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ON A CLASS OF REAL NORMED LATTICES
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Abstract. We say that a real normed lattice is quasi-Baire if the intersection of each
sequence of monotonic open dense sets is dense. An example of a Baire-convex space, due
to M. Valdivia, which is not quasi-Baire is given. We obtain that E is a quasi-Baire space iff
(E, T (U ), T (U −1)), is a pairwise Baire bitopological space, where U , is a quasi-uniformity
that determines, in L. Nachbin’s sense, the topological ordered space E.
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1. Introduction

In functional analysis it is important to establish a classification of the types of

barrelled spaces. In order to do so, M. Valdivia [6] p. 281–287, gave an example of
a convex-Baire space which is not Baire. In section 2 of this paper we define, in a

natural way, the concept of a quasi-Baire space for a real linear normed lattice which
generalizes the Baire concept in such spaces and we show the mentioned example

is not even quasi-Baire. All linear spaces under consideration are assumed to be
defined over the field of the real numbers.

Following Fletcher and Lindgren’s terminology of [3] we introduce the following
definitions and notation.

By a topological ordered space we mean a triple (X, T ) where X is a nonvoid set,
T is a topology in X and � is a partial order in X such that its graph G(�) =
{(x, y) : x � y} is closed in X ×X .

While working on this paper, the authors have been supported by a grant from Conselleria
d’Educació y Ciencia GV-2232/94. Also, C. Alegre and V. Gregori have been supported
by a grant from DGES PB95-0737.
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A subset S of a topological ordered space (X, T ) is said to be increasing ( decreas-

ing) provided y ∈ S whenever x � y (y � x) and x ∈ S. S is monotonic if it is either
increasing or decreasing.
As L. Nachbin observed [5] p. 51, there is a natural relation between quasi-uniform

spaces and topological ordered spaces. As usual, if U , is a quasi-uniformity in X ,
then U −1 and U ∗ will denote the conjugate quasi-uniformity and the uniformity of

the subbase U ∩ U −1, respectively. The quasi-uniformity U is said to determine
the topological ordered space (X, T, �) whenever T is the topology T (U ∗) deduced

from U ∗ and
G(�) =

⋂

V ∈U

V

A non-negative real valued function q defined on a linear space E is said to be a
quasi-norm [2], provided it satisfies the following conditions for x, y ∈ E and t � 0:

if q(x) = q(−x) = 0,

then x = 0, q(tx) = tq(x), q(x+ y) � q(x) + q(y).

If q is a quasi-norm on E, then (E, q) is a quasi-normed space.

In a quasi-normed space (E, q) the function d(x, y) = q(y − x) is a quasi-
pseudometric in E that defines a quasi-uniformity q in E. We will consider in

the sequel the quasi-normed space (E, q) provided with the topology T (q) deduced
from q. Besides, the function q−1(x) = q(−x) defines another quasi-norm (called
the conjugate of q) in E such that its induced quasi-uniformity q−1 is the conjugate

of q.
In [2] Corollary 3.2 we gave the following result: Every normed lattice (E, ‖ ‖, �)

is determined by the quasi-uniformity q (or its conjugate) deduced from the quasi-
norm q(x) = ‖x+‖ where x+ = sup{x, 0} in the lattice order. In this case we will
say that (E, q) is the quasi-normed space associated to the normed lattice E.
For a normed lattice (E, ‖ ‖, �) we will consider the topologies deduced from the

norm ‖ ‖ and from the associated quasi-norm. Then we will say G is open when
it is open for the norm and q-open when it is open for the associated quasi-norm.

The same consideration is valid for dense, neighborhood, . . . We will denote, for
δ > 0, by Bδ(x0) the open disk {x ∈ E : x − x0 < δ} and by Vδ(x0) the q-open set

{x ∈ E : q(x − x0) < δ}. The family of sets {x + Vδ(x0) : δ > 0} or equivalently
{Vδ(x) : δ > 0}, is a base of q-neighborhoods for x ∈ E.

A bitopological space (X, P, L) is a set X with two topologies P and L. J.C. Kelly
[4] introduced these spaces initially to restore some of the symmetries of the classical

metric situations to a bitopological space (X, P, L) where P and L are the topologies
induced by a quasi-metric on X and its conjugate quasi-metric respectively, and
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in consequence to be able to obtain systematic generalizations of standard results

in general topology. After Kelly, several others authors have contributed to the
development of the theory and so, a large list of pairwise bitopological spaces have
been studied.

In Section 3 we give a definition of a pairwise Baire bitopological space. We

point out this is an interesting bitopological concept because it makes it possible to
characterize the quasi-Baire normed lattices that were defined in terms of general

topology.

2. Quasi-Baire normed lattices

Lemma 1. Let be (E, ‖ ‖, �) a normed lattice. The set G is q-open iff G is open

and decreasing. Analogously, G is q−1-open iff G is open and increasing.

