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TWO-FOLD THEOREM ON FRÉCHETNESS OF PRODUCTS
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Abstract. A refined common generalization of known theorems (Arhangel’skii, Michael,
Popov and Rančin) on the Fréchetness of products is proved. A new characterization, in
terms of products, of strongly Fréchet topologies is provided.
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Introduction and formulation of main results

Recall that a topological space X is called Fréchet if its every point x is Fréchet,

i.e., if A ⊂ X and x ∈ clA, then there exists a sequence (xn)n in A converging to x; a
topological space X is called strongly Fréchet if its every point x is strongly Fréchet,

i.e., if (An)n is a decreasing sequence of subsets of X and x ∈ clAn for every n, then
there exists a sequence (xn)n converging to x and such that xn ∈ An.

It is well-known that a product of two Fréchet topologies need not be Fréchet (e.g.,
[3], [13]); in fact, if X is a first countable space that contains a nontrivial sequence,

then X×Y is Fréchet if and only if Y is strongly Fréchet [5], and there exist Fréchet
not strongly Fréchet spaces.

In order to better situate our main result (Theorem 4), we reformulate the suffi-

ciency part of the above result of Michael in terms of the properties α of Arhangel’skii.
Recall that a topological space is strongly Fréchet if and only if it is Fréchet and α4

The first author’s work has been partly supported by the Ministère des Affaires
Etrangères and by the Ehime University in Matsuyama The idea of the two-fold theorem
arose after the lecture of the paper [12] of Popov and Rančin. The authors are grateful
to Professor A. V. Arhangel’skii for having indicated this reference to them as well as
for providing the example used in Proposition 10.

421



[1, Theorem 5.23]. The property α4 [1] of a topological space means that for every

convergent stationary bisequence

(1) xn,k −→
k

xn = x

there exist sequences (np) and (kp) such that np tends to∞ and (xnp,kp)p tends to x.

This property can be rephrased as follows: there exists a compact metrizable subset
C of {x} ∪ {xn,k : n, k ∈ ω} such that

(2) |{n : C ∩ {xn,k : k ∈ ω} �= ∅}| = ω.

Now the sufficiency part of the above theorem of Michael can be stated in terms
that are suitable for the development of the paper.

0. Theorem. [5] If X is first countable and Y is a Fréchet α4-space, then X ×Y

is Fréchet.

The theorem of Arhangel’skii on the Fréchetness of products [1] uses the property

α3: for every stationary bisequence converging to x, there exist sequences (np) and
(kp) such that (xnp,kp)p converges to x and

|{n : |{kp : np = n}| = ω}| = ω.

We reformulate this property in the following way: for every stationary bisequence

converging to x, there exists a compact metrizable subset C of {x} ∪ {xn,k : k ∈ ω}
such that

(3) |{n : |C ∩ {xn,k : k ∈ ω}| = ω}| = ω.

First countable spaces are of course α3.

1. Theorem. [1] If X is a regular countably compact Fréchet space and Y is a

Fréchet α3-space, then X × Y is Fréchet.

V. V. Popov and D. V. Rančin [12] say that a topological space X is a Φ-space if
for every x ∈ X and for each A ⊂ X with x ∈ clA, there exists a sequence (Qn)n of

open sets such that Qn ∩A �= ∅ for each n, and

limQn = x,

that is, for every V ∈ N(x) there exists nV such that Qn ⊂ V for each n � nV ,
where N(x) is the set of neighborhoods of x in X . They prove the following
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2. Theorem. If X and Y are compact Fréchet spaces and X is a Φ-space, then

X × Y is Fréchet.

Before considering its further strengthening, we give here an intermediate gener-
alization of Theorem 2 in order to indicate its place in the framework of this paper.

