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AN EXTENSION OF INVERTIBILITY OF HAMMERSTEIN-TYPE

OPERATORS

Radu Tunaru, London

(Received August 7, 1996)

Abstract. My aim is to show that some properties, proved to be true for the square
matrices, are true for some not necessarily linear operators on a linear space, in particular,
for Hammerstein-type operators.

If A and B are operators satisfying angleboundedness assumption (for details see

[1]), or the strong monotonicity condition following [2], there are sufficient conditions
for invertibility of a Hammerstein-type operator I +AB as described in [3].

In this paper we shall provide some generalizations of the results from [3]. We will
mark the end of a proof with Halmos’ square �.

Proposition 1. LetK1 andK2 be two linear spaces and A : K1 → K2, B : K2 →
K1 two operators such that the operator ABA is linear.

1. If I2−ABAB : K2 → K2 has a left inverse Ul then I1−BABA : K1 → K1 has

a left inverse Vl = I1 +BUlABA.

2. If I2 − ABAB : K2 → K2 has a right inverse Ud then I1 − BABA : K1 → K1
has a right inverse Vd = I1 +BUdABA.
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�����. 1. We know that Ul (I2 −ABAB) = I2. Then we can write

Vl (I1 −BABA) = (I1 +BUlABA) (I1 −BABA)

= I1 −BABA +BUlABA (I1 −BABA)

= I1 −BABA +BUl (ABA−ABABABA)

= I1 −BABA +BUl (I2 −ABAB)ABA

= I1 −BABA +BI2ABA

= I1 −BABA +BABA

= I1.

So Vl is a left inverse for I1 −BABA.

2. Because (I2 −ABAB)Ud = I2 we can write

(I1 −BABA) (I1 +BUdABA) = I1 +BUdABA−BABA (I1 +BUdABA)

= I1 +BUdABA−B (ABA+ABABUdABA)

= I1 +BUdABA−B(I2 +ABABUd)ABA.

But

(I2 −ABAB)Ud = I2,

Ud −ABABUd = I2,

I2 +ABABUd = Ud.

Therefore (I1 −BABA) Vd = I1+BUdABA−BUdABA = I1 so we can say that Vd

is a right inverse of I1 −BABA. �

Observation 1. For the above conditions we get that

ABAVd = UdABA.

�����.

ABAVd = ABA(I1 +BUdABA) = ABA +ABABUdABA

= (I2 +ABABUd)ABA = UdABA.

�

Corollary 1. Let ABA be linear and I2 − ABAB invertible. Then I1 − BABA

is invertible, too.
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�����. This is obvious because Ul = Ud = U implies that

Vl = Vd = I1 +BUABA.

�

Remark 1. We cannot make a weaker assumption than ABA to be linear be-

cause there are operators A and B such that I2−ABAB is invertible and I1−BABA

is not invertible.

Example. A : � → �, Ax = log
√

x if x > 0 and Ax = 0 otherwise, and

B : � → �, Bx = exp 2x3 . Then (I − ABAB)x = 8
9x which is invertible. At the

same time (I −BABA)x = x− 9
√

x for x > 0 and (I −BABA)x = x− 1 for x � 0.
As can be easily seen this is not invertible.

Proposition 2. Let K be a linear complex space and let operators A, B : K → K

be given, A being linear. If there is any nonzero complex number λ such that

λAB +A+B = 0

then λA+ I has a right inverse and λB + I has a left inverse.

�����.

λAB +A+B = 0, λ �= 0,
λ2AB + λA+ λB = 0.

Adding the identity operator to both sides we get

λ2AB + λA+ λB + I = I,

λ(λAB +B) + λA+ I = I,

λ(λA+ I)B + λA + I = I,

(λA+ I)(λB + I) = I.

Hence (λA + I) is a left inverse for (λB + I) and (λB + I) is a right inverse for
(λA+ I). �

Corollary 2. Let A, B : K → K be operators and let A be linear. Let λ be a

nonzero complex number such that λAB +A+B = 0. Then

1. If λA+ I is left invertible then λA+ I is invertible and its inverse is λB + I.

2. If λB + I is right invertible then λB + I is invertible and its inverse is λA+ I.
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Observation 2. There are examples when A, B are not linear and there is a

nonzero complex number λ for which (λA + I)(λB + I) = I.
Let Ax = tan x−x

λ for x ∈ (− �

2 ,
�

2 ) and Ax = 0 otherwise.
Let Bx = arctanx−x

λ for every x ∈ �.
Then (λA+ I)(λB + I)x = x and it is obvious that A, B are not linear.

