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Abstract. In this paper we first introduce the concept of compatible mappings of type
(B) and compare these mappings with compatible mappings and compatible mappings of
type (A) in Saks spaces. In the sequel, we derive some relations between these mappings.
Secondly, we prove a coincidence point theorem and common fixed point theorem for com-
patible mappings of type (B) in Saks spaces.
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I. Introduction

In 1968, Goebel [6] proved a coincidence theorem that received some attention.

Several years later, Okada [22], Singh-Virendra [27], Kulshrestha [16] and Naimpally-
Singh-Whitfield [20] extended Goebel’s results to L-spaces, metric spaces, 2-metric

spaces and multivalued contraction mappings on metric space, respectively.
In 1976, Jungck [8] initially gave a common fixed point theorem for commuting

mappings, which generalized the well-known Banach fixed point theorem. Jungck’s
theorem was generalized, extended and unified in various ways by many authors.

S. Sessa [26] defined a generalization of commuting mappings which is called weakly
commuting mappings.

Recently, Jungck [9] introduced more generalized commuting mappings called com-
patible mappings which are more general than weakly commuting mappings. In gen-

eral, commuting mappings are weakly commuting and weakly commuting mappings

1Research partially supported by U.G.C. New Delhi, India.
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are compatible, but the converses are not necessarily true ([9] and [26]). Several

authors proved common fixed point theorems using this concept ([10], [11] and [13]–
[15]).

Further, Jungck-Murthy-Cho [12] defined the concept of compatible mappings of
type (A) which is equivalent to the concept of compatible mappings under some

conditions, and proved a common fixed point theorem for compatible mappings of
type (A) in a metric space. Pathak-Khan [21] introduced more generalized com-

patible mappings called compatible of type (B) and compared these mappings with
compatible mappings and compatible mappings of type (A). Also, they derived some

relations between these mappings and proved a common fixed point theorem for
compatible mappings of type (B) in metric spaces.

On the other hand, Cho-Singh [2]–[3], Murthy-Sharma [18] and many others have
studied the aspects of coincidence and common fixed point theorems in the setting

of Saks spaces. They have been motivated by various concepts already known in
ordinary matric spaces and have thus introduced analogues of various concepts in

the framework of the Saks spaces. Especially, Cho-Singh [2] and Murthy-Sharma
[18] introduced the concepts of commuting and weakly uniformly contraction pair of

mappings, respectively, and have proved several fixed point theorems by using these
concepts. Further, Murthy-Sharma-Cho [19] introduced the concept of compatible

mappings of type (A) in Saks spaces and proved some coincidence and common fixed
point theorems.

In this paper we introduce the concept of compatible mappings of type (B) and
compare these mappings and compatible mappings of type (A) in the Saks space.

In the sequel, we derive some relations between these mappings. Also, we prove a
coincidence point theorem and a common fixed point theorem for compatible map-

pings of type (B) in Saks spaces. Our theorem extends, generalizes and improves the
results of several authors.

Throughout this paper, (XS , d) = (X, N1, N2) denotes a Saks space, and N1 is
equivalent to N2 on X . In brief we shall define X as a Saks space.

The following lemma due to Orlicz [24] is useful for the proof of our main theorem:

Lemma 1.1. Let X be a Saks space. Then the following statements are equiva-

lent:

(1) N1 is equivalent to N2 on X .

(2) (X, N1) is a Banach space and N1 � N2 on X .

(3) (X, N2) is a Frechet space and N2 � N1 on X .

The general information on Saks spaces may be found in ([1], [23]–[25]).
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II. Compatible mappings of type (B)

In this section we introduce the concept of compatible mappings of type (B) and
show that these mappings are equivalent to compatible mappings and compatible
mappings of type (A) under some conditions in Saks spaces.

Now, we shall give two definitions ([19]):

Definition 2.1. Let S and T be mappings from a Saks space X into itself. The
mappings S and T are said to be compatible if

lim
n→∞

N2(STxn − TSxn) = 0,

whenever {xn} is a sequence in X such that lim
n→∞

Sxn = lim
n→∞

Txn = t for some

t ∈ X .

