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UNIQUE SOLVABILITY OF A LINEAR PROBLEM WITH

PERTURBED PERIODIC BOUNDARY VALUES

Bahman Mehri and Mohammad H. Nojumi, Tehran

(Received August 26, 1996)

Abstract. We investigate the problem with perturbed periodic boundary values

{
y′′′(x) + a2(x)y

′′(x) + a1(x)y
′(x) + a0(x)y(x) = f(x),

y(i)(T ) = cy(i)(0), i = 0, 1, 2; 0 < c < 1

with a2, a1, a0 ∈ C[0, T ] for some arbitrary positive real number T , by transforming the
problem into an integral equation with the aid of a piecewise polynomial and utilizing the
Fredholm alternative theorem to obtain a condition on the uniform norms of the coeffi-
cients a2, a1 and a0 which guarantees unique solvability of the problem. Besides having
theoretical value, this problem has also important applications since decay is a phenomenon
that all physical signals and quantities (amplitude, velocity, acceleration, curvature, etc.)
experience.

Keywords: Ordinary differential equations, integral equations, periodic boundary value
problems

MSC 2000 : 34B15, 34C10

1. Transformation into an integral equation

Let L be the linear third order differential operator with continuous coefficients

L =
d3

dx3
+ a2(x)

d2

dx2
+ a1(x)

d
dx
+ a0(x); a2, a1, a0 ∈ C[0, T ].

Our aim is to investigate unique solvability, for every f ∈ C[0, T ], of the problem

(1.1)

{
Ly(x) = f(x),

y(i)(T ) = cy(i)(0), i = 0, 1, 2; 0 < c < 1
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by transforming it into an integral equation with the aid of a piecewise cubic poly-

nomial with real coefficients

(1.2) q(x, t) =

{
α1(x− t)3 + β1(x− t)2 + γ1(x− t) + θ1 if 0 � t � x � T,

α2(x− t)3 + β2(x− t)2 + γ2(x− t) + θ2 if 0 � x � t � T.

Note that (1.1) is a problem in which periodic boundary values are perturbed. Besides

having theoretical value, the problem (1.1) has also important applications since all
physical signals and quantities experience decay (amplitude depending on y, velocity

depending on y′, acceleration depending on y′′, curvature depending on y′ and y′′,
etc.).

The reason for breaking up the definition of q into two regions will be made clear
as we proceed. With this choice for q we have

(1.3)
∂q

∂x
(x, t) =

{
3α1(x− t)2 + 2β1(x − t) + γ1 if 0 � t < x � T,

3α2(x− t)2 + 2β2(x − t) + γ2 if 0 � x < t � T,

(1.4)
∂2q

∂x2
(x, t) =

{
6α1(x − t) + 2β1 if 0 � t < x � T,

6α2(x − t) + 2β2 if 0 � x < t � T,

(1.5)
∂3q

∂x3
(x, t) =

{
6α1 if 0 � t < x � T,

6α2 if 0 � x < t � T.

We intend to select the coefficients of q in such a way that if u ∈ C[0, T ] is a
solution of the integral equation

(1.6) u(x) +
∫ T

0
Lq(x, t)u(t) dt = f(x)

then the function y defined as

(1.7) y(x) :=
∫ T

0
q(x, t)u(t) dt

is a solution of the problem (1.1). Now

y(x) =

(∫ x

0
+

∫ T

x

)
q(x, t)u(t) dt,

therefore

y′(x) = lim
t→x−

[q(x, t)u(t)] − lim
t→x+

[q(x, t)u(t)] +
∫ T

0

∂q

∂x
(x, t)u(t) dt
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and we have

(1.8) y′(x) =
∫ T

0

∂q

∂x
(x, t)u(t) dt

provided

lim
t→x−

[q(x, t)u(t)] = lim
t→x+

[q(x, t)u(t)]

or, by virtue of (1.2),

(1.9) θ1 = θ2.

