aj . Now we choose for every

j � i a function ϕj ∈ D such that ϕj = 1 on a neighbourhood of Bj and ϕj = 0 on
a neighbourhood of clG−Bj . If ν ∈ C ′ then

(NGU ν)(∂Bj) = 〈ϕj , N
GU ν〉 =

∫

G

gradϕj · gradU ν = 0.

So NGU (C ′) has an infinite codimension in C ′. Since NGU is the dual operator of

WG the operator NGU is Fredholm, too, by [26], Chapter VII, Theorem 3.5. This
is a contradiction. �

Note 2. If ress(TG) < 1 then ress(TC) < 1 because TC = −TG. So, if ress(TG) <
1 then clG and �m −G have a finite number of components by Lemma 3 and [26],

Chapter IX, Theorem 2.1 and Theorem 1.3.

Definition. We shall denote by C ′
c the subspace of those µ ∈ C ′ for which there

exists a (finite) continuous function Ucµ on �m such that Ucµ = U µ on �m − ∂G.

Lemma 4. Let p be a positive integer and λ a complex number with |λ| >
ress(TG). Then any µ ∈ ∧C ′ satisfying the homogeneous equation

[
(TG)∗ + λI

]p
µ = 0

necessarily belongs to ∧C ′
c .

�����. The lemma is an easy generalization of [9], Theorem 4.10 and we can
obtain it by repeating all reasonings in [9], §4. �
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Notation. Let us define a function θ on �m as follows:

θ(x) = exp
(
|x|2 − 1

)−1
for |x| < 1,

θ(x) = 0 for |x| � 1.

For δ > 0 put
θδ(x) = hδθ(x/δ)

with hδ ∈ � chosen so that
∫

�m

θδ(x) dHm(x) = 1.

Clearly, θδ ∈ D for each δ.

If f is locally integrable over �m we denote

Rδf(x) =
∫

�m

f(y)θδ(x− y) dHm(y), x ∈ �m .

Then Rδf ∈ D . If |f(y)| � β holds for Hm-almost all y ∈ �m then the inequality

|Rδf(x)| � β

is true for any x ∈ �m . If f is continuous then Rδf converges locally uniformly to f
for δ → 0+.
Finally, for each ε > 0 let

Bε =
{
x ∈ �m ; dist(x, ∂G) > ε

}
.

Lemma 5. Suppose that µ ∈ C ′ and ε > 0. Then

lim
δ→0+

RδU µ = U µ

holds quasi - everywhere in �m and for each δ ∈ (0, ε) we have RδU µ = U µ on Bε.

�����. See [15], proof of Lemma 22. �

Lemma 6. Suppose Hm(∂G) = 0. Let µ ∈ C ′
c . In the case m = 2 suppose

moreover that µ(�m ) = 0. Then

sup
δ∈(0,1)

∫

�m

| gradRδU µ|2 dHm <∞,

∫

�m

| gradU µ|2 dHm <∞.
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�����. Since

lim
|x|→∞

|U µ(x)| = 0

there is β ∈ �1 such that |Ucµ| � β. Fix R > 1 such that ∂G ⊂ U (0;R). Suppose
r > 2R, δ ∈ (0, 1). By the Gauss-Green theorem we get

∫

∂U (0;r)
RδU µ(z)

(
− nU (0;r)(z)

)
· grad

(
RδU µ(z)

)
dHm−1(z)(6)

=
∫

U (0;r)
| grad

(
RδU µ(x)

)
|2 dHm(x)

+
∫

U (0;r)

(
RδU µ(x)

)
∆

(
RδU µ(x)

)
dHm(x).

Let ϕ ∈ D satisfy |ϕ| � 1 on �m and ϕ = 1 on U (0; 2R). By Lemma 5 the

function RδU µ is harmonic on �m −U (0; 2R) and we conclude that
∫

U (0;r)

(
RδU µ(x)

)
∆

(
RδU µ(x)

)
dHm(x)(7)

=
∫

�m

ϕ(x)
(
RδU µ(x)

)
∆

(
RδU µ(x)

)
dHm(x).

