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Dedicated to Professor Miroslav Fiedler on the occasion of his seventieth birthday

Abstract. In this paper it is proved that every 3-connected planar graph contains a path
on 3 vertices each of which is of degree at most 15 and a path on 4 vertices each of which has
degree at most 23. Analogous results are stated for 3-connected planar graphs of minimum
degree 4 and 5. Moreover, for every pair of integers n � 3, k � 4 there is a 2-connected
planar graph such that every path on n vertices in it has a vertex of degree k.

1. Introduction and results

Throughout this paper, by a plane graph we understand an embedding of a con-
nected planar graph into the sphere.

We deal only with plane graphs which have minimum degree at least 3 and which
have no face with at most two edges on its boundary. We use the standard ter-

minology and notation of the graph theory. We recall, however, more specialized
notions. Let us call a path (a cycle) on n vertices to be the n-path (the n-cycle,

respectively). Let Gc(n; δ, �) be the family of c-connected plane graphs containing a
subgraph isomorphic to an n-path and having only vertices of degrees � δ and faces

of degrees � �. Note that in this case c � 5, max {δ, �} � 5 and min {δ, �} = 3.
It is an old classical consequence of the famous Euler’s polyhedral formula that any

plane graph contains a vertex of degree at most 5. A beautiful Kotzig’s theorem [17]

(see also [18, 19]), popularized in the West by Grünbaum [7, 8, 9], states that every
3-connected plane graph contains an edge with degree-sum of endvertices being at

most 13 in the general case and at most 11 in the absence of degree-3 vertices. These
bounds are the best possible as can be seen from the graph obtained by placing 20
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or 12 small pyramids on the faces of the icosahedron or the dodecahedron graphs,

respectively, as well as for infinitely many other 3-connected plane graphs.
This Kotzig’s result was further developed in various directions and has served

as a starting point for discovering many structural properties of plane graphs, see
e.g. Borodin [1, 2, 3, 4, 5], Borodin and Sanders [6], Grünbaum [7, 8, 9], Grünbaum

and Shephard [10], Horňák and Jendroľ [12], Ivančo [13], Ivančo and Jendroľ [14],
Jendroľ and Skupien [15], Jucovič [16], Zaks [22].

The following problem seems to be of interest.

Problem. What is the minimum number r = rc(n; δ, �) such that every graph
G ∈ Gc(n; δ, �) contains an n-path with all vertices of degree � r?

The Kotzig’s results state that r3(2; 3, 3) = 10, r3(3; 4, 3) = 7. Recently Borodin

[1] proved that r2(2; 3, 3) = 10. By Lebesgue’s results [20], (see also Ore [21]) we
have r2(3; 3, 4) � 5, r2(4; 3, 5) = 3 and r2(5; 3, 5) � 5. In the recent paper [11] the
authors have proved that r2(4; 3, 4) = 10.

In this paper we consider the above mentioned problem for 3-paths and 4-paths.
Our main results read as follows:

Theorem 1.

r3(3; 3, 3) = 15,(i)

r3(3; 4, 3) = 9,(ii)

r3(3; 5, 3) = 6.(iii)

Theorem 2.

20 � r3(4; 3, 3) � 23,(i)

15 � r3(4; 4, 3) � 17,(ii)

6 � r3(4; 5, 3) � 7.(iii)

The requirement of 3-connectivity is substantial. Namely, for 2-connected graphs
we have

Theorem 3. Let n � 3, k � 3 be integers. There is a graph G ∈ G2(n; 3, 3) such

that every n-path in G contains a vertex of degree � k.
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2. Terminology and notation

The degree of a face α is the number of edges incident to α where each cut-edge

is counted twice. Vertices and faces of degree i are called i-vertices and i-faces,
respectively. For a plane graph G let V (G), E(G) and F (G) be the vertex set, the

edge set and the face set of G, respectively. We use the notation v(G), e(G) and
f(G) for the number of vertices, edges and faces of G, respectively. If G is known,

these numbers are simply written as v, e and f .

