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Czechoslovak Mathematical Journal, 49 (124) (1999), 475–480

SOME DECIDABLE CONGRUENCES OF FREE MONOIDS

Jaroslav Ježek, Praha

(Received February 12, 1996)

Abstract. LetW be the free monoid over a finite alphabet A. We prove that a congruence
of W generated by a finite number of pairs 〈au, u〉, where a ∈ A and u ∈ W , is always
decidable.

0. Introduction

Consider an equational theory E (of an arbitrary signature) based on a finite set
of equations of the form F (t1, . . . , tn) ≈ t1. It was proved in [2] and [3] that E has a

unique perfect base P ; this perfect base is a convergent term rewrite system for E. If
P turns out to be finite, or at least recursive, it follows that the equational theory E

is decidable. In many cases P is infinite, and we do not know if it is always recursive.
For this reason, the question whether E is always decidable was formulated as an

open problem in [3]. In this paper we will show that the answer is yes in the special
case of equational theories (of the above form) of algebras with unary operations.

For a given unary signature τ , the terms over a single variable stand in a natural
one-to-one correspondence with words over the alphabetA consisting of the operation

symbols in τ . This natural correspondence can be extended to a correspondence
between regular equations (equations having the same variables at the left and the

right sides) and ordered pairs of words. Due to this correspondence, there is a
natural isomorphism between the lattice of regular equational theories of signature

τ and congruences of the free monoid over A. So, we are not going to work with
equational theories; congruences of the free monoid will take their place.

A congruence r of the free monoidW over a finite alphabet A is called decidable if
there is an algorithm deciding which ordered pairs of words belong to r. The aim of
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this paper is to prove that every congruence generated by a finite number of ordered

pairs of the form 〈au, u〉, where a ∈ A and u ∈ W , is decidable. The equivalent
formulation, in terms of equational theories of unary algebras, is a corollary. The
techniques used are those of term rewriting (see [1] for a survey) and perfect bases [3].

1. Congruences of free monoids

Let A be a finite alphabet and W be the free monoid over A. The elements of W

are called words. A word u is said to be a subword of a word v if v = puq for some
words p and q. We write u ⊆ v if u is a subword of v. If u ⊆ v and u �= v, we say

that u is a proper subword of v and write u ⊂ v. Two words are called incomparable
if neither is a subword of the other. We say that u is a beginning (or an end) of v if

v = up (or v = pu, respectively) for some word p. The length of a word u is denoted
by λ(u).

Let S be a set of nonempty words. We denote by BS the set of the ordered pairs
〈au, u〉 such that au ∈ S and a ∈ A, and by αS the congruence of W generated by

BS . Our aim is to study this congruence and to determine under what conditions it
is decidable.

Given three words u, v and ar (where a ∈ A), we write u →ar v if v can be
obtained from u by replacing a subword ar with r. We write u →S v if u →ar v for

some ar ∈ S. We say that u can be rewritten to v with respect to S if there exists
a finite sequence u0, u1, . . . , uk (k � 1) such that u0 = u, uk = v and ui →S ui+1 for

all i.
We denote by Q(S) the least set of words containing S and satisfying the following

two conditions:

(1) if au ∈ Q(S) and u →bw v for some bw ∈ Q(S) (where a, b ∈ A), then
av ∈ Q(S);

(2) if aubv ∈ Q(S) and bvw ∈ Q(S) (where a, b ∈ A), then auvw ∈ S.

By a derivation from S we mean a finite nonempty sequence u0, . . . , un of words

such that for every i ∈ {0, . . . , n} we have either ui ∈ S or there exist two (not
necessarily distinct) indexes j, k < i such that either uj = au, uk = bw, u →bw v

and ui = av, or else uj = aubv, uk = bvw and ui = auvw (where a, b ∈ A). We also
say that u0, . . . , un is a derivation of un from S. Clearly, a word u belongs to Q(S)

if and only if there exists a derivation of u from S.

1.1. Lemma. Let S be a set of nonempty words. Then αQ(S) = αS .

�����. Since S ⊆ Q(S), we have αS ⊆ αQ(S). Let a0u0, . . . , anun be a
derivation from S and let us prove by induction on i that 〈aiui, ui〉 ∈ αS . The only
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case deserving attention is the case ajuj = aubv, akuk = bvw, aiui = auvw. By

induction, aubv αS ubv and bvw αS vw. We have auvw αS aubvw αS ubvw αS uvw.
�

For any set S of words we denote by R(S) the subset of S consisting of the words

u ∈ S that have no subword belonging to S.