It is well-known that ∆U µ = −µ in the sense of distributions. Since RδU µ =
θδ ∗ (U µ) is the convolution of the functions θδ and U µ we have ∆(RδU µ) = θδ ∗
(∆U µ) = θδ ∗(−µ) in the sense of distributions (compare [27]). Since ϕ(RδU µ) ∈ D

we have
∫

�m

ϕ(x)
(
RδU µ(x)

)
∆

(
RδU µ(x)

)
dHm(x)(8)

= −
∫

�m

Rδ(ϕRδU µ)(x) dµ(x).

Since |RδU µ| � β, because |U µ| � β on �m − ∂G and Hm(∂G) = 0, we get from

(6), (7) and (8) the estimate
∫

U (0;r)
| gradRδU µ(x)|2 dHm � β‖µ‖+

∫

∂U (0;r)
|RδU µ|| gradRδU µ| dHm−1(z)

= β‖µ‖+
∫

∂U (0;r)
|U µ|| gradU µ| dHm−1

� β‖µ‖+ β 1
A

‖µ‖
(r −R)m−1Ar

m−1 � 2mβ‖µ‖

by Lemma 5. Hence

(9)
∫

�m

| gradRδU µ|2 dHm � 2mβ‖µ‖.
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Lemma 5 yields

lim
δ→0+

gradRδU µ(x) = gradU µ(x)

whenever x ∈ �m −∂G. SinceHm(∂G) = 0, Fatou’s lemma may be applied to assert∫
�m | gradU µ|2 � 2mβ‖µ‖. �

Lemma 7. Suppose Hm(∂G) = 0. Let ν1, ν2 ∈ C ′
c . In the case m = 2 suppose

moreover that νi(�m ) = 0 for i = 1, 2. Then

∫

∂G

Ucν1 dN
GU ν2 =

∫

G

gradU ν1 · gradU ν2 dHm.

�����. (Compare with [15].) Let ψ be an infinitely differentiable function in
�1 , 0 � ψ � 1, ψ(t) = 1 for t ∈ 〈0, 1〉 and ψ(t) = 0 for t ∈ (2,∞). For δ > 0, x ∈ �m

put

ψδ(x) = ψ(δ|x|),
ϕδ(x) = ψδ(x)(RδUcν1)(x).

Since Ucν1 is continuous, ϕδ converge to Ucν1 uniformly on ∂G for δ → 0+. Since
ϕδ ∈ D we have
(10)∫

∂G

Ucν1 dN
GU ν2 = lim

δ→0+

∫

∂G

ϕδ dN
GU ν2 = lim

δ→0+

∫

G

gradϕδ · gradU ν2 dHm.

We are going to prove

(11)
∫

�m

| gradϕδ|2 dHm � K for δ ∈ (0, δ0).

Choose δ0 ∈ (0, 1/2) such that ∂G ⊂ U
(
0; 1/(2δ0)

)
. Let δ ∈ (0, δ0). Denote by χ

the characteristic function of the set U (0; 2/δ) − U (0; 1/δ). Since RδUcν1 = U ν1
on �m −U (0; 1/δ0) by Lemma 5 we have

∫

�m

| gradϕδ|2 dHm =
∫

�m

|ψδ grad(RδUcν1) + (RδUcν1) gradψδ|2 dHm

�
∫

�m

[
| gradRδUcν1|+ |U ν1|χ sup |ψ′|δ

]2
dHm

�
∫

�m

| gradRδU ν1|2 dHm

+
∫

U (0;2/δ)−U (0;1/δ)

[
(sup |ψ′|)2δ2|U ν1|2 + 2|U ν1|δ| gradU ν1| sup |ψ′|

]
dHm.
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Since there is a positive constant L such that

|U ν1(x)| �
L

|x|m−2 ,

| gradU ν1(x)| �
L

|x|m−1

for each x ∈ �m −U (0; 1/δ0) we have
∫

�m

| gradϕδ|2 dHm �
∫

�m

| gradRδU ν1|2 dHm +Aδ
m−2
0 sup |ψ′|L2(2 + sup |ψ′|)

and (11) holds according to Lemma 6.