By a block decomposition R = {Ri, i ∈ J} of a plane graph G we mean a family

of submaps Ri of G, called the blocks of R, such that

(i) each block Ri is a union of faces of G,
(ii) the union of the blocks Ri is the whole sphere,

(iii) the interiors of the blocks are pairwise disjoint, and
(iv) each block is a closed topological disk.

We define the vertices (or the edges) of a block R as those belonging to some face
of R. An edge of R is interior if it belongs to two faces of R. The boundary of R is

the set of noninterior edges in R. The subgraph induced by these edges of R forms
a cycle. The vertices of R lying on the boundary cycle are called boundary vertices,
otherwise they are interior.

Two edges with a common vertex A lying on the boundary of a face α define an

angle at the vertex A on α. The angle at a boundary vertex A of a block R is called
the block angle of R if it is the angle of a face belonging to the block R.

For the purposes of this paper a vertex A is said to be m-minor (or m-major)
if its degree d(A) d(A) � m (or d(A) > m, respectively). For a graph G let M(G)

denote the set of all m-major vertices of G.

Denote by I(R) the set of all interior vertices of R, by F (R) the set of faces of R,
by a(R) the number of block angles of R and let f(R) = |F (R)|. The charge of the
block R, c(R), is defined by

(1) c(R) =
∑

A∈I(R)

(6− 2d(A)) +
∑

α∈F (R)

(6− deg α).
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3. Proof of the upper bounds in Theorem 2

The upper bound in Theorem 2 states that every plane 3-connected graph contains

a 4-path P4 all vertices of which are m-minor with m = 23, 17 and 7 in the case (i),
(ii) and (iii), respectively. Suppose the upper bound is not true.

LetG be a counterexample to the theorem having the minimum number of vertices,
say n, among all counterexamples and the maximum number of edges among all

counterexample on n vertices. Now we shall investigate properties of G.

Property 1. Each face of G is a 3-face (i.e. G is a triangulation).

�����. If not, then G has a k-face α, k � 4. The face α contains at least one
m-major vertex A and at least one vertex, say B, not adjacent with A. Inserting a

new edge (diagonal) AB into α we obtain a graph G′, which is also 3-connected. It
has no 4-path on m-minor vertices but has one edge more than G, a contradiction.

�

Property 2. There is no separating 3-cycle in G having only m-minor vertices.

�����. Assume such a cycle C = [A0A1A2] does exist. Remove the interior of
C from G; the resulting graph G0 is also a triangulation without 4-paths onm-minor

vertices, a contradiction because v(G0) < v(G). �

Let B(G) be the subgraph of G induced on the set M(G) of m-major vertices of
G. Simple observations yield

Property 3. B(G) induces a block-decompositionR(G) = (Ri, i ∈ J) of G such
that every block Ri is either a face or contains in its interior only m-minor vertices

which form connected subgraphs of G. These subgraphs are either 3-cycles or stars
K1,s, s � 0. The latter follows by the fact that G does not contain any 4-path on

m-minor vertices.

As G is a 3-connected graph we can find out

Property 4. G has no two adjacent 3-vertices, no 3-face [A0A1A2] with d(A0) =
3, d(A1) = d(A2) = 4 and no 3-path [A0A1A2] with d(A0) = d(A2) = 3 and

d(A1) = 4.

Property 5. For a block R let the subgraph induced on the set I(R) be a 3-cycle
[A0A1A2] with d(Ai) = ki, i = 0, 1, 2. Then, because of Property 3,

f(R) = k0 + k1 + k2 − 5, c(R) = k0 + k1 + k2 + 3,

a(R) = 2(k0 + k1 + k2)− 15.

484



Property 6. Let a subgraph of a block R induced on the set I(R) be a star K1,s,

s � 1, with a central k-vertex A0. Let A1, A2, . . . , As be m-minor neighbours of A0
and let B1, B2, . . . , Bk−s bem-major neighbours of A0. Let d(Ai) = ki, i = 0, 1, . . . , s
and k0 = k; clearly ki � m. Since the set {A1, A2, . . . , As} is independent in R we

have s � �k
2 �. Then for the block R we have

f(R) =
s∑

i=0

ki − 2s, a(R) = 2
s∑

i=0

ki − 6s

and

c(R) =
s∑

i=0

ki + 6.

