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ALGEBRAIC DUALITY OF CONSTANT ALGEBRAS

I. Chajda, R. Halaš, Olomouc,1 A. G. Pinus, Novosibirsk

(Received October 8, 1996)

Let p, q be terms of the same similarity type. An identity p = q is called normal if
it is either of the form x = x or none of p, q is equal to a single variable. For a variety

V , denote by IdV or IdN V the set of all identities or the set of all normal identities
of V , respectively. Of course, IdN V ⊆ IdV and hence V is a subvariety of the

variety N (V ) defined by IdN V . V is called normally presented, [1] if V = N (V ).
If V �= N (V ) then N (V ) covers V in the lattice of all varieties of a given type, see

[3], [5].

An algebra A = (A,F ) is called a constant algebra if there exists an element 0 ∈ A
(the so called constant of A ) such that

f(a1, . . . , an) = 0

for each n-ary f ∈ F and all a1, . . . , an ∈ A. It is an easy exercise to show that for a
given similarity type σ, a constant algebra A of type σ satisfies exactly all normal

identities of type σ, i.e. if p, q are two arbitrary terms of type σ not identically equal
to a single variable then p = q holds in A . So the class C of all constant algebras of

type σ forms a variety. As mentioned previously, C is the least normally presented
variety of type σ and it covers the trivial variety T in the lattice of all varieties of

type σ. Hence, we have (see also [1])

Lemma 1. Let σ be a given similarity type.
(i) The class C of all constant algebras of type σ is a variety and IdC is the set of

all normal identities of type σ;

(ii) C = N (T ) and it is the atom of the lattice of all varieties of type σ.
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Given a similarity type σ, denote by B the two-element constant algebra of type

σ. The elements of B will be denoted by 0B and b throughout the paper, 0B is the
constant of B. Let us note that if σ contains a nullary operation c then c = 0B
since f(a1, . . . , an) = 0B, thus c = 0B is a normal identity of type σ. If A = (A,F )

is a constant algebra of type σ, we denote by 0A its constant. Hence, 0A can be
considered as a nullary term operation of type σ (it is determined by the identity

f(x1, . . . , xn) = f(y1, . . . , yn)

where f ∈ σ is an n-ary operation of A ).

Lemma 2. Let C be the variety of all constant algebras of type σ. Then

(i) B is the only subdirectly irreducible member of C ;

(ii) C = ���(B).

�����. It is easy to check that ConA = EqA for each A ∈ C , where EqA

denotes the lattice of all equivalences on the set A. Hence, A ∈ C is subdirectly
irreducible if and only if EqA has exactly one atom. This is the case if cardA = 2,

i.e. if A = B. Since every algebra A ∈ C is a subdirect product of B, we conclude
C = ���(B). �

Let us recall a necessary concept of algebraic duality in the sense of B. Davey [2].
Let V = ���(P) where P = (P, F ) and P∼ = (P ;G,H,R, τ) where:
• G is a set of finitary operations on P such that if g ∈ G is nullary then {g} is a
subalgebra of P and if g is n-ary for n � 1 then g : Pn → P is a homomorphism;

• H is a set of partial operations on P of arity at least 1 such that if h ∈ H

is n-ary then its domain domh is a subalgebra of Pn and h : domh → P is a

homomorphism;
• R is a set of finitary relations on P such that if r ∈ R is n-ary then r is a

subalgebra of Pn;
• τ is the discrete topology on P .

In this case we say that P∼ is algebraic over P .
Let W = ��C�(P∼) be the class of all topological structures of the same type as

P∼ which are isomorphic (i.e. simultaneously isomorphic and homeomorphic) to a
closed substructure of a power of P∼ (with the product topology). If X,Y ∈ W then

a continuous map ϕ : X → Y preserving G, H , R is called a morphism.
Denote by Hom(X,Y ) the set of all morphisms from X to Y . If A ,B ∈ V ,

denote by Hom(A ,B) the set of all homomorphisms from A into B. For A ∈ V

define its dual D(A ) = Hom(A , P ) endowed by G, H , R, τ as given before such
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that (D(A );G,H,R, τ) is a closed substructure of a direct power PA, and hence

D(A ) ∈ W , see e.g. Lemma 1.1. in [2]. For A ∈ V , E(D(A )) is denoted briefly by
ED(A ) and called the second dual of A .
The maps ea : D(A )→ P∼ given by

ea(x) = x(a) for each a ∈ A and every x ∈ D(A )

and εx : E(X)→ P given by

εx(α) = α(x) for each x ∈ X and every α ∈ E(X)

are called evaluation maps.