Starting with (1.8) we get

y′′(x) = lim
t→x−

[
∂q

∂x
(x, t)u(t)

]
− lim

t→x+

[
∂q

∂x
(x, t)u(t)

]
+

∫ T

0

∂2q

∂x2
(x, t)u(t) dt

and we have

(1.10) y′′(x) =
∫ T

0

∂2q

∂x2
(x, t)u(t) dt

provided

lim
t→x−

[
∂q

∂x
(x, t)u(t)

]
= lim

t→x+

[
∂q

∂x
(x, t)u(t)

]

or, by virtue of (1.3),

(1.11) γ1 = γ2.

Finally, starting with (1.10) we arrive at

y′′′(x) = lim
t→x−

[
∂2q

∂x2
(x, t)u(t)

]
− lim

t→x+

[
∂2q

∂x2
(x, t)u(t)

]
+

∫ T

0

∂3q

∂x3
(x, t)u(t) dt;

this time we are interested in adjusting the conditions so that

(1.12) y′′′(x) = u(x) +
∫ T

0

∂3q

∂x3
(x, t)u(t) dt,

which is obtained provided

lim
t→x−

[
∂2q

∂x2
(x, t)u(t)

]
− lim

t→x+

[
∂2q

∂x2
(x, t)u(t)

]
= u(x)
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or, by virtue of (1.4),

(1.13) β1 − β2 =
1
2
.

It is the need for this discontinuity in ∂2q/∂x2 over the line segment {x = t} that
inspired us to define q piecewise as we did in (1.2). From (1.7), (1.8), (1.10) and

(1.12) we obtain

Ly(x) = u(x) +
∫ T

0
Lq(x, t)u(t) dt = f(x).

To make y defined by (1.7) satisfy the conditions of the problem (1.1) as well, it

suffices, by virtue of (1.7), (1.8) and (1.10), to place the following constraints on q:

(1.14) ∀t ∈ [0, T ] q(T, t) = cq(0, t),

(1.15) ∀t ∈ [0, T ] ∂q

∂x
(T, t) = c

∂q

∂x
(0, t),

(1.16) ∀t ∈ [0, T ] ∂2q

∂x2
(T, t) = c

∂2q

∂x2
(0, t).

To make q satisfy (1.14), we should have for every t ∈ [0, T ]

(cα2 − α1)t
3 + (3Tα1 + β1 − cβ2)t

2 + (−3T 2α1 − 2Tβ1 − γ1 + cγ2)t

+ (T 3α1 + T 2β1 + Tγ1 + θ1 − cθ2) = 0

and hence all coefficients should be identically zero, which together with (1.9), (1.11),

(1.13) and the definitions

α := α2, β := β2, γ := γ2, θ := θ2,

result in

α1 = cα, β1 = β +
1
2
, γ1 = γ, θ1 = θ

and

(1.17)





3cTα+ 12 + (1 − c)β = 0,

3cT 2α+ 2Tβ + T + (1− c)γ = 0,

cT 3α+ T 2β + Tγ + 12T
2 + (1− c)θ = 0,
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and it is easy to verify that (1.15) and (1.16) are also satisfied if conditions (1.17)

hold. We have actually proved

Lemma 1.1. Let q ∈ C([0, T ]× [0, T ]) be the piecewise polynomial

(1.18) q(x, t) =

{
cα(x − t)3 + (β + 12 )(x− t)2 + γ(x− t) + θ if 0 � t � x � T,

α(x − t)3 + β(x− t)2 + γ(x− t) + θ if 0 � x � t � T

with real coefficients α, β, γ, θ satisfying (1.17). Under these conditions, for f ∈
C[0, T ], if u ∈ C[0, T ] is a solution of the integral equation (1.6), then y ∈ C[0, T ]

defined by (1.7) is a solution of the problem (1.1).