Definition 2.2. Let S and T be mappings from a Saks space X into itself. The

mappings S and T are said to be compatible of type (A) if

lim
n→∞

N2(TSxn − SSxn) = 0 and lim
n→∞

N2(STxn − TTxn) = 0,

whenever {xn} is sequence in X such that lim
n→∞

Sxn = lim
n→∞

Txn = t for some t ∈ X .

We introduce the following

Definition 2.3. Let S and T be mappings from Saks space X into itself. The
mappings S and T are said to be compatible of type (B) if

lim
n→∞

N2(STxn − TTxn) � 1
2

[
lim

n→∞
N2(STxn − St) + lim

n→∞
N2(St− SSxn)

]

and

lim
n→∞

N2(TSxn − SSxn) � 1
2

[
lim

n→∞
N2(TSxn − T t) + lim

n→∞
N2(T t− TTxn)

]
,

whenever {xn} is a sequence in X such that lim
n→∞

Sxn = lim
n→∞

Txn = t for some
t ∈ X .

The following Propositions 2.1, 2.3 show that under some conditions ([12]) Defin-

itions 2.1 and 2.2 are equivalent:

Proposition 2.1. Let S and T be continuous mappings of a Saks space X into

itself. If S and T are compatible, then they are compatible of type (A).
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Proposition 2.2. Let S and T be compatible mappings of type (A) from a Saks

space X into itself. If one of S and T is continuous, then S and T are compatible.

From Proposition 2.1 and 2.2 we have

Proposition 2.3. Let S and T be continuous mappings from a Saks space S into

itself. Then S and T are compatible if and only if they are compatible of type (A).

Remarks 2.1. By suitable examples, G. Jungck, P.P.Murthy and Y. J.Cho [12]
have shown that Proposition 2.3 does not hold if S and T are not continuous.

Proofs of the following propositions follow the same lines as suggested in ([21]).

The next propositions show that Definitions 2.1, 2.2 and 2.3 are equivalent under

some conditions:

Proposition 2.4. Every pair of compatible mappings of type (A) is compatible
of type (B).

Proposition 2.5. Let S and T be continuous mappings of a Saks space X into

itself. If S and T are compatible of type (B), then they are compatible of type (A).

Proposition 2.6. Let S and T be continuous mappings of a Saks space X into

itself. If S and T are compatible of type (B), then they are compatible.

As a direct consequence of Proposition 2.1 and 2.4 we have

Proposition 2.7. Let S and T be continuous mappings from a Saks space X into

itself. If S and T are compatible, then they are compatible of type (B).

By unifying Propositions 2.4 ∼ 2.7 we have

Proposition 2.8. Let S and T be continuous mappings from a Saks space X into

itself. Then

(1) S and T are compatible if and only if they are compatible of type (B).

(2) S and T are compatible of type (A) if and only if they are compatible of type

(B).

Remark 2.2. In H.K.Pathak and M. S.Khan [21] we may find some examples
to show the fact that Proposition 2.8 is not true if S and T are not continuous.
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Now, we give the following properties of compatible mappings of type (B) for our

main theorems:

Proposition 2.9. Let S and T be compatible mappings of type (B) from a Saks
space X into itself. If St = T t for some t ∈ X , then ST t = SSt = TT t = TSt.

Proposition 2.10. Let S and T be compatible mappings of type (B) from a Saks
space X into itself. Suppose that lim

n→∞
Sxn = lim

n→∞
Txn = t for some t ∈ X . Then

we have

(1) lim
n→∞

TTxn = St if S is continuous at t.

(2) lim
n→∞

SSxn = T t if T is continuous at t.

(3) ST t = TSt and St = T t if S and T are continuous at t.