According to [28], Chapter V, §2, Theorem 1 there are f1, . . . , fm ∈ L2(�m ) and
a sequence δn ↘ 0 such that

(12) lim
n→∞

∫

�m

( ∂

∂xk
ϕδn

)
g dHm =

∫

�m

fkg dHm

holds for each g ∈ L2(�m ) and k = 1, . . . ,m. Since Lemma 6 yields ∂
∂xk

U ν2 ∈
L2(�m ) we obtain from (10) and (12)

∫

∂G

Ucν1 dN
GU ν2 =

∫

G

m∑

k=1

fk

( ∂

∂xk
U ν2

)
dHm.

It suffices to prove that fk = ∂
∂xk

U ν1. Let g ∈ L2(�m ) have a compact support
disjoint with ∂G. Then

∫

�m

fkg dHm = lim
n→∞

∫

�m

g
∂

∂xk
ϕδn dHm =

∫

�m

g
∂

∂xk
U ν1 dHm

by Lemma 5. Since Hm(∂G) = 0, the set of such g is dense in L2(�m ). Since
∂

∂xk
U ν1 ∈ L2(�m ) by Lemma 6, we have fk = ∂

∂xk
U ν1. �

Lemma 8. If G is bounded then there is a positive ν ∈ C ′ such that (TG)∗ν = −ν
and U ν is constant in G.

�����. According to [11], Chapter II, §1 and §4 there is a positive measure
ν on clG, a constant L and a Borel set K of null capacity such that U ν = L on

clG−K. SinceHm−1(K) = 0 by [11], Theorem 3.13 andU ν is lower semicontinuous
by [11], Theorem 1.3, we obtain U ν � L in G. Since U ν is super-mean-valued

by [11], Theorem 1.4 we have U ν = L in G. Since ∆U ν = −ν in the sense of
distributions (see [9], Remark 5.7) and ∆U ν = 0 in G obviously ν is supported

by ∂G. If ϕ ∈ D then 〈ϕ,NGU ν〉 =
∫

G gradϕ · gradU ν dHm = 0 and thus[
(TG)∗ + I

]
ν = 1

2N
GU ν = 0. �

773



Lemma 9. If ν ∈ C ′, ν(�m ) = 0 then (NGU ν)(�m ) = 0.

�����. If G is bounded, choose ϕ ∈ D , ϕ ≡ 1 on a neighbourhood of clG.
Then

(NGU ν)(�m ) = 〈ϕ,NGU ν〉 =
∫

G

gradϕ · gradU ν = 0.

If G is unbounded then C is bounded. Since

NGU ν =
1
2
[I + (TG)∗]ν =

1
2
[I − (TC)∗]ν =

1
2
(2I −NCU )ν

we have

(NGU ν)(�m ) = ν(�m )− 1
2
(NCU ν)(�m ) = 0.

�

Lemma 10. Let λ1, λ2 be complex numbers, ν1, ν2 ∈ ∧C ′, νi(�m ) �= 0, NGU νi =
λiνi for i = 1, 2. Then λ1 = λ2.

�����. Put ∧C ′
0 = {µ ∈ ∧C ′;µ(�m ) = 0}. Then there are µ ∈ ∧C ′

0 and
a complex number α such that

ν2 = αν1 + µ.

Then

λ1αν1 +NGU µ = NGU (αν1 + µ) = NGU ν2 = λ2ν2 = λ2αν1 + λ2µ.

Hence

(λ1 − λ2)αν1 = λ2µ−NGU µ.

Since λ2µ−NGU µ ∈ ∧C ′
0 by Lemma 9, necessarily (λ1 − λ2) = 0. �

Proposition 1. Suppose ress(TG) < 1. Let λ be an eigenvalue of (TG)∗, |λ| � 1.
Then λ ∈ {−1; 1}.
�����. Choose ν ∈ ∧C ′, an eigenvector corresponding to the eigenvalue λ.