Conversely, we have

Lemma 1.2. If

max
0�x�T

‖Lq(x, .)‖L1[0,T ] < 1

then for any solution y ∈ C[0, T ] of the problem (1.1), the function u ∈ C[0, T ]

defined by

(1.19) u(x) = f(x) +
∫ T

0
R(x, t)f(t) dt

is a solution of the integral equation (1.6), with R defined by the relation

(1.20) R(x, t) +
∫ T

0
Lq(x, w)R(w, t) dw = −Lq(x, t).

Remark 1.1. The function R(x, t) is called the resolvent of the kernel Lq(x, t)

(see [3]).

�����. For any t ∈ [0, T ], Lq(x, t) considered as a function of x is piecewise
continuous over [0, T ], and hence by a piecewise argument based on a reasoning

similar to that used in the next section in the proof of Theorem 2.1, we can establish
the existence of R(x, t). We prove that (1.19) is a solution of (1.6) by inserting it
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into the righthand side of (1.6) and using the definition of R in (1.20):

u(x) +
∫ T

0
Lq(x, w)u(w) dw = f(x) +

∫ T

0
R(x, t)f(t) dt

+
∫ T

0
Lq(x, w)

[
f(w) +

∫ T

0
R(w, t)f(t) dt

]
dw

= f(x) +
∫ T

0
R(x, t)f(t) dt+

∫ T

0
Lq(x, w)f(w) dw

+
∫ T

0

∫ T

0
Lq(x, w)R(w, t)f(t) dt

= f(x) +
∫ T

0
Lq(x, w)f(w) dw

+
∫ T

0

[
R(x, t) +

∫ T

0
Lq(x, w)R(w, t) dw

]
f(t) dt

= f(x),

which proves Lemma 1.2. �

These two lemmas yield the main result of this section:

Theorem 1.1. With q given by (1.18) together with constraints (1.17), there is
a one-to-one correspondence between the solution set of the problem (1.1) and the

solution set of the integral equation (1.6).

2. Unique solvability of the integral equation

Now we investigate conditions under which the integral equation

u(x) +
∫ T

0
Lq(x, t)u(t) dt = f(x)

with q ∈ C([0, T ] × [0, T ]) a third order piecewise polynomial, has a unique solu-
tion for every f ∈ C[0, T ]. To accomplish this, we stablish conditions on the kernel
Lq(x, t) using the Riesz-Fredholm theory, that is, the Fredholm alternative for com-

pact operators [1, 4]. Defining the integral operator





K : C[0, T ] −→ C[0, T ],

(Ku)(x) = −
∫ T

0
Lq(x, t)u(t) dt

we have
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Lemma 2.1. With C[0, T ] equipped with the uniform norm

‖v‖∞ = max
0�x�T

|v(x)|

the operator K is compact.

�����. Obviously, K is linear. The kernel Lq(x, t) of K is piecewise continuous
on [0, T ] × [0, T ] since q ∈ C([0, T ] × [0, T ]) and L is a linear differential operator

with continuous coefficients. Therefore

(2.1) ‖Lq(x, .)‖L1[0,T ] =
∫ T

0
|Lq(x, t)|d(t) < ∞.

By the definition of compactness of operators [4, 5], we need to show that K(B), the

image of the unit ball in C[0, T ]

B = {v ∈ C[0, T ] : ‖v‖∞ < 1}

underK is relatively compact in C[0, T ]. To demonstrate this, it suffices to show that

K(B) is bounded and equicontinuous in C[0, T ]. Relative compactness of K(B) will
then be deduced from the compactness of the interval [0, T ] and the Arzela-Ascoli

theorem [2, 4].

����� of the boundedness of K(B). Given v ∈ B, by (2.1) we have for all

x ∈ [0, T ]
|(Kv)(x)| < ‖Lq(x, .)‖L1[0,T ] < ∞.