III. A common fixed point theorem

Let �+ be the set of non-negative real numbers and F the family of mappings

ϕ : (�+ )9 → �
+ such that each ϕ is upper semicontinuous, non-decreasing in each

coordinate variable, and for any t > 0,

ϕ(t, t, t, t, 0, αt, 0, αt, 0) � βt and

ϕ(t, t, t, t, αt, 0, 0, 0, αt) � βt,

where β = 1 for α = 2, and β < 1 for α < 2,

ν(t) = ϕ(t, t, t, t, a1t, a2t, a3t, a4t, a5t) < t,

where ν : �+ → �
+ is a mapping and a1 + a2 + a3 + a4 + a5 = 7.

Let A, B, S and T be mappings from a Saks space X into itself such that

A(X) ∪B(X) ⊂ S(X) ∩ T (X),(3.1)

N22 (Ax −By) � ϕ
(
max

{
N22 (Sx− Ty),N22 (Sx−Ax), N22 (Ty −By)

}
,(3.2)

N2(Sx−Ax) ·N2(Ty −By),

N2(Sx− Ty) ·N2(Sx−Ax), N2(Sx− Ty) ·N2(Ty −By),

N2(Sx− Ty) ·N2(Sx−By), N2(Sx− Ty) ·N2(Ty −Ax),

N2(Sx− By) ·N2(Ty −Ax), N2(Sx−Ax) ·N2(Ty −Ax),

N2(Sx−By) ·N2(Ty −By)
)

for all x, y in X and ϕ ∈ F .
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Then, by (3.1), since A(X) ⊂ T (X), for an arbitrary point x0 ∈ X there exists a

point x1 ∈ X such that Ax0 = Tx1. Since B(X) ⊂ S(X), for this point x1 we can
choose a point x2 ∈ X such that Bx1 = Sx2 and so on. Inductively, we can define a
sequence {yn} in X such that

(3.3) y2n = Tx2n+1 = Ax2n and y2n+1 = Sx2(n+1) = Bx2n+1

for every n = 0, 1, 2, . . ..

For our main theorems, we need the following lemmas:

Lemma 3.1. ([28]) For any t > 0, ν(t) < t if and only if lim
n→∞

νn(t) = 0, where

νn denotes the n-times composition of ν with itself.

Lemma 3.2. Let A, B, S and T be mappings from a Saks space (X, d) into itself
satisfying the conditions (3.1) and (3.2). Then

(1)
{
N2(yn − yn+1

}
is a non-increasing sequence in �+ ,

(2) {yn} is a Cauchy sequence in X , where {yn} is the sequence in X defined by

(3.3).

�����. (1) We shall prove that
{
N2(yn − yn+1

}
for n = 0, 1, 2, . . . is a non-

increasing sequence in �+ . By (3.2) and (3.3) we have

N22 (y2n − y2n+1) = N22 (Ax2n −Bx2n+1)

� ϕ
(
max

{
N22 (y2n−1 − y2n), N22 (y2n−1 − y2n), N22 (y2n − y2n+1)},

N2(y2n−1 − y2n) ·N2(y2n − y2n+1),

N2(y2n−1 − y2n)N2(y2n−1 − y2n), N2(y2n−1 − y2n) ·N2(y2n − y2n+1),

N2(y2n−1 − y2n) ·N2(y2n−1 − y2n+1), N2(y2n−1 − y2n) ·N2(y2n − y2n),

N2(y2n−1 − y2n+1) ·N2(y2n − y2n), N2(y2n−1 − y2n) ·N2(y2n − y2n),

N2(y2n−1 − y2n+1) ·N2(y2n − y2n+1)
)

� ϕ
(
max

{
N22 (y2n−1 − y2n), N22 (y2n−1 − y2n), N22 (y2n − y2n+1)},

N2(y2n−1 − y2n) ·N2(y2n − y2n+1),

N2(y2n−1 − y2n)N2(y2n−1 − y2n), N2(y2n−1 − y2n) ·N2(y2n − y2n+1),

N2(y2n−1 − y2n) ·
(
N2(y2n−1 − y2n) +N2(y2n − y2n+1)

)
, 0,

0, 0,
(
N2(y2n−1 − y2n) +N2(y2n − y2n+1)

)
·N2(y2n − y2n+1)

)
.