Since (TG)∗ = −(TC)∗ Lemma 8 yields that there is a positive measure µ ∈ C ′ such
that (TG)∗µ = −µ for G bounded and (TG)∗µ = µ for C bounded. If ν(�m ) �= 0
then λ ∈ {−1; 1} by Lemma 10.
Suppose ν(�m ) = 0. Denote by ν the complex conjugate of ν. Since ν ∈ ∧C ′

c by

Lemma 4 we obtain from Lemma 2 and Lemma 7
∫

G

| gradU ν|2 =
∫

∂G

Ucν dNGU ν =
1
2

∫

∂G

Ucν d(TG + I)∗ν =
λ+ 1
2

∫

∂G

Ucν dν

=
λ+ 1
2

∫

∂G

Ucν d(NGU ν +NCU ν) =
λ+ 1
2

∫

�m

| gradU ν|2
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If ∫

�m

| gradU ν|2 �= 0

then 0 � 1
2 (λ+ 1) � 1 and λ ∈ {−1; 1} because |λ| � 1. If

∫

�m

| gradU ν|2 = 0

then U ν is constant on G and on C. Since Ucν is continuous and

lim
|x|→∞

|U ν(x)| = 0

we have Ucν ≡ 0. SinceHm(∂G) = 0 by Lemma 2 we obtain ν = 0 by [11], Theorem
1.12 and Theorem 1.12’, which is a contradiction. �

Lemma 11. Let ν ∈ ∧C ′, ν(�m ) �= 0, (TG)∗ν = λν, λ �= 0. Then there is no
µ ∈ ∧C ′ such that

[
λI − (TG)∗

]
µ = ν.

�����. Suppose that there is such a µ ∈ ∧C ′. Then there are a complex number

α and µ′ ∈ ∧C ′
0 = {� ∈ ∧C ′ ; �(Rm) = 0} such that µ = αν + µ′. Then ν =[

λI − (TG)∗
]
µ =

[
λI − (TG)∗

]
µ′ ∈ ∧C ′

0 by Lemma 9, which is a contradiction. �

Proposition 2. Suppose ress(TG) < 1. Let λ be an eigenvalue of the operator
(TG)∗, let ν ∈ ∧C ′ be a corresponding eigenvector. If |λ| � 1 then there is no µ ∈ ∧C ′

such that [
λI − (TG)∗

]
µ = ν.

�����. According to Lemma 11 it suffices to suppose ν(�m ) = 0. Suppose that
there exists such a µ. According to Proposition 1 we have

(13) NGU ν = 0, NGU µ = −1
2
ν,

or

NCU ν = 0, NCU µ =
1
2
ν.

We can suppose that µ ∈ C ′, ν ∈ C ′. Lemma 4 yields that µ ∈ C ′
c , ν ∈ C ′

c . If (13)
holds we obtain by Lemma 7 and Lemma 2

0 =
∫

∂G

Ucµ dNGU ν −
∫

∂G

Ucν dNGU µ =
1
2

∫

∂G

Ucν dν

=
1
2

∫

∂G

Ucν d
[
NGU ν +NCν

]
=
1
2

∫

�m

| gradU ν|2 dHm.

Since lim
|x|→∞

|U ν(x)| = 0 we have Ucν ≡ 0. Since Hm(∂G) = 0 we have ν = 0 by

[11], Theorem 1.12 and Theorem 1.12′, which is a contradiction. The other case is
analogical. �
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Proposition 3. Let X be a complex Banach space and T a bounded linear
operator on X . Suppose that λ1, . . . , λk are different complex numbers such that

min{|λ1|, . . . , |λk|} > r > ress(T ). Suppose that σ(T ) ∩ {λ; |λ| > r} ⊂ {λ1, . . . , λk}
and Ker(λjI − T ) = Ker

(
(λjI − T )2

)
for j = 1, . . . , k, where σ(T ) denotes the

spectrum of the operator T and Ker(λjI − T ) is the null space of the operator
(λjI − T ). Denote

P (λ) =
k∏

j=2

(λ− λj) for k > 1,

1 for k = 1,

Q(λ) =
P (λ)− P (λ1)

λ− λ1
.