Taking the maximum of the lefthand side over [0, T ], we obtain

‖Kv‖∞ < max
0�x�T

‖Lq(x, .)‖L1[0,T ],

hence K(B) is contained in the ball centered at the origin of C[0, T ] with radius
max
0�x�T

‖Lq(x, .)‖L1[0,T ] and is therefore bounded.

����� of the equicontinuity of K(B). The kernel Lq(x, t) is continuous over
each of the sets

S1 := {(x, t) ∈ [0, T ]× [0, T ] : t < x},
S2 := {(x, t) ∈ [0, T ]× [0, T ] : x < t},

but is not continuous over [0, T ]× [0, T ], so we need to introduce two functions




p1 : S1 := S1 ∪ {(x, x) : x ∈ [0, T ]} −→ �,

p1(x, t) =

{
Lq(x, t) if x ∈ S1,

lim
t→x+

Lq(x, t) if x = t
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and 



p2 : S2 := S2 ∪ {(x, x) : x ∈ [0, T ]} −→ �,

p2(x, t) =

{
Lq(x, t) if x ∈ S2,

lim
t→x−

Lq(x, t) if x = t

which are continuous over the compact sets S1 and S2, respectively, and hence are

uniformly continuous over their respective domains. Therefore, given ε > 0 there
exists δ > 0 such that

∀(x1, t), (x2, t) ∈ S1 |x1 − x2| < δ =⇒ |p1(x1, t)− p1(x2, t)| < ε/(2T ),

∀(x1, t), (x2, t) ∈ S2 |x1 − x2| < δ =⇒ |p2(x1, t)− p2(x2, t)| < ε/(2T ).

Without loss of generality we may assume that x1 < x2. For all v ∈ B with ‖v‖∞ < 1

we conclude
|(Kv)(x1)− (Kv)(x2)| � I1 + I2 + I3

where

I1 :=
∫ x1

0
|Lq(x1, t)− Lq(x2, t)| dt

=
∫ x1

0
|p1(x1, t)− p1(x2, t)| dt < x1ε/(2T ),

I3 :=
∫ T

x2

|Lq(x1, t)− Lq(x2, t)| dt

=
∫ T

x2

|p2(x1, t)− p2(x2, t)| dt < (T − x2)ε/(2T ),

I2 =
∫ x2

x1

|Lq(x1, t)− Lq(x2, t)| dt

�
∫ x2

x1

|Lq(x1, t)− Lq(t, t)| dt+
∫ x2

x1

|Lq(t, t)− Lq(x2, t)| dt

=
∫ x2

x1

|p2(x1, t)− p2(t, t)| dt+
∫ x2

x1

|p1(t, t)− p1(x2, t)| dt

< (x2 − x1)ε/(2T ) + (x2 − x1)ε/(2T )

< (x2 − x1)ε/(2T ) + ε/2

provided |x1 − x2| < δ, and the equicontinuity of K(B) is established, making the
proof of Lemma 2.1 complete. �

Having proved the compactness of K, we immediately arrive at

Proposition 2.1. If the corresponding homogeneous integral equation u−Ku = 0

has only the trivial solution u ≡ 0, then the main integral equation u−Ku = f has

a unique solution u ∈ C[0, T ] for all f ∈ C[0, T ].
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�����. Direct consequence of the compactness of the integral operator K and

the Fredholm alternative theorem. �
So the problem of finding conditions for existence and uniqueness of the solution

of the integral equation u−Ku = f for all f ∈ C[0, T ] is reduced to the problem of

finding conditions under which the equation u = Ku has only the trivial solution.
By linearity of K, u ≡ 0 is always a solution of u = Ku. Therefore by the Banach

fixed point theorem we are done if we provide conditions which makeK a contraction
mapping.

For all u1, u2 ∈ C[0, T ] and for all x ∈ [0, T ]

|(Ku1)(x) − (Ku2)(x)| �
∫ T

0
|Lq(x, t)||u1(x)− u2(x)| dt

�
(∫ T

0
|Lq(x, t)| dt

)
‖u1 − u2‖∞.