1.2. Lemma. Let S be a set of nonempty words. Then αRQ(S) = αS .

�����. By 1.1, αQ(S) = αS . Since RQ(S) ⊆ Q(S), we have αRQ(S) ⊆ αS . It

remains to prove 〈au, u〉 ∈ αRQ(S) by induction on the length of a word au ∈ Q(S).
If au ∈ RQ(S), it is clear. Now let au have a proper subword belonging to S.

If the subword is a beginning of au, then we can write u = u1u2 where u2 is
nonempty and au1 ∈ Q(S). By induction, au1 αRQ(S) u1; but then au1u2 αRQ(S)

u1u2, i.e., au αRQ(S) u.
In the other case we have au = au1bvu2 where b ∈ A and bv ∈ Q(S). By induction,

bv αRQ(S) v. We have au1vu2 ∈ Q(S), so by induction au1vu2 αRQ(S) u1vu2. But
au αRQ(S) au1vu2 and u1vu2 αRQ(S) u, so au αRQ(S) u. �

By a perfect set of words we mean a set S satisfying the following two conditions:

(1) S is a set of nonempty, pairwise incomparable words;

(2) if aubv ∈ S and bvw ∈ S (where a ∈ A and b ∈ A), then there is a word t

such that uvw can be rewritten to t with respect to S and the word at has a

beginning belonging to S.

By a perfect modification of a set S of nonempty words we mean a perfect set S′

such that αS = αS′ .

1.3. Theorem. Let S be a perfect set of words. Then for any word u there

exists a unique word u′ such that u can be rewritten to u′ and u′ has no subword

belonging to S. For any two words u, v we have u αS v if and only if u′ = v′.

�����. In the terminology of term rewriting, it is sufficient to prove that the

set BS has confluent critical pairs. Applied to our case, this means to prove that if
aubv ∈ S and bvw ∈ S, then ubvw and auvw can be rewritten to the same word with

respect to S. Now ubvw can be rewritten to uvw, and the rest follows from (2). �

1.4. Theorem. Every set S of nonempty words has precisely one perfect mod-

ification. RQ(S) is the perfect modification of S.

�����. By Lemma 1.2, αS = αQR(S). Clearly, QR(S) has the property (1); it
is easy to see that it also has the property (2).
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Let S1 and S2 be two perfect sets such that αS1 = αS2 ; denote this congruence

by α. We are going to prove S1 = S2. Let au ∈ S1. Since au α u, it follows from
Theorem 1.3 applied to S2 that au contains a subword bv ∈ S2. Now bv α v, so
Theorem 1.3 applied to S1 yields the existence of a subword cw ∈ S1 in bv. But au

contains no subword from S1 other than itself, so cw = bv = au. We get au ∈ S2
and thus S1 ⊆ S2. Similarly one can prove S2 ⊆ S1. �

For any set S of nonempty words denote by HS the set of the words that contain
no subword belonging to S. This set is always nonempty: at least it contains the

empty word. For any word t we define a word νS(t) ∈ HS by induction on the length
of t as follows: if t is empty, then νS(t) = t; if t = aw where a ∈ A, then

νS(aw) =

{
aνS(w) if aνS(w) ∈ HS ,

νS(w) otherwise.

Equivalently,

νS(aw) =

{
aνS(w) if no beginning of aνS(w) belongs to S,

νS(w) otherwise.

Clearly, νS is a mapping of W onto HS and is the identity on HS . It is easy to

see that 〈t, νS(t)〉 ∈ αS for any word t. If S is recursive, then νS is a computable
mapping.

Let U be a set of words. For any word t and any u ∈ U we define a word t∗U u ∈ U

by induction on the length of t as follows: if t is empty, then t ∗U u = u; if t = aw

where a ∈ A, then

aw ∗U u =

{
a(w ∗U u) if a(w ∗U u) ∈ U ,

w ∗U u otherwise.