We say that a space X is a β3-space if for every convergent bisequence

(4) xn,k −→
k

xn −→
n

x

which is free (i.e., such that xn �= x)there exists a compact metrizable subset C

of {x} ∪ {xn : n ∈ ω} ∪ {xn,k : n, k ∈ ω} such that (3) holds. This amounts to
the existence, for every convergent free bisequence (4), of a subbisequence, i.e., a
bisequence of the form

xnm,km
q
−→

q
xnm −→

m
x

such that (xnm,km
qm
) converges to x for each sequence (qm).

Of course, every Φ-space is a β3-space. On the other hand, each regular locally
countably compact Fréchet space is α4. Now we are in position to formulate the

announced intermediate re-enforcement of Theorem 2.

3. Theorem. If X is a regular locally countably compact Fréchet β3-space and

Y is a Fréchet α4-space, then X × Y is Fréchet.

The property β3 is clearly an analogue of the property α3, the difference is that
in the latter case the bisequence is free and in the former case the bisequence is

stationary. Let us introduce, in analogy with α4, property β4: for every convergent
free bisequence (4) there exists a compact metrizable subset C of {x} ∪ {xn : n ∈
ω} ∪ {xn,k : n, k ∈ ω} such that (2) holds. Notice that for a sequential topology, the
property β4 amounts to Fréchetness.

It turns out that the conjunction of properties α3 and β4 (Theorem 1) and the
conjunction of properties β3 and α4 (Theorem 3) play the same (perfectly asymmet-

ric) role in the (simultaneous) proof that we give. In other words, Theorems 1 and
3 are twin theorems.

A space X is called a q-space if every x ∈ X is a q-point, i.e., such that there exists
a sequence (Qn)n of neighborhoods of x with the property that if xn ∈ Qn, then
the sequence (xn)n has an accumulating point [5]. A point of a topological space

is regular if it admits a base of closed sets; a q-point x is q-regular if there exists a
defining sequence (Qn)n such that x is regular in

⋂
n
clQn. Of course, each regular

q-point is q-regular.

Since first countable spaces are q-regular (q-spaces), and locally countably compact
spaces are q-spaces, the following main result of this paper constitutes a common
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strengthening of all the theorems above. We call it a two-fold theorem, because its

hypothesis is the alternative of two asymmetric conditions that play the same role
in the argument.

All the α and β properties of a topological spaceX can be rephrased (in an obvious

way) as properties at x for every x ∈ X ; we use some of these point variants in the
sequel.

4. Two-fold theorem. Let X and Y be Fréchet spaces and let x be q-regular.

If either x is β3 and y is α4, or x is β4 and y is α3, then (x, y) is a Fréchet point.

The first variant of Theorem 4 can actually be strengthened to become another

characterization (at the beginning of this paper we formulated that of Michael) of
strong Fréchetness.

5. Theorem. A space Y is strongly Fréchet if and only if for every non discrete

regular β3 Fréchet q-space X , the product X × Y is Fréchet.

The second variant of Theorem 4 implies

6. Corollary. The product of countably many regular α3 Fréchet q-spaces is a

regular α3 Fréchet q-space.

Undefined notions and concepts can be found in [4].

Discussion

In [2] S. Dolecki and S. Sitou call a point x transverse if for every free sequence
(xn)n converging to x there exists a sequence of open sets (Qn)n converging to x with

xn ∈ Qn. A point x is called subtransverse if for every free sequence (xn) converging
to x there exists a subsequence (xnk

) and a sequence of open sets (Qk) converging to

x with xnk
∈ Qk. A space is called (sub)transverse if every point is (sub)transverse.

A point x is called sequentially transverse if for every free bisequence (4) (convergent

to x) there exists f : ω → ω such that limnxn,k provided that kn � f(n) for all n.
A point x is called sequentially subtransverse if every free bisequence converging to

x admits a sequentially transverse subbisequence, that is if x is β3.