Now, we are able to give the following concept of [2]:

Definition. If for V = ���(P) there exists P∼ algebraic over P such that the
evaluation maps ea (a ∈ A) are the only morphisms of D(A ) into P∼ for each A ∈ V ,

we say that P∼ yields a duality on V . If, moreover, the evaluation maps εx are the
only homomorphisms of E(X) into P for eachX ∈ ��C�(P∼) then the duality is called
full.

The aim of our paper is to determine B∼ which yields a duality for the variety C

of all constant algebras of type σ.

Lemma 3. Let C be the variety of all constant algebras of type σ and A ∈ C .

A mapping h : A→ B is a homomorphism of A into B if and only if h(0A) = 0B.

The ����� is evident. �

Let us introduce two binary and one nullary operations on the support {0B, b} of
the algebra B as follows:
• 0B is the nullary operation;
• the binary operations ∨, ∧ are given by setting

0B ∨ b = b ∨ 0B = b ∨ b = b ∧ b = b,
0B ∨ b = b ∨ 0B = 0B ∧ 0B = 0B ∨ 0B = 0B.

Let L = (L,∧,∨, 0) be a relatively complemented lattice. Introduce a new binary
operation p(x, y) on L, where for a, b ∈ L, p(a, b) is the relative complement of a in
the interval [0, a ∨ b]. Let τ be the discrete topology on {0B, b}.

Lemma 4. B∼ = ({0B, b};∨,∧, p(x, y), 0B, τ) is a topological Boolean lattice with
the least element 0B and it is algebraic over B.
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�����. Evidently, {0B} is a subalgebra of B. Moreover, for each n-ary f ∈ σ

and arbitrary a1, . . . , an, c1, . . . , cn ∈ {0B, b} we have

f(a1, . . . , an) ∨ f(c1, . . . , cn) = 0B ∨ 0B = 0B = f(a1 ∨ c1, . . . , an ∨ cn),
p(f(a1, . . . , an), f(c1, . . . , cn)) = p(0B, 0B) = 0B = f(p(a1, c1), . . . , p(an, cn)),

analogously for ∧, thus B∼ is algebraic over B. �

Theorem 1. For each A ∈ C its dual D(A ) is an atomic Boolean lattice.
Moreover, there is a bijection between the set of all atoms of D(A ) and the set of

all non-zero elements of A .

�����. D(A ) is a closed substructure of the direct power B∼
A. By Lemma 4,

D(A ) is a Boolean lattice. Further, for each a ∈ A, a �= 0A we define a mapping
ha : A→ B by setting

ha(a) = b and ha(c) = 0B for c �= a.

By Lemma 3, ha ∈ D(A ) for each a �= 0A. Of course, ha is an atom of D(A ) and

for a1 �= a2 also ha1 �= ha2 , thus the mapping a �→ ha is a bijection of A \ {0} onto
the set of all atoms of D(A ). Evidently, for each h ∈ D(A ) we have

h = ∨{ha; a ∈ A and h(a) �= 0B},

so every element of D(A ) is a join of atoms. �

Corollary. The class W = ��C�(B∼) is the class of all atomic Boolean lattices
with the least element endowed with the product topology.

�����. Of course, every L ∈ W is a Boolean lattice. However, the product
topology is compact and, by using Lemma 4.1. in [6], L is atomic. �

For a lattice L, we denote by At(L) the set of all atoms of L.

Lemma 5. Let L ∈ W . Then there exists a one-to-one correspondence between

the set {0} ∪At(L) and E(L) = Hom(L,B∼).