Then there are constantsM > 0, q ∈ (0; 1) such that for each y ∈ (λ1I −T )(X) and
any natural number n we have

(14) ‖(λ−11 T )nP (T )y‖ � Mqn‖y‖

and the series

(15) P (λ1)−1
[
Q(T )y + λ−11

∞∑

j=0

(λ−11 T )jP (T )y

]

is a solution of the equation

(16) (λ1I − T )x = y.

�����. Put σj = σ(T )∩{λj} for j = 1, . . . , k. Put σk+1 = σ(T )−{λ1, . . . , λk}.
Let Pj be the spectral projection corresponding to the spectral set σj for j =

1, . . . , k + 1 (see [26], Chapter VI, §4). Then P1 + . . .+ Pk+1 = I and X is a direct
sum of the spaces P1(X), . . . , Pk+1(X).

Since T maps Pk+1(X) into Pk+1(X) and the restriction of T on Pk+1(X) has a
spectral radius smaller then or equal to r there are constants K > 0 and q ∈ (0, 1)
such that

(17) ‖(λ−11 T )ny‖ � Kqn‖y‖

for each y ∈ Pk+1(X).

Fix j ∈ {1, . . . , k}. If σj = ∅ then Pj = 0 and Pj(X) = {0} = Ker(λjI − T ),
KerPj = (λjI − T )(X). Now, let σj = {λj}. Since ress(T ) < |λj | the operator
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(λjI − T ) is Fredholm with index 0 by [26], Chapter VII, Theorem 5.4. Accord-

ing to [26], Chapter V, Theorem 2.3 the operator (λjI − A)2 is Fredholm with
index 0,too. Since codim(λjI − T )(X) = dimKer(λjI − T ) = dimKer(λjI − T )2 =
codim(λjI − T )2(X) and (λjI − T )2(X) ⊂ (λjI − T )(X) we have (λjI − T )2(X) =

(λjI − T )(X). By [8], Satz 50.2 we have Pj(X) = Ker(λjI − T ), KerPj =
(λjI − T )(X).

Now let y ∈ (λ1I − T )(X). Since (λ1I − T )(X) = KerP1 we have

y =
k+1∑

j=2

Pjy.

Since Pj(X) = Ker(λjI − T ) for j = 2, . . . , k and thus P (T )Pjy = 0. We obtain

‖(λ−11 T )nP (T )y‖ = ‖(λ−11 T )nP (T )Pk+1y‖ � Kqn(‖P (T )‖ ‖Pk+1‖ ‖y‖,

because P (T )Pk+1(X) ⊂ Pk+1(X). The series (15) converges and

(λ1I − T )P (λ1)
−1[Q(T )y + λ−11

∞∑

n=0

(λ−11 T )nP (T )y
]

= P (λ1)−1
[
P (λ1)y − P (T )y +

∞∑

n=0

(λ−11 T )nP (T )y −
∞∑

n=1

(λ−11 T )nP (T )y
]
= y.

�

Lemma 12. Suppose ress(TG) < 1. Denote by H1, . . . , Hp the components of

clG. Suppose that ν ∈ C ′ satisfies NGU ν = 0. Then there are c1, . . . , cp ∈ �1 such
that U ν = ci on int Hi.

�����. Suppose that ν(�m ) = 0. Since ν ∈ C ′
c by Lemma 4 we obtain from

Lemma 7
0 =

∫

∂G

Ucν dNGU ν =
∫

G

| gradU ν|2 dHm.