Proposition 3. Let K1, K2 be two complex linear spaces and let A : K1 → K2
be linear. Consider B : K2 → K1 and m a positive integer.

1. If I2+(AB)m has a left inverse Ul then I1+(BA)m has a left inverse Vl, where

Vl = I1 −B(AB)m−1UlA.

2. If I2 + (AB)m has a right inverse Ud then I1 + (BA)m has a right inverse Vd,

where Vd = I1 −B(AB)m−1UdA.

Moreover, AVd = UdA.

�����. For m = 1 this result was proved in [3].
1. For m > 1 we observe that I2 + (AB)m = I2 + AC, where C = B(AB)m−1.

Therefore

I1 + (BA)m = I1 + CA,

Ul[I2 + (AB)m] = I2,

Ul[I2 +AC] = I2.

We know that the result is true for m = 1, hence there is Vl = I1 −CUlA which is a

left inverse for I1 + CA. This means that Vl = I1 − B(AB)m−1UlA is a left inverse
for I1 + (BA)m.
2. As above I1 + CA has a right inverse Vd = I1 − CUdA. So I1 + (BA)m has a

right inverse Vd = I1 −B(AB)m−1UdA.

AVd = A
[
I1 −B(AB)m−1UdA

]

= A− (AB)mUdA

= [I2 − (AB)mUd]A.

However, I2 − (AB)mUd = Ud from where we conclude that AVd = UdA. �

Corollary 3. Let m be a positive integer. If I2 + (AB)m is invertible then I1 +

(BA)m is invertible.

�����. Let U be the inverse of I2 + (AB)m. Then for C as above

[I1 + (BA)m]−1 = I1 − CUA = I1 −B(AB)m−1UA.

�
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Proposition 4. Let K1, K2 be two complex linear spaces and m a nonnegative

integer. Let A : K1 → K2, B : K2 → K1 be two operators such that the operator

B(AB)m−1 is invertible and linear. Then

1. If I2 + (AB)m has Ud as a right inverse then I1 + (BA)m has Vd as a right

inverse, where Vd = B(AB)m−1Ud

[
B(AB)m−1

]−1
;

2. If I2 + (AB)m has Ul as a left inverse then I1 + (BA)m has Vl as a left inverse,

where Vl = B(AB)m−1Ul

[
B(AB)m−1

]−1
.

�����. Let C = B(AB)m−1, C : K2 → K1, which is linear and invertible.

1. We know that [I2 + (AB)m]Ud = I2. Hence we can write

[I1 + (BA)m]Vd = [I1 + (BA)m]
(
CUdC

−1)

= CUdC
−1 + (BA)mCUdC

−1

= [C + (BA)mC]UdC
−1

= C [I2 + (AB)m]UdC
−1

= CI2C
−1 = CC−1 = I1,

2.

Vl [I1 + (BA)m] = B(AB)m−1Ul

[
B(AB)m−1

]−1
[I1 + (BA)m]

= CUlC
−1 [I1 + (BA)m]

= CUl

[
C−1 + C−1(BA)m

]

= CUl [I2 + (AB)m]C−1.

However, we know that Ul [I2 + (AB)m] = I2. Therefore we obtain that

Vl [I1 + (BA)m] = CC−1 = I1.

�

Corollary 4. Let A, B be two operators as in Proposition 4. If I2 + (AB)m is

invertible then I1 + (BA)m is invertible and

[I1 + (BA)m]−1 = B(AB)m−1 [I2 + (AB)m]−1
[
B(AB)m−1

]−1
.

Observation 3. For m = 1 we get the principal results from [3]. Let K1 and
K2 be Banach spaces such that the hypotheses of the last corollary are satisfied

and B(AB)m−1 is bounded. Then using the Open Map Theorem we can say that
[I1 + (BA)m]−1 is (Lipschitz) continuous if [I2 + (AB)m]−1 is (Lipschitz) continuous.
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