Suppose that N2(y2n−1− y2n) < N2(y2n− y2n+1) for some n. Then, for some α < 2,
N2(y2n−1 − y2n) +N2(y2n − y2n+1) = αN2(y2n − y2n+1). Since ϕ is non-decreasing
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in each variable and β < 1 for α < 2, we have

N22 (y2n − y2n+1) � ϕ
(
N22 (y2n − y2n+1), N22 (y2n − y2n+1), N22 (y2n − y2n+1),

N22 (y2n − y2n+1), N22 (y2n − y2n+1), 0, 0, 0,

N22 (y2n − y2n+1)
)

� βN2(y2n − y2n+1) < N2(y2n − y2n+1), a contradiction.

Therefore,
{
N2(yn − yn+1)

}
is a non-increasing sequence in �+ .

(2) Let
{
N2(yn− yn+1)

}
be a non-increasing sequence in �+ . Now, again by (3.2)

and (3.3), we have

N22 (y1 − y2) = N22 (Ax2 −Bx1)

� ϕ
(
max

{
N22 (y0 − y1), N

2
2 (y1 − y2), N

2
2 (y0 − y1)

}
,

N2(y1 − y2) ·N2(y0 − y1)
}
,

N2(y0 − y1) ·N2(y1 − y2), N
2
2 (y0 − y1), 0,

N2(y0 − y1) ·
(
N2(y0 − y1) +N2(y1 − y2)

)
, 0,

N2(y1 − y2) ·
(
N2(y0 − y1) +N2(y1 − y2)

)
, 0

)

� ϕ
(
N22 (y0 − y1), N

2
2 (y0 − y1), N

2
2 (y0 − y1), N

2
2 (y0 − y1),

N22 (y0 − y1), 2N22 (y0 − y1),

N22 (y0 − y1), 2N22 (y0 − y1), N22 (y0 − y1)
)

= ν
(
N22 (y0 − y1)

)
.

In general, we have N22 (yn − yn+1) � νn
(
N22 (y0 − y1)

)
, which implies that, by

Lemma 3.1, we have

lim
n→∞

N22 (yn − yn+1) � lim
n→∞

νn
(
N22 (y0 − y1)

)
= 0.

Therefore, we have lim
n→∞

N2(yn − yn+1) = 0. This shows that {yn} is a Cauchy
sequence with respect to N2 in S(X) ∩ T (X). This completes the proof. �

Now, we are ready to present our main theorems:

Theorem 3.1. Let A, B, S and T be mappings from a Saks space X into itself

satisfying the conditions (3.1), (3.2) and (3.10):

(3.10) S(X) ∩ T (X) is a closed subspace of X .
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Then (1) A and S have a coincidence point in X , and (2) B and T have a coincidence

point in X .

�����. By Lemma 3.2 the sequence {yn} defined by (3.3) is a Cauchy sequence
in S(X) ∩ T (X) with respect to N1, since N1 is equivalent to N2 on X . So by
Lemma 1.1, (X, N1) is a Banach space and hence {yn} converges to a point w in

S(X)∩T (X). On the other hand, since the subsequences {y2n} and {y2n+1} of {yn}
are also Cauchy sequences in S(X) ∩ T (X), they also converge to the same limit w.

Hence there exist two points u, v in X such that Su = w and Ty = w. By (3.2) we
have

N22 (Au − y2n+1) = N22 (Au−Bx2n+1)

� ϕ
(
max

{
N22 (Su− y2n), N22 (Su−Au), N22 (y2n − y2n+1)

}
,

N2(Su−Au) ·N2(y2n − y2n+1),

N2(Su− y2n) ·N2(Su−Au), N2(Su− y2n) ·N2(y2n − y2n+1),

N2(Su− y2n) ·N2(Su− y2n+1), N2(Su− y2n) ·N2(y2n −Au),

N2(Su− y2n+1) ·N2(y2n −Au), N2(Su− Au) ·N2(y2n −Au),

N2(Su− y2n+1) ·N2(Su− y2n+1)
)
.