Therefore U ν is constant on each component of G. Since Ucν is continuous and
U ν = Ucν on �m − ∂G, U ν is constant on int Hi.
Suppose now that ν(�m ) �= 0. If G is bounded, Lemma 8 yields that there is

λ ∈ C ′ such that NGU λ = 0, λ(�m ) �= 0 and U λ is constant on G. Thus

U ν =
ν(�m )
λ(�m )

U λ+U

(
ν − ν(�m )

λ(�m )
λ

)

is constant on int Hi.
If G is not bounded, Lemma 8 yields that there is λ ∈ C ′, λ(�m ) �= 0 such that

TGλ = −TCλ = λ,

which is a contradiction with Lemma 10. �
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Theorem 1. Suppose that ress(TG) < 1. If µ ∈ C ′ then the Neumann problem

with the boundary condition µ has a solution if and only if µ ∈ C ′
0 (= the space of

such ν ∈ C ′ for which ν(∂H) = 0 for each bounded component H of clG). We can
take a solution in the form of the single layer potential U ν where

(18) ν = µ+
∞∑

j=0

[
(−TG)∗

]j[
I − (TG)∗

]
µ.

Moreover, there are constants M > 0, q ∈ (0; 1) such that

(19) ‖
[
(−TG)∗

]j[
I − (TG)∗

]
µ‖ � Mqj‖µ‖

for each µ ∈ C ′
0 and any natural number j.

If �m −G is unbounded and connected then

(20) ‖
[
(−TG)∗

]j
µ‖ � Mqj‖µ‖

for each µ ∈ C ′
0 and any natural number j and

(21) ν =
∞∑

j=0

[
(−TG)∗

]j
2µ.

The series (21) converges for each µ ∈ C ′
0 if and only if �

m − G is unbounded and

connected.

�����. Let µ ∈ C ′, h be a solution of the Neumann problem with the boundary

condition µ. Let H be a bounded component of clG. Since clG has a finite number
of components by Lemma 3, we can choose ϕ ∈ D such that ϕ = 1 on H and ϕ = 0

on clG−H . Then

µ(∂H) = 〈ϕ, µ〉 =
∫

G

gradh · gradϕ = 0.

Let H1, . . . , Hp be all bounded components of clG. We are going to prove that

NGU (C ′) = {µ ∈ C ′ ; µ(∂Hi) = 0; i = 1, . . . , p}.

Since U ν is a solution of the Neumann problem with the boundary condition NGU ν

we have

NGU (C ′) ⊂ {µ ∈ C ′ ; µ(∂Hi) = 0; i = 1, . . . , p}.
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Since

p = codim{µ ∈ C ′ ; µ(∂Hi) = 0; i = 1, . . . , p} � codimNGU (C ′) = dimKerNGU

because NGU is a Fredholm operator with index 0, it suffices to prove that
dimKerNGU � p.

If ν ∈ KerNGU then ν ∈ C ′
c by Lemma 4 and Ucν remains constant on each

component of clG by Lemma 12. If G is unbounded and H0 is the unbounded
component of clG then Ucν must vanish on H0. This is clear provided m > 2,

because then U ν tends to zero at infinity, while for m = 2 the relation

lim
|x|→∞

∣∣∣U ν(x) +
1
2�
ν(∂G) log |x|

∣∣∣ = 0

shows that the potential U ν can remain constant on H0 only if ν(∂G) = 0 when its

limit at infinity equals zero.

If ν ∈ C ′
c , U ν = 0 in G, U ν converges to 0 at infinity then Ucν is a harmonic

function in �m − ∂G which vanishes on ∂G and converges to 0 at infinity, hence
U ν = Ucν = 0 in �m − ∂G. Since Hm(∂G) = 0 by Lemma 2, we obtain ν = 0 by
[11], Theorem 1.12, Theorem 1.12′.

If there is no µ ∈ C ′ with µ(∂G) �= 0 such that U µ vanishes identically on G then
dimKerNGU � p. Suppose now that there exists such a µ. Then m = 2 and G

is bounded. We are going to prove that there is no ν ∈ C ′, ν(∂G) = 0 such that
U ν = 1 on G. It yields that dimKerNGU � p.