Property 7. For a block R let g(R) = c(R)
a(R) . If R is a block of a graph G ∈

G3(3; δ, 3) then g(R) � 7
4 if δ = 3, g(R) �

5
3 if δ = 4 and g(R) � 6

5 if δ = 5.

�����. If we put x =
s∑

i=0
ki, then g(R) has one of the form

g(R) =





1 if R is a 3-face,

x+ 3
2x− 15 and s = 3 if R is as in Property 5,

x+ 6
2x− 6s and s � 0 in the other cases.

Put γ(x, s) = x+6
2x−6s . If s is fixed, then the function γ(x, s) is decreasing. In the case

δ = 3, taking into consideration Properties 4 and 5, we have γ(x, 0) � 3
2 , γ(x, 1) � 13

8 ,
γ(x, 2) � 17

10 and γ(x, s) � 5s+6
4s � 7

4 for s � 3. Therefore γ(x, s) � 7
4 for all pairs

(x, s).
Analogously, if δ = 4 we get γ(x, 0) � 5

4 , γ(x, 1) � 7
5 , γ(x, 2) � 3

2 and γ(x, s) � 4
3

for s � 3; hence γ(x, s) � 3
2 for all pairs (x, s). If δ = 5 we can easily calculate

that γ(x, 0) � 11
10 , γ(x, 1) � 8

7 , γ(x, 2) � 7
6 , γ(x, s) � 7s+6

8s � 9
8 for s � 3. Hence

γ(x, s) � 7
6 for all pairs (x, s) in the case δ = 5.

Similarly we can easily check, using Properties 4 and 5, that the function x+3
2x−15

is bounded from above by the value 53 if δ = 3 or 4 and by
6
5 if δ = 5. From these

observations the assertion of Property 7 follows immediately. �

Euler’s formula v − e+ f = 2 for G may be rewritten using the relations

2e =
∑

A∈V (G)

d(A) = 3f
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as

(2)
∑

A∈V (G)

(6− 2d(A)) + 3f = 12.

To get a contradiction we use in the rest of the proof the Discharging Method.

We assign to each vertex A a charge c(A) = 6− 2d(A) and to each face α, a charge
c(α) = 3. These charges will now be locally redistributed, keeping their sum constant

according to the following rules.

First we use

Rule 1. Each face and each m-minor vertex transfers all its charge to the block in
which it is contained. (Note that every m-minor vertex is in the interior of a block).

By Property 3 using (1), (2) and Rule 1 we have

(3)
∑
(6− 2d(A)) +

∑
c(R) = 12

where the first sum is taken over all m-major vertices and the second over all blocks
of R(G).

Then Rule 2 follows.

Rule 2. Each block R transfers to each of its boundary vertex (which is always

an m-major vertex) via each of its block angles the charge

g(R) =
c(R)
a(R)

.

New charges of the vertices and faces of G are denoted by a function h. Then,
using (1), (2), (3) and Rules 1, 2 we have

(4)
∑

X∈V (G)∪F (G)

h(X) = 12.

The rest of our proof consists in verifying h(X) � 0 for each X ∈ V (G) ∪ F (G);

this will yield an obvious contradiction with (4).

Because each face and each m-minor vertex transfers all its charge to the block

R in which it is contained, we have h(α) = 0 for each face α and h(A) = 0 for each
m-minor vertex A of G. Since the block R has a(R) block angles, all the charge of R,

c(R), is sent (by Rule 2) to the major vertices on the boundary of R. To complete
the proof it is enough to verify that h(A) � 0 for each major vertex A of G. Each
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such vertex A receives an additional charge from blocks having A as a boundary

vertex via block angles. Therefore

(5) h(A) � 6− 2d(A) + d(A)p(G)

where p(G) = max{g(R)|R ∈ R(G)}. In the case (i) or (ii) or (iii) of Theorem 2 we
have δ = 3, m = 23 or δ = 4, m = 17 or δ = 5, m = 7, respectively. By Property 7
in these cases p(G) = 7

4 or
5
3 or

6
5 , respectively. In all these case (5) is nonpositive.