Taking maximum on the lefthand side over [0, T ], we get

‖Ku1 −Ku2‖∞ � max
0�x�T

‖Lq(x, .)‖L1[0,T ]‖u1 − u2‖∞,

This argument proves

Theorem 2.1. If
max
0�x�T

‖Lq(x, .)‖L1[0,T ] < 1

then for all f ∈ C[0, T ] the integral equation

u(x) +
∫ T

0
Lq(x, t)u(t) dt = f(x)

has a unique solution u ∈ C[0, T ].

�����. Under the condition stated K is a contraction mapping. �
Remark 2.1. We could as well start with the mapping K with the domain

equipped with the Lp−norm (1 � p � ∞),

K : (C[0, T ], ‖.‖Lp[0,T ]) −→ (C[0.T ], ‖.‖∞).

By the Hölder inequality with 1p +
1
r = 1 we have

‖Ku1 −Ku2‖∞ � max
0�x�T

‖Lq(x, .)‖Lr[0,T ]‖u1 − u2‖Lp[0,T ]

and the condition for K to be a contraction mapping would be

max
0�x�T

‖Lq(x, .)‖Lr[0,T ] < 1.

Our main discussion is the special case with p =∞.
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3. Condition for unique solvability of the problem

With the particular q obtained in Section 1 as (1.18) we have

Lq(x, t) =





6cα+ [6cα(x− t) + (2β + 1)]a2(x)

+[3cα(x− t)2 + (2β + 1)(x− t) + γ]a1(x)

+[cα(x − t)3 + (β + 12 )(x− t)2 + γ(x− t) + θ]a0(x) if 0 � t < x � T

6α+ [6α(x− t) + 2β]a2(x)

+[3α(x− t)2 + 2β(x− t) + γ]a1(x)

+[α(x − t)3 + β(x− t)2 + γ(x− t) + θ]a0(x) if 0 � x < t � T.

Taking into account the assumption 0 < c < 1 we get

∫ T

0
|Lq(x, t)| dt =

(∫ x

0
+

∫ T

x

)
|Lq(x, t)| dt

� 6x|α|+ [6I11|α|+ x(2|β|+ 1)]‖a2‖∞
+ [3I12|α|+ I11(2|β|+ 1) + x|γ|]‖a1‖∞
+ [I13|α|+ I12(|β|+

1
2
) + I11|γ|+ x|θ|]‖a0‖∞

+ 6(T − x)|α|+ [6I21|α|+ 2(T − x)|β|]‖a2‖∞
+ [3I22|α|+ 2I21|β|+ (T − x)|γ|]‖a1‖∞
+ [I23|α|+ I22|β|+ I21|γ|+ (T − x)|θ|]‖a0‖∞

where

I11 =

∣∣∣∣
∫ x

0
(x− t) dt

∣∣∣∣ =
1
2
x2,

I12 =

∣∣∣∣
∫ x

0
(x− t)2 dt

∣∣∣∣ =
1
3
x3,

I13 =

∣∣∣∣
∫ x

0
(x− t)3 dt

∣∣∣∣ =
1
4
x4,

I21 =

∣∣∣∣
∫ T

x

(x− t) dt

∣∣∣∣ =
1
2
(T − x)2,

I22 =

∣∣∣∣
∫ T

x

(x− t)2 dt

∣∣∣∣ =
1
3
(T − x)3,

I23 =

∣∣∣∣
∫ T

x

(x− t)3 dt

∣∣∣∣ =
1
4
(T − x)4,

so

‖Lq(x, .)‖L1[0,T ] � 6T |α|+ (3[x2 + (T − x)2]|α|+ 2T |β|+ x)‖a2‖∞

+
(
[x3 + (T − x)3]|α|+ [x2 + (T − x)2]|β|+ T |γ|+ 1

2
x2

)
‖a1‖∞

+
(1
4
[x4 + (T − x)4]|α|+ 1

3
[x3 + (T − x)3]|β|

+
1
2
[x2 + (T − x)2]|γ|+ T |θ|+ 1

6
x3

)
‖a0‖∞.
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Taking the maximum of the righthand side and noting that

max
0�x�T

[xj + (T − x)j ] = T j, j = 2, 3, 4

we arrive at

(3.1)