�����. Suppose G is q-open. Since E is determined by q, the topology deduced

from the norm ‖ ‖ is finer than the q-topology and G is open. Now, suppose y � x

with x ∈ G. Then there is a q-neighborhood of the origin Vδ(0) such that x+Vδ(0) ⊂
G. We have q(y−x) = ‖(y−x)+‖ = 0, then y−x ∈ Vδ(0) and in consequence y ∈ G.

Conversely, suppose G is open and decreasing and let x ∈ G. Then there is an
open disk Bδ(x) such that Bδ(x) ⊂ G. We see that x+ Vδ(0) ⊂ G.

Let y ∈ x+ Vδ(0). Then for z = x+ (y − x)+ we have

‖z − x‖ = ‖(y − x)+‖ = q(y − x) < δ

and thus z ∈ G.

Also, because z − y = 0 if y � x and z − y = x − y > 0 if y < x, then z � y and

since G is a decreasing set we have y ∈ G and, in consequence, G is q-open.

The proof for q−1-open is similar. �

Proposition 1. If (E, ‖ ‖, �) is a normed lattice then its associated quasi-normed
space (E, q) is never Baire.

�����. First we will see that the non-empty q-open sets of E are q-dense. To

this end, we consider two different q-open sets G and H and let x ∈ G and y ∈ H

with x �= y. Suppose i = inf{x, y}; by the previous lemma G and H are decreasing

sets and so i ∈ G ∩H .

Now, we consider the sequence {V1(nx)}∞n=1 for a fixed x < 0. We will show that

this family has empty intersection. Suppose y ∈
+∞⋂
n=1

V1(nx), then ‖(y−nx)+‖ < 1, ∀n
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and thus

n‖x‖ = ‖nx‖ = ‖ − nx‖ = ‖(−nx)+‖ = ‖(y − nx− y)+‖
� ‖(y − nx)+‖+ ‖(−y)+‖ < 1 + ‖(−y)+‖

and therefore

‖(−y)+‖ > n‖x‖ − 1
which is a contradiction since the norm is always finite.

We note that if G is an increasing open dense set of a normed lattice, then −G is
a decreasing open set. This observation and the above lemma lead to the following

definition:

Definition 1. A normed lattice (E, ‖ ‖, �) is called quasi-Baire if the intersec-
tion of each sequence of monotonic open dense sets is dense.

If a normed lattice E is Baire, it is obvious that E is quasi-Baire but the converse

is false as we will see in Example 1 but before we need result.
Let E′ be the dual of E (i.e., the set of all continuous linear forms on the normed

lattice E) with the supremum norm.

Definition 2. A set F of positive continuous linear forms of norm one is said

to determine the order of the normal lattice E provided it satisfies

x � y if and only if u(x) � u(y), ∀u ∈ F.

Proposition 2. Let (E, ‖ ‖, �) be a normed lattice determined by F ⊂ E′. If

sup{inf{u(x) : u ∈ F} : x ∈ E} > 0

then E is quasi-Baire.

�����. We will see that E has no proper decreasing dense sets.
If sup{inf{u(x) : u ∈ F} : x ∈ E} > 0, then there is x0 ∈ E such that

δ = inf{u(x0) : u ∈ F} > 0.

Now, suppose G is a decreasing dense set of E. Let x ∈ E and put y = x+x0. Since
G is dense, there is z ∈ G such that ‖z − y‖ < δ. We have

|u(z)− u(y)| � ‖u‖‖z − y‖ < δ

then

−δ < u(z)− u(y) = u(z)− u(z)− u(x0)

therefore

u(z) > u(x) + u(x0)− δ � u(x)

and since G is decreasing, then x ∈ G and thus G = E. �
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The next example proves that a quasi-Baire space can not be a Baire space and

also that the quasi-Baire property in a normed lattice does not imply the barrelled
property.

Example 1. Let Σ be an algebra of subsets of a non-empty set Ω .Consider the
linear subspace l∞0 (Ω,Σ) = 〈χA : A ∈ Σ〉 generated by the characteristic functions
χA over Σ, i.e., χA(w) = 1 if w ∈ A and χA(w) = 0 if w /∈ A.

In l∞0 (Ω,Σ) we consider the norm given by ‖x‖ = sup{|x(w)| : w ∈ Ω}. It is well
known that the dual of l∞0 (Ω,Σ) is the set of all additive finite measures defined on
Σ. Then the set of Dirac’s measures F = {δw : w ∈ Σ} determines the order of since
x � 0 iff

〈δw0 , x〉 =
∫

Ω
x(w) dδw0 = x(w0) � 0, ∀w0 ∈ Ω.

Now, for χΩ ∈ l∞0 (Ω,Σ) we have

〈δw, χΩ〉 = χΩ(w) = 1, ∀w ∈ Ω

and therefore

inf{〈δw, χΩ〉 : w ∈ Ω} = 1

and thus l∞0 (Ω,Σ) is quasi-Baire by Proposition 2.