7. Proposition. A space is a Φ-space if and only if it is sequential and sub-
transverse.

It is proved in [12] and in [2] that Lašnev spaces are subtransverse. Popov and
Rančin in [12] essentially proved the following
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8. Proposition. Let x be a non-isolated point in X and let C = {y} ∪ {yn :

n ∈ ω} be a free convergent sequence. If X × C is subtransverse, then x is a first

countable point in X .

We compare here the properties listed above. However, since in some cases we

succeed in obtaining subtler results than needed in this task of comparison, we in-
troduce here a general framework that enables us to better render these subtleties

and to provide a broader view of the topic.
Along with properties α4 and α3, A. V. Arhangel’skii considered in [1] properties

α2 and α1 (the definitions that have been adopted in literature differ slightly from the
original ones); P. J. Nyikos introduced in [10] property α1.5. Analogous properties

were studied by J. Novák in [9] under the names α, β, γ, δ, and so on.
Our reformulation of property α3 in terms of compact metrizable subsets of sta-

tionary bisequences admit analogues relative to the other α-properties. Formula (3)
means that the set of indices n such that C is a frequent set with respect to the

indices (n, k)k is frequent (we call it frequent/frequent with the understanding that
the first qualification concerns n’s and the second k’s). Similarly α2 corresponds to

eventual/frequent, α1.5 to frequent/eventual and α1 to eventual/eventual. The same
properties of free bisequences can be called β2, β1.5 and β1. In these terms sequential

subtransversity is β1. It is known (e.g., [10], [11]) that the bigger is i, the weaker is
αi; the same holds for βi’s.

To start our comparative review, we observe that there exists a sequentially sub-
transverse Fréchet space which is not sequentially transverse. Actually, more is true.

Some modifications of the argument of [11, Proposition 2.4] of Nyikos enable us to
prove that the Cantor tree fulfils the following

9. Proposition. There exists a compact Fréchet space which is α3 and β3 but

neither α2 nor β2.

Once having noticed that the Cantor tree is a sequential topological space, we see
that the above proposition implies that it is Fréchet recovering [9, Proposition 2.2].

10. Proposition. There exists a sequentially compact Fréchet space (hence a
q-space) which is α3 and sequentially subtransverse (i.e., β3) but not subtransverse.

The following proposition shows that the Fréchetness of a point (x, y) ∈ X × Y

does not imply that one of x or y is a q-point.

11. Proposition. There is an α3 and sequentially subtransverse (i.e., β3)

Fréchet space X which is not a q-space, and such that X2 is Fréchet. Moreover, X

is not subtransverse.
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The following result generalizes the fact [1] that every regular locally countably

compact Fréchet space is α4.

12. Proposition. Each regular q-point in a Fréchet space is α4.

The following proposition shows that Theorem 4 generalizes Theorem 1 even if we

restrict ourselves to the case of Y being α3.

13. Proposition. There exists a Fréchet regular q-space which is neither locally
countably compact nor first countable.

Proofs

Considering subsets of the product of two sets as multifunctions (i.e., relations),

we use the following notation: for A ⊂ X × Y , x ∈ X and y ∈ Y , let Ax =
{y : (x, y) ∈ A}, A−y = {x : (x, y) ∈ A}; for V ⊂ X and W ⊂ Y , let AV =

⋃
x∈V

Ax

and A−W = {x : Ax ∩W �= ∅}.
����� �� ������� �. Let (x, y) ∈ clA and let (Qm)m be a defining

sequence of a q-point x. Then for every neighborhood V of x closed in
⋂
m
clQm and

each m, one has y ∈ clA(V ∩Qm). As Y is strongly Fréchet, there exists a sequence
(yV

m) converging to y and such that yV
m ∈ A(V ∩ Qm). Let xV

m ∈ V ∩ Qm be such

that yV
m ∈ AxV

m. By the definition of (Qm)m and the Fréchetness of X , there exists a
subsequence (xV

m(V,k))k of (x
V
m)m that converges to an element xV of V . If xV = x,

then the proof is complete, so that we can assume that xV �= x.