Clearly, aw ∗U u = a ∗U (w ∗U u). So, if t = a1 . . . ak, where ai ∈ A, then t ∗U u =

a1 ∗U (a2 ∗U . . . (ak ∗U u)). We get t1t2 ∗U u = t1 ∗U (t2 ∗U u) for any words t1, t2 and
u ∈ U .

U is called a model of S if av ∗U u = v ∗U u for all av ∈ S and all u ∈ U .

1.5. Lemma. Let αS1 = αS2 . Then S1 and S2 have the same models.

�����. Let U be a model of S1. Define a binary relation r on W by 〈p, q〉 ∈ r

if and only if p ∗U u = q ∗U u for all u ∈ U . It is easy to check that r is a congruence
of W containing BS1 , so r contains αS1 = αS2 ⊇ BS2 and U is a model of S2. �
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1.6. Lemma. Let S be a set of nonempty words and P be the perfect modifi-

cation of S. Let n be a positive integer. The set of the words of length at most n

that belong to HP is a model of S.

�����. Put U = {u ∈ HP : λ(u) � n}. It is easy to prove by induction for any
word t that if u ∈ U , then either t ∗U u αS tu or λ(t ∗U u) = n. From this we get:
either t ∗U u = νP (tu) or λ(t∗U ) = n. Let av ∈ S and u ∈ U . We are going to prove

av∗U u = v∗U u. Of course, av∗U u = a∗U (v∗U u). If λ(v∗U u) = n, then a(v∗U u) /∈ U

and so a ∗U (v ∗U u) = v ∗U u. Let λ(v ∗U u) < n. Then a ∗U (v ∗U u) = a ∗U νP (vu);

this word is either aνP (vu) = νP (avu) = νP (vu) = v ∗U u, or νP (vu) = v ∗U u, so in
both cases a ∗U (v ∗U u) = v ∗U u. �

1.7. Lemma. Let S be a set of nonempty words and P be the perfect modifica-

tion of S. Let U be a nonempty set of words. If U is closed with respect to subwords

and contains a word not belonging to HP , then it is not a model of S.

�����. Let w be a shortest word from U − HP . Since w does not belong to

HP , it contains a subword belonging to P ; this subword belongs to U −HP , so by
the minimality of w we get w ∈ P . We have w = au for some a ∈ A and some

word u. The empty word o belongs to U . Evidently au ∗U o = au and u ∗U o = u,
so au ∗U o �= u ∗U o and U is not a model of P . By Lemma 1.5, U is not a model

of S. �

1.8. Theorem. Let S be a finite set of nonempty words. The perfect modifica-

tion of S is a recursive set, and the congruence αS is decidable.

�����. Let n be a positive integer. Suppose that we can decide for any word

of length less than n whether it belongs to the perfect modification P of S. We shall
show how to decide the same for any word of length n.

Let us consider all sets U of words with the following three properties:

(1) every word in U is of length at most n;

(2) a word of length less than n belongs to U if and only if it belongs to HP ;
(3) U is a model of S.

Clearly, every set with these properties is finite, there are finitely many of them,
and we are able to find them effectively. Now, according to 1.6 and 1.7, the largest

among these sets is precisely the intersection of HP with the set of words of length
at most n.

So, the set HP is recursive. Consequently, the set P is recursive: a word u belongs
to P if and only if it does not belong to HP , but every proper subword of u belongs

to HP . Also, the mapping νP is computable. We have 〈u, v〉 ∈ αS if and only if
νP (u) = νP (v), so we are able to decide which pairs of words belong to αS . �

479



1.9. Example. One would be tempted to speed up the algorithm in 1.8 a little
by saying that a word u belongs to HP iff the set U = {u}∪ {v ∈ HP : λ(v) < λ(u)}
is a model of S. But this is not true. Let, for example, S = {aba}, so that P =
{abia : i � 1}, and let u = aa. Then u belongs to HP , although U is not a model

of S: we have aba ∗U o = aa �= a = ba ∗U o, where o is the empty word.

2. Equational theories of unary algebras

2.1. Theorem. Let E be an equational theory of a finite unary signature, based
on a finite number of equations of the form F0F1 . . . Fk(x) ≈ F1 . . . Fk(x). Then E

is decidable.

�����. This is a reformulation of Theorem 1.8. �
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