Fix r > 1 large enough to guarantee clG ⊂ U (0; r) and consider a probability
measure H distributed on ∂U (0; r) with a constant density with respect to H1. As

is noticed in [9], Remark 5.10,

U H =
1
2�
log
1
r

on U (0; r) ⊃ clG.

Fubini’s theorem implies the reciprocity law

(22)
∫

�2

U ν dH =
∫

�2

U H dν.

Now U ν (being harmonic on �2 − clG and tending to 1 at ∂(�2 − clG) and to zero
at infinity) remains positive on �2 − clG ⊃ ∂U (0; r), so that the left-hand side of

(22) is positive, while the right-hand side equals ν(∂G) 12� log
1
r = 0. (Compare [9],

proof of Proposition 5.11.)
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We have proved that there is a solution of the Neumann problem with the boundary

condition µ ∈ C ′ if and only if µ ∈ C ′
0 and we can take a solution in the form of the

single layer potential U ν where

[
I + (TG)∗

]
ν = 2µ.

Propositions 1, 2 and 3 yield the relations (18), (19), (20), (21).

Suppose now that �m − G is not unbounded and connected. Since clC has a
bounded component and ress(TC) = ress(TG) we have

[
I − (TG)∗

]
(C ′) =

[
I + (TC)∗

]
(C ′) = NCU (C ′) � C ′.

Since I−(TG)∗ is a Fredholm operator with index 0 by [26], Chapter IX, Theorem 2.1,

Theorem 1.3 and Chapter VII, Theorem 3.5, there is a µ ∈ C ′, µ �= 0 such that
(TG)∗µ = µ. Since µ = 1

2N
GU µ we have µ ∈ C ′

0. But the series (21) diverges. �

Example 1. Consider G = U (0; r) ⊂ �2 . For f ∈ C , x ∈ ∂G we can calculate

TGf(x) = −2
∫

∂G

f(y)
y

r
· 1
2�

y − x

|x− y|2 dH1(y)

= −
∫

∂G

f(y)
1
2�r

|y|2 + |x|2 − 2y · x
|x− y|2 dH1(y) = − 1

2�r

∫

∂G

f(y) dH1(y).

Hence

(TG)∗µ = µ(∂G)H ,

where ∫

∂G

f dH = − 1
2�r

∫

∂G

f dH1(y).

Using Theorem 1 we obtain that for µ ∈ C ′ for which µ(∂G) = 0 we can take

a solution of the Neumann problem with the boundary condition µ in the form

1
�

∫

∂U (0;r)
log

1
|x− y| dµ(y).

Example 2. Consider G = �2 − U (0; r). Since TG = −TC we obtain from
Example 1 that

(TG)∗µ = µ(∂G)H ,

where ∫

∂G

f dH = +
1
2�r

∫

∂G

f(y) dH1(y).
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Using Theorem 1 we obtain that for µ ∈ C ′ we can take a solution of the Neumann

problem with the boundary condition µ in the form

1
�

∫

∂U (0;r)
log

1
|x− y| dµ(y)−

µ(�m )
4�2r

∫

∂U (0;r)
log

1
|x− y| dH1(y).

Since
1
2�r

∫

∂U (0;r)
log

1
|x− y| dH1(y)− log

1
|x|

is a harmonic function on G which vanishes on ∂G by [9], Remark 5.10 and tends to

zero at infinity it vanishes in G. Thus

1
�

∫

∂U (0;r)
log

1
|x− y| dµ(y)−

µ(�m )
2�

log
1
|x|

is a solution of the Neumann problem with the boundary condition µ.

Theorem 2. Suppose that ress(TG) < 1 and clG is unbounded and connected.

Then there are constants M > 0, q ∈ (0; 1) such that

(23) ‖(−TG)j(I − TG)f‖ � Mqj‖f‖

for each f ∈ C and any natural number j. The solution of the Dirichlet problem for

C with the boundary condition g ∈ C is the double layer potential

WGf(x) =
1
A

∫

∂G

f(y)nG(y) · y − x

|y − x|m dHm−1(y),

where

(24) f = g +
∞∑

j=0

(−TG)j(I − TG)g.