Of course, the corresponding subsequence (yV
m(V,k))k of (y

V
m)m converges to y.

Since x ∈ cl{xV : V ∈ N(x)}, by the Fréchetness of X , there exists a sequence

(xn)n = (xVn
n )n converging to x. Let xn,k = xVn

m(Vn,k) and yn,k = yVn

m(Vn,k). Of course,
(xn,k) is a free bisequence in X and (yn,k) is a stationary bisequence in Y .

If X is β3, then choose a compact metric space C of the form

C = {x} ∪ {xnm : m ∈ ω} ∪ {xnm,km
q
: m, q ∈ ω},

where (nm)m tends to ∞ and (km
q )q tends to ∞ for every m. Take the subsequence

of (yn,k) corresponding to the same indices. By the strong Fréchetness of Y we can
choose a subsequence (ynmt ,k

mt
qt
) converging to y with (mt) converging to ∞. Now

the sequence (xnmt ,k
mt
qt

, ynmt ,k
mt
qt
) converges in A to (x, y).

If Y is α3, then there exists a compact metrizable set of the form C = {x} ∪
{xnm,km

q
: m, q ∈ ω}, where (nm)m tends to ∞ and (km

q )q tends to ∞ for every m.
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Now, by the Fréchetness of X , choose a subsequence (xnmt ,k
mt
qt
) converging to x with

(mt) converging to ∞. Then the sequence (xnmt ,k
mt
qt

, ynmt ,k
mt
qt
) in A converges to

(x, y). The proof is complete. �

����� �� 	���

��� . The product of countably many q-spaces is a q-

space. By Theorem 3,
∏

n�m

Xn is Fréchet for every m ∈ ω. Now the conclusion

follows from [9, Theorem 2.4] and [8, Theorem 3.1] which respectively say that α3-

property is countable productive and if all finite products are α3 and Fréchet, then
the whole product is Fréchet. �

����� �� ����������� �. Let x be a Φ-point and let (xn)n be a free

sequence converging to x. Then we may suppose that x ∈ cl{xn : n ∈ ω} \ {xn : n ∈
ω}. Since x is a Φ-point, there exists a sequence (Qn)n of open sets converging

to x and such that Qk ∩ {xn : n ∈ ω} �= ∅. If xnk
∈ Qk, then (nk) tends to ∞.

Consequently x is subtransverse.

Conversely, let x be a sequential subtransverse point and let x ∈ clA \ A. Then
there exists a sequence (xn)n ⊂ clA \ A converging to x. By subtransversity, there

exists a subsequence (xnk
)k of (xn)n and a sequence (Qk)k of open sets converging

to x such that xnk
∈ Qk for each k. Since xk ∈ clA, one has Qk ∩A �= ∅. �

����� �� ����������� �. Consider the Cantor tree T ∪ C ∪ {∞} as
presented in [11]: C is the Cantor set, T is the set of finite restrictions of the repre-
sentations of the elements of C; the elements of T are isolated and the neighborhood

filter of c ∈ C corresponds to the cofinite filter on the branch of c in T . The point
∞ is the Alexandroff compactifying point.
In view of the results of [11], it remains to prove that the space is β3 but not β4.

To see β3 we consider the only non trivial case of bisequences of the form

(6) tn,k −→
k

cn −→
n
∞,

where tn,k’s belong to T and cn’s to C. Then there exists an isotone subsequence

(cnp) of (cn) converging to some c ∈ C in the Euclidean topology. Now there exists
f : ω → ω such that if kp � f(p), then (tnp,kp)p converges to c in the Euclidean

topology (induced from the plane into which the Cantor tree is embedded) and is
out of the branch of c. Therefore (tnp,kp)p converges to∞ in the topology considered.
To prove that the space is not β2, take a countable dense (in the Euclidean topol-

ogy) subset {cn : n ∈ ω} of C and consider (6) with (tn,k) on the branch of cn for
each n. If β2 held, there would exist a compact metrizable eventual/frequent subset