�����. Since L ∈ W , it can be considered as a sublattice of the lattice B∼
At(L)

(where the space B∼
At(L) is endowed with the product topology). Every nonzero

homomorphism of L onto B∼ is induced by an ultrafilter, i.e. for each f ∈ E(L) there
exists an ultrafilter U of L with f(U) = {b} and f(L \ U) = {0B}. Prove that U is
principal.
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Suppose that U is not principal. Let S be a basis of the product topology

on B∼
At(L). Since f is non-zero, there exists h ∈ U with f(h) = b. For every

neighbourhood V ∈ S of h there exists a finite subset TV ⊆ At(L) and a func-
tion ψV : TV → {0B, b} such that for any ϕ ∈ L the conditions ϕ ∈ V and

ϕ|TV = ψV are equivalent. Consider an element hTV ∈ L such that hTV |TV = ψV

and hTV (At(L) \ TV ) = {0B}. Since hTV |TV = ψV , we have hTV ∈ V . We show that
hTV �∈ U . If ψV = 0B for each x ∈ TV then hTV = 0 �∈ U , a contradiction. Thus
X = {x ∈ TV ;ψ(x) = b} �= ∅. Consider the elements yx of L defined as follows:

yx|{x} = b and yx|(At(L)\{x}) = 0B

for each x ∈ X . Evidently, {yx;x ∈ X} ⊆ At(L) and hTV = ∨{yx;x ∈ X}. Since
X is finite and U is an ultrafilter, we conclude yx ∈ U for some x ∈ X . Hence,
U contains an atom yx, i.e. U is principal, a contradiction. We have shown that

for every neighbourhood V ∈ S and each h ∈ V there exists hTV ∈ V such that
hTV �∈ U . However, every neighbourhoodW of an element h is the union of elements
of the basis S , thus the same is valid also for W .
Evidently, f−1(0B) is closed and h �∈ f−1(0B). As was shown, h is a limit point

of f−1(0B), thus h ∈ f−1(0B), a contradiction. Thus U is a principal ultrafilter.
However, every principal ultrafilter in an atomic Boolean lattice is generated by an

atom, i.e. the continuous non-zero homomorphisms of L onto B∼ are in a one-to-one
correspondence with At(L). If we add 0 to At(L) and the zero homomorphism, we
are done. �

Theorem 2. The structure B∼ = ({0b, b};∨,∧, p(x, y), 0B, τ) yields a full duality
of the variety C of all constant algebras of a given type.

�����. Of course, for each A ∈ C and every a ∈ A, the evaluation map ea ∈
ED(A ). Since ea �= eb for a �= b, a, b ∈ A, the set of all evaluation maps has the same
cardinality as the algebra A . By Theorem 1, D(A ) is an atomic Boolean lattice
and the set of all atoms of D(A ) corresponds to the set of all non-zero elements of
A . Finally, Lemma 5 yields that there is a bijection between A and ED(A ). �

Remark 1. The variety C is equivalent to the category of sets with one fixed
element. Hence C does not essentially depend on the given similarity type σ. In-

deed, we can consider σ containing just one operation which is nullary. Then B
is the algebra B = ({0B, b}; 0B). It is well known that for a Boolean algebra
P = ({0, 1},∨,∧,′ , 0, 1) the structure P∼ = ({0, 1}, ∅, τ) yields a duality (which is
the well-known Stone duality). If P = ({0, 1},∨,∧, 0, 1) is a bounded distributive
lattice then P∼ = ({0, 1},�, τ) yields a duality (which is the well-known Priestly du-
ality). Recently it was shown by M. Haviar [4] that for P = ({0, 1},�) the structure
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P∼ = ({0, 1},∨,∧, 0, 1, τ) yields a duality, i.e. the role of topology in P and P∼ is trans-
fered to the other side of Priestley duality. From this point of view, the duality of
constant algebras derived here can be also viewed as the transfering of the topology
in P , P∼ to the other side of the Stone duality.
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