�����. Since λI +TG is a Fredholm operator with index 0 for |λ| � 1, we have
σ(TG) ∩ {λ; |λ| � 1} ⊂ {−1; 1} by Proposition 1, [28], Chapter VIII, §6, Lemma 1
and [26], Chapter VII, Theorem 3.5. Since there is a natural number n and a linear
compact operator K on ∧C such that ‖(TG)n+K‖ < 1 we obtain from [13], Lemma
2 that σ

(
(TG)n

)
∩ {λ; |λ| � 1} is an isolated subset of σ

(
(TG)n

)
. Since σ

(
(TG)n

)
=

{λn ; λ ∈ σ(TG)} by [28], Chapter VIII, §7, the set σ(TG) ∩ {λ ; |λ| � 1} is an
isolated subset of σ(TG). Theorem 1 yields that (I+TG)∗(C ′) = C ′. Since (I+TG)
is a Fredholm operator of index 0 we have Ker

(
(I + TG)∗

)
= {0}. Since I + TG is

a Fredholm operator we have (I + TG)(C ) = C by [28], Chapter VII, §5. Now, the
assertion of the theorem is a consequence of Proposition 3. �
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Note 3. Suppose that ress(TG) < 1, clG is unbounded and connected, g ∈ C .

Let M , q be the constants from Theorem 2. Since

sup
x∈C

|WGh(x)| � ‖h‖
(
V G +

1
2

)

for each h ∈ C by [9], Theorem 2.16, we obtain from Theorem 2

sup
x∈C

|WGgj(x)| � M(V G +
1
2
)qj‖g‖

where

gj = (−TG)j(I − TG)g.

So, the series

WGg +
∞∑

j=0

WGgj

converges absolutely uniformly on C to WGf , the solution of the Dirichlet problem
for C with the boundary condition g, where f is given by (24). Besides,

sup
x∈C

|WGf | � (V G + 1)

(
1 + ‖TG‖+ 1 +

∞∑

j=1

Mqj

)
‖g‖.

Note 4. Fix x0 ∈ ∂U (0; 1). Then − 1
�
lg |x − x0| is a solution of the Neumann

problem forU (0; 1) with the boundary condition δx0 (= the Dirac measure supported
in {x0}). But the function − 1

�
lg |x − x0| is not bounded in U (0; 1). So, for the

Neumann problem we cannot obtain the same estimates as for the Dirichlet problem
in Note 3. Nevertheless, if ress(TG) < 1 then there exists q ∈ (0; 1) such that for
each compact K ⊂ G there is a constant MK such that

sup
x∈K

|U µ(x)| � MK‖µ‖,

sup
x∈K

|U µj(x)| � MKq
j‖µ‖

for each µ ∈ C ′
0, where

µj =
[
(−TG)∗

]j[
I − (TG)∗

]
µ

so that the series

U µ+
∞∑

j=0

U µj
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converges locally uniformly in G to the solution of the Neumann problem with the

boundary condition µ and

sup
x∈K

∣∣∣∣U µ(x) +
∞∑

j=0

U µj(x)

∣∣∣∣ � MK

(
1 +

1
1− q

)
‖µ‖.

Note 5. Denote by H the restriction of Hm−1 to ∂̂G. Denote by L1(H ) the

space of all functions f measurable with respect to H such that

∫

∂G

|f | dH <∞.

For f ∈ L1(H ) denote by νf ∈ C ′ the measure

νf (M) =
∫

M

f dH .

If f ∈ L1(H ) then
(TG)∗νf = νg

where
g(x) = T ′f(x) =

2
A

∫

∂G

n(x) · x− y

|y − x|m f(y) dH (y).

Suppose that ress(TG) < 1. If f ∈ L1(H ) and νf ∈ C ′
0 then

g = f +
∞∑

j=0

(−T ′)j(I − T ′)f

converges in L1(H ) and U νg is a solution of the Neumann problem with the bound-
ary condition νf .
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