‖Lq(x, .)‖L1[0,T ] � 6T |α|+ (3T 2|α|+ 2T |β|+ T )‖a2‖∞

+
(
T 3|α|+ T 2|β|+ T |γ|+ 1

2
T 2

)
‖a1‖∞

(1
4
T 4|α|+ 1

3
T 3|β|+ 1

2
T 2|γ|+ T |θ|+ 1

6
T 3

)
‖a0‖∞.

To make K a contraction mapping we use Theorem 2.1 to adjust the coefficients α,

β, γ, and θ in such a manner that they satisfy (1.17) and simultaneously make the
righthand side of (3.1) strictly less than 1. Selecting

α =
1
12T

we obtain from (1.17)

β = − 2 + c

4(1− c)
, γ =

5c+ c2

4(1− c)2
T, θ = −7c+ 10c

2 + c3

12(1− c)3
T 2.

With these values (3.1) becomes

max
0�x�T

‖Lq(x, t)‖L1[0,T ] �
1
2
+
9− 3c
4(1− c)

T ‖a2‖∞

+
13− 2c+ 7c2
12(1− c)2

T 2‖a1‖∞

+
17 + 19c+ 43c2 − 7c3

48(1− c)3
T 3‖a0‖∞.

This inequality together with Theorems 1 and 2 yields in our main existence and

uniqueness theorem:

Theorem 3.1. If the uniform norms of a2, a1, a0 ∈ C[0, T ] satisfy the constraint

(3.2)
9− 3c
4(1− c)

T ‖a2‖∞ +
13− 2c+ 7c2
12(1− c)2

T 2‖a1‖∞ +
17 + 19c+ 43c2 − 7c3

48(1− c)3
T 3‖a0‖∞ <

1
2

then the problem
{

y′′′(x) + a2(x)y′′(x) + a1(x)y′(x) + a0(x)y(x) = f(x),

y(i)(T ) = cy(i)(0), i = 0, 1, 2; 0 < c < 1

has a unique solution y ∈ C[0, T ].
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Remark 3.1. By the same reasoning we can establish the existence of a contin-
uous solution for the problem

{
y′′′(x) + a2(x)y′′(x) + a1(x)y′(x) + a0(x)y(x) = f(x),

y(i)(2T ) = cy(i)(T ), i = 0, 1, 2; 0 < c < 1.

Proceeding in this manner, we obtain the following important by-product of our

main result above:

Corollary 3.1. If the uniform norms of the functions a2, a1, a0 ∈ C([0,+∞[)
satisfy the constraint (3.2), then for every f ∈ C([0,+∞[) the third order differential
equation

y′′′(x) + a2(x)y
′′(x) + a1(x)y

′(x) + a0(x)y(x) = f(x)

has a solution in C([0,+∞[) with the property that

{y(nT )}∞n=0, {y′(nT )}∞n=0, {y′′(nT )}∞n=0

are geometric sequences convergent to zero, and hence the solution is stable (since it

is continuous on each interval [nT, (n+1)T ] and hence bounded) and has a decaying
behavior toward zero (although not necessarily in a uniform manner).

Remark 3.2. The same reasoning can, in principle, be used for the problem





y(n) +
n−1∑

k=0

ak(x)y(k)(x) = f(x),

y(i)(T ) = cy(i)(0), i = 0, . . . , n− 1; 0 < c < 1

if we make use of an nth order piecewise polynomial, although the computations

involved increase tremendously as n increases. Here we have treated the case n = 3.
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