K of (6). Let (tn,kn) be a sequence in K (hence converging to ∞) such that the
ordinates y(tn,kn) tend to 0. Let Cm be the set of all those cn’s for which 1

m -wedges
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of their branches miss the sequence (tn,kn). By the Baire category theorem, there

exists a Euclidean-open subset I of C and δ > 0 such that y(tn,kn) � δ for each
cn ∈ I, contradicting the fact that y(tn,kn) tends to 0. �

����� �� ����������� 10. Let κ � ω1 be a cardinal. LetX be a Σ-product

of κ copies of the two point space {0, 1}, with a base point (0, 0, 0, . . .), i.e.,

X = {x ∈ {0, 1}κ : |{α < κ : x(α) �= 0}| � ω}.

Then X is an α3 Fréchet space [1, Theorem 6.16]. Actually we can show that every
countable subset of X is metrizable, so that X is β3.

It is well-known that X is sequentially compact. Since X2 is homeomorphic to X ,

and X is not first countable, Proposition 8 implies that X is not subtransverse. �

����� �� ����������� 11. Let X be a Σ-product of uncountably many

copies of the space of reals with a base point (0, 0, 0, . . .). Then X is α3, β3 and
Fréchet as in Proposition 10. We show that X is not a q-space. First note that X is

not countably compact, so X contains an infinite closed discrete subset.

Let (Un)n be a sequence of neighborhoods of 0. We show that there exist points

xn ∈ Un such that {xn : n ∈ ω} is discrete. Each Un includes

Vn =

( ∏

α∈An

T n
α ×

∏

α∈κ\An

Rα

)
∩X,

where Rα = R and each An is finite. Without loss of generality we may assume
An ⊂ An+1, T n+1

α ⊂ T n
α for each α ∈ An and

⋂
n∈ω

T n
α = {0} for every α ∈ ⋃

n∈ω
An.

Then
⋂

n∈ω
Vn is homeomorphic to X . Hence X is not a q-space. �

����� �� ����������� 12. Let xn,k −→
k

xn = x be a convergent stationary

bisequence and let (Qn)n be a defining sequence of a q-point x. For every closed

neighborhood U of x, consider a sequence xn,k(U,n) ∈ U ∩ Qn. It follows from the
assumption that (xn,k(U,n))n has an accumulation point xU and by Fréchetness there

exists a sequence (n(U, p))p converging to ∞ and such that xn(U,p),k(U,n(U,p)) −→
p

xU . Of course, xU ∈ U . If xU = x,then the proof is complete; if not, then x ∈
cl{xU : clU = U ∈ N(x)} \ {xU : clU = U ∈ N(x)}. Therefore, by Fréchetness,
there exists a free sequence xm = xUm that converges to x. Let xn(m,p),l(m,p) =

xn(Um,p),k(Um,n(Um,p)) and let f(m) be such that for each p > f(m), one has n(m, p) >
m. Since

xn(m,p),l(m,p) −→
p

xm −→
m

x
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is a free bisequence, by Fréchetness there exist sequences (mq) tending to ∞ and

(pq) with pq > f(mq) such that xn(mq ,pq),l(mq,pq)converges to x with (n(mq, pq))q
converging to ∞. �

����� �� ����������� ��. Let X be a compact Fréchet space that admits
a point x that is not first countable. Let Y be a first countable space that admits a

point y which is not locally countably compact. Then the product X × Y is Fréchet
by Theorem 0, but it is neither first countable nor locally countably compact. As a

product of two q-spaces, X × Y is a q-space.
If we take the quotient of the topological sum of X and Y by {x, y}, then we

obtain also a space which is not locally countably compact and not first countable.
This is a q-space, because X ⊕ Y is a q-space and the corresponding quotient map

is actually almost open. �
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