Since lim
n→∞

νn(t) = 0 as in the proof of Lemma 3.2, letting n →∞ we have

N22 (Au− w) � ϕ
(
0, 0, 0, 0, 0, 0, 0, N22(w −Au), 0

)
,

which is a contradiction. Hence Au = w = Su, that is, u is a coincidence point of

A and S. Similarly, we can show that v is a coincidence point of B and T . This
completes the proof. �

Putting A = B in Theorem 3.1, we have the following

Corollary 3.2. Let A, S and T be mappings from a Saks space X into itself

satisfying the conditions (3.1), (3.2) and (3.10).

Then (1) A and S have a coincidence point inX and (2)A and T have a coincidence

point in X . Indeed, A, S and T have a coincidence point in X if A is one-to-one.

�����. By Theorem 3.1 with A = B, we have the direct proofs of (1) and (2).
As in the proof of Theorem 3.1 we have Au = Su = Av = Tv. Hence since A is

one-to-one, u = v is a coincidence point of A, S and T . This completes the proof. �
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IV. Another common fixed point theorem

In this section we prove a common fixed point theorem of Greguš type for com-

patible mappings of type (B) in a Saks space by employing Theorem 3.1.

Theorem 4.1. Let A, B, S and T be mappings from a Saks space X into X

satisfying the conditions (3.1), (3.2), (3.10) and

(4.1) the pairs A, S and B, T are compatible mappings of type (B).

Then A, B, S and T have a unique common fixed point in X .

�����. By Theorem 3.1, there exist two points u and v in X such that Au =
Su = w and Bv = Tv = w. Since A and S are compatible mappings of type (B),

by Proposition 2.9, ASu = SSu = SAu = AAu, which implies that Aw = Sw.
Similarly, since B and T are compatible mappings of type (B), we have Bw = Tw.

Now we prove that Aw = w. If Aw �= w, then by (3.2) we have

N22 (Au − y2n+1) = N22 (Aw −Bx2n+1)

� ϕ
(
max

{
N22 (Sw − y2n), N22 (Sw −Aw), N22 (y2n − y2n+1)

}
,

N2(Sw −Aw) ·N2(y2n − y2n+1),

N2(Sw − y2n) ·N2(Sw −Aw), N2(Sw − y2n) ·N2(y2n − y2n+1),

N2(Sw − y2n) ·N2(Sw − y2n+1), N2(Sw − y2n) ·N2(y2n −Aw),

N2(Sw − y2n+1) ·N2(y2n −Aw), N2(Sw −Aw) ·N2(y2n −Aw),

N2(Sw − y2n+1) ·N2(y2n − y2n+1)
)
.

Letting n →∞, we have

N22 (Aw − w) � ϕ
(
N22 (Sw − w), 0, N2(Sw − w) ·N2(Sw −Aw), 0, N22 (Sw − w),

N2(Sw − w) ·N2(w −Aw), N2(Sw − w) ·N2(w −Aw),

N2(Sw −Aw) ·N2(w −Aw), 0
)

= ϕ
(
N22 (Aw − w), 0, 0, 0, N22 (Aw − w), N22 (Aw − w), 0, 0

)

< N22 (Aw − w),

which is a contradiction. Hence have Aw = w = Sw. Similarly, we have Bw = w =

Tw. This means that w is a common fixed point of A, B, S and T . The uniqueness
of the fixed point w follows easily from (3.2). �
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Remark 4.1. Since it is possible to replace the condition of commuting mappings,
weakly commuting mappings, compatible mappings, or compatible mappings of type
(A) by compatible mappings of type (B), Theorem 4.1 extends, generalizes and
improves a number of fixed point theorem already known in ordinary metric spaces

([4], [5], [7], [9], [14] and [17]), and in Saks spaces ([18] and [19]).

Remark 4.2. Our result derives a common fixed point theorem for four mappings
which are not necessarily continuous.
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