4. Proof of the upper bounds from Theorem 1

The proof is a simple analogue of the proof of Theorem 2. We suppose that there
is a counterexample G. First we show that G is a triangulation. Then we partition

the vertices of G into two subsets, the set of m-minor vertices and the set of m-
major vertices where m = 15 if δ = 3, m = 9 if δ = 4 and m = 6 if δ = 5. The

graph induced in G on the set of m-major vertices induces a block-decomposition
R(G) = {Ri, i ∈ J} in which any block is a 3-face or a block as in Property 6 but
only with one or two adjacent m-minor vertices in its interior, that is with s = 0 or
1. The rest of the proof uses the same idea of discharging. Then the inequality (5)

is used with p(G) = 13
8 ,

7
5 or

8
7 for δ = 3, 4 or 5, respectively.

5. Proof of lower bounds

In Theorem 1(i). If we place the configuration of Fig. 1 into every face of the
dodecahedron graph (dashed lines indicate the dodecahedron edges) we obtain a
graph in which every 3-path contains an x-vertex, x � 15. It is easy to see that this
graph is 3-connected.

� �
Fig. 1 Fig. 2
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In Theorem 2(i). If we insert into each 3-face of the icosahedron graph the
configuration in Fig. 2, we obtain a 3-connected graph with the property that every
4-path in this graph contains a 20-vertex.

In Theorem 1(ii). Every face α of the rhombic triacontahedron in Fig. 3a is
a 4-face [A, B, C, D] with d(A) = d(C) = 5, d(B) = d(D) = 3. If we insert a

configuration of Fig. 3b into each face α of the graph so that the vertex X of Fig. 3b
is placed into the vertex X of α, X ∈ {A, B, C, D}, we obtain a graph in which every
3-path contains an x-vertex, x � 9.

�
Fig. 3a

A B

CD�
Fig. 3b

In Theorem 2(ii). Analogously as above we insert into each 3-face of the icosa-
hedron graph the configuration in Fig. 4. We obtain a 3-connected graph of minimum
degree 4 in which every 4-path has a 15-vertex.

In Theorems 1(iii) and 2(iii). Placing 12 small pyramids on the faces of the
dodecahedron graph we obtain a triangulation which has the property that every

3-path and every 4-path contains a 6-vertex and each vertex of this graph has degree
at least 5.
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� C1 C2 C3 C4C5 C6 C7 C8

B

A

D1
D2
D3
D4�

Fig. 4 Fig. 5

6. Proof of Theorem 3

For every k, k � 3, we have to find a 2-connected plane graph G(n, k) with the
property that every n-path, n � 3, in it contains a k-vertex. To do it consider a

plane multigraph consisting of two k-vertices A and B joined by k parallel edges
e1, e2, . . . , ek. For any i, i = 1, . . . , 2�k

2�, we insert a new vertex Ci on the edge ei.

Then we add a new edge C2j−1C2j for any j, j = 1, 2, . . . , �k
2 �. If we insert n − 3

new vertices D1, D2, . . . , Dn−3 into the edge AC1 and join them with the vertex C2

we obtain a required graph G(n, k). In Fig. 5 there is a graph G(7, 9). It is easy to
check that the graph obtained has the required property.

7. Remark

The method used in the proof of Theorem 2 (Section 3) can be used for finding

results also for cases r3(n; δ, �) with n � 5. Together with my student I. Fabrici,
using the same methods, we have proved

Theorem 3.
24 � r3(5; 3, 3) � 27,
15 � r3(5; 4, 3) � 19,
6 � r3(5; 5, 3) � 7.

The problem in proving the results for n � 5 consists in the fact that more types
of blocks must be investigated than in the proof of Theorem 2.
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