Now, if we take the clopen sets of a Hausdorff zero-dimensional space Ω, then from
[1] we know that l∞0 (Ω,Σ) is not barrelled and therefore it is not Baire.

The next example shows the class of normed convex-Baire spaces to be far from

the class of Baire spaces.

Example 2. Take a real number p, 0 < p < 1. Let

E =

{
(xm) ∈ �

� :
∞∑

m=1

|xm|p < ∞
}

.

M. Valdivia [6] 281–287 proved that E ⊂ l1 and also E with the norm of l1 is a

normed convex-Baire space that is not Baire.

For n ∈ � let Gn =
{
(xm) ∈ E :

∞∑
m=1
(x+m)

p > n
}
. First we will see that Gn is

open:

Let (xj) be a convergent sequence of E −Gn to a point z = (zk) ∈ E. Then

m∑

k=1

(z+k )
p =

m∑

k=1

(
lim

j→∞
(xj

k)
+

)p

= lim
j→∞

m∑

k=1

((xj
k)
+)p � n, ∀m ∈ �

789



and thus
∞∑

k=1
(z+k )

p � n and therefore z ∈ E −Gn

We will see that Gn is increasing. Let (xm) ∈ Gn and (ym) � (xm); since y+k �
x+k , k ∈ �, we have

∞∑

k=1

(y+k )
p �

∞∑

k=1

(x+k )
p > n

and then (ym) ∈ Gn.
Now we will prove that Gn is dense. Let (xk) ∈ E and ε > 0. Take r ∈ � such

that
∞∑

k=r+1
|xk| < ε

4 .

Put α =
∞∑

k=1

1
k1/p < ∞ and take s ∈ �, s > r, such that

s∑
k=r+1

1
k >

(
2α
ε

)p
n.

We define a sequence (yk) ∈ �
� as follows:

yk =





xk, if k � r or k � s+ 1,

|xk|+
ε

2αk1/p
, if r + 1 � k � s.

Then we have
∞∑

k=1

|yk|p =
r∑

k=1

|xk|p +
s∑

k=r+1

(
|xk|+

ε

2αk1/p

)p

+
∞∑

k=r+1

|xk|p < ∞

and then (yk) ∈ E. We will see that (yk) ∈ Gn. Indeed,

∞∑

k=1

(y+k )
p �

s∑

k=r+1

(
|xk|+

ε

2αk1/p

)p

�
s∑

k=r+

( ε

2αk1/p

)p

=
( ε

2α

)p s∑

k=r+1

1
k

>
( ε

2α

)p(2α
ε

)p

n = n

and therefore (yk) ∈ Gn.
Now,

‖(yk)− (xk)‖ =
s∑

k=r+1

∣∣∣|xk|+
ε

2αk1/p
− xk

∣∣∣

� 2
s∑

k=r+1

|xk|+
ε

2α

∞∑

k=r+1

1
k1/p

< 2
ε

4
+

ε

2α
α = ε.

Finally, we will see that
∞⋂

n=1
Gn = ∅. Indeed, if x ∈

∞⋂
n=1

Gn then
∞∑

k=1
(x+k )

p = ∞

and therefore
∞∑

k=1
|xk|p =∞ which implies x /∈ E, which is a contradiction.
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3. A characterization of quasi-Baire spaces in bitopological terms

Definition 3. We say that a bitopological space (X, P, L) is pairwise Baire if the
intersection of each sequence of P -open L-dense sets is L-dense and the intersection

of each sequence of L-open P -dense sets is P -dense.

Lemma 2. If G is q-dense (q−1-dense) and increasing (decreasing) then G is

dense.

�����. Let x ∈ E and ε > 0. Since G is q-dense there exists y ∈ Vε(x) ∩ G.
We have

−y = −x− (y − x) � −x− (y − x)+ and y � x+ (y − x)+.

If we denote z = x+ (y − x)+ then, since G is increasing, z ∈ G.

Finally

‖z − x‖ = ‖(y − x)+‖ = q(y − x) < ε

and G is dense.

The proof when G is q−1-dense and decreasing is similar. �

Proposition 3. A normed lattice E is quasi-Baire if and only if (E, q, q−1) is

pairwise Baire.

�����. Suppose E is quasi-Baire and let Gn be a sequence of q-open and q−1-

dense sets. By Lemma 1 Gn is decreasing (n ∈ �) and then
∞⋂

n=1
Gn is dense and

since the topology deduced from the norm is finer than the deduced from q−1, then
∞⋂

n=1
Gn is q−1-dense.

Analogously, if Gn is a sequence of q−1-open and q-dense sets then
∞⋂

n=1
Gn is

q-dense. For the converse, suppose (E, q, q−1) is pairwise Baire and let Gn be a

sequence of decreasing open dense sets. Then Gn is q−1-dense (n ∈ �) and by

Lemma 1 and the hypothesis
∞⋂

n=1
Gn is q−1-dense. Now, since

∞⋂
n=1

Gn is a decreasing

set, by the previous lemma
∞⋂

n=1
Gn is dense. �
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