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RADICALS OF GREEN’S RELATIONS

Stojan Bogdanović and Miroslav Ćirić, Niš

(Received March 20, 1996)

Abstract. Some structural descriptions of semigroups in which the radicals of Green’s
relations are semilattice congruences will be given.

MSC 2000 : 20M10

A semigroup S is called an epigroup if for each element of S, some its power lies in
a subgroup of S. L. N. Shevrin proved in [14] that in an epigroup

√
D is transitive if

and only if it is a semilattice congruence. A more general result has been obtained by
M. S. Putcha [11], who proved that in an epigroup, the transitive closure of

√
J is the

smallest semilattice congruence. Since D =J on any epigroup, the above Shevrin’s
result can be also derived from the one of M. S. Putcha. Various characterizations of

regularity of semigroups by Green’s relations have been investigated by A.H.Clifford
and G.B. Preston [6], J.T. Sedlock [13], B. Ponděliček [10] and D.W.Miller [7].

In this paper we characterize semigroups in which
√

X (τ(X )) (X ∈ {J , D , L ,

R, H }) is a semilattice congruence. We also describe semigroups in which τ(L ) is

band congruence.

Throughout this paper �+ will denote the set of all positive integers. The division
relation | on a semigroup S is defined by

a | b ⇐⇒ (∃x, y ∈ S1) b = xay

and the relation → is defined by

a → b ⇐⇒ (∃n ∈ �+) a | bn.
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For an element a of a semigroup S we define the following set Σ1(a) = {x ∈ S | a →
x} and an equivalence relation σ1 on S by

aσ1b ⇐⇒ Σ1(a) = Σ1(b).

ByJ , D , L , R, H we denote the well known Green’s relations and by σ we denote
the least semilattice congruence on a semigroup S.

For a relation � on a semigroup S, the radical of �, in notation
√

�, is a relation

introduced by L.N. Shevrin [14] as follows:

(a, b) ∈ √� ⇐⇒ (∃m, n ∈ �+) (am, bn) ∈ �.

Here we also define the radical τ(�) of a relation � on S by

(a, b) ∈ τ(�)⇐⇒ (∃n ∈ �+)(an, bn) ∈ �.

For undefined notions and notations we refer to [1], [2], [6] and [8].

The first characterization of semilattices of Archimedean semigroups is due to
M. S. Putcha [12] (see also T.Tamura [15]). Some other characterizations of these

semigroups are given by M. Ćirić and S. Bogdanović [4] (see also the survey [3]).
By the following theorem we give some new characterizations using the radicals of

Green’s relations.

Theorem 1. Let X ∈ {J , L , H }. Then the following conditions on a semi-
group S are equivalent:

(i) S is a semilattice of Archimedean semigroups;

(ii)
√

σ1 is a congruence on S;

(iii) τ(σ1) is a semilattice (band) congruence on S;

(iv)
√

σ1 = σ1;

(v)
√

X ⊆ σ1.

�����. (i) =⇒ (iv). Let a, b ∈ S and (a, b) ∈ √σ1. Then there exist m, n ∈ �+
such that (am, bn) ∈ σ1. By Theorem 3 [5] we obtain that aσ1a

mσ1b
nσ1b. Thus

(a, b) ∈ σ1, so
√

σ1 ⊆ σ1. Since the opposion inclusion also holds, we have the
assertion (iv).

(iv) =⇒ (v). Let a, b ∈ S, and (a, b) ∈
√

X . By Lemma 5 [5], (a, b) ∈ √σ1, so

(a, b) ∈ σ1. Thus
√

X ⊆ σ1.

(v) =⇒ (i). Let (v) hold. Then for every a ∈ S we have that (a, a2) ∈
√

X . Thus
(a, a2) ∈ σ1, and by Theorem 3 [5] we obtain (i).
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(ii) =⇒ (i). Let √σ1 be a semilattice congruence. Then for all a, b ∈ S we have

(ab, a2b) ∈ √σ1, whence ((ab)k, (a2b)l) ∈ σ1, for some k, l ∈ �+. Thus (ab)k ∈ Sa2S,
and by Theorem 1 [4] we have that S is a semilattice of Archimedean semigroups.

(iv) =⇒ (ii). By Theorem 3 [5] we have that σ1 is a semilattice congruence, and
thus

√
σ1 is also a semilattice congruence.

(iii) =⇒ (ii). If τ(σ1) is a semilattice congruence, then τ(σ1) = σ. Since τ(σ1) ⊆√
σ1, we then have that σ = τ(σ1) ⊆

√
σ1 ⊆

√
σ = σ. Thus

√
σ1 is a semilattice

congruence.

(i) =⇒ (iii). By Theorem 3 [5] we have that (a, a2) ∈ σ1, for all a ∈ S. If

(a, b) ∈ σ1, then for all k ∈ �
+ we have (ak, bk) ∈ σ1, so (a, b) ∈ τ(σ1). Thus

σ1 ⊆ τ(σ1). Assume that (a, b) ∈ τ(σ1). Then (ak, bk) ∈ σ1 for some k ∈ �
+,

whence (a, b) ∈ σ1. Thus τ(σ1) ⊆ σ1. Therefore, τ(σ1) = σ1 and by (i) ⇐⇒ (iv) we
obtain that τ(σ1) =

√
σ1 = σ1. Now by (iv)⇔ (ii) we have that τ(σ1) is a semilattice

congruence. �

For an arbitrary Green’s relationX ∈ {J , D , L , R, H }, we say that a semigroup
S is

√
X -simple if (a, b) ∈

√
X , for all a, b ∈ S.

Theorem 2. Let X ∈ {J , L , H }. Then the following conditions on a semi-
group S are equivalent:

(i)
√

X is a semilattice congruence;

(ii)
√

X = σ1;

(iii) S is a semilattice of
√

X -simple semigroups.

�����. We will prove only the statement concerning the relation J .

(i) =⇒ (ii). Let
√

J be a semilattice congruence. Then for all a, b ∈ S, (ab, a2b) ∈√
J . From this it follows that for every a, b ∈ S there exists n ∈ �+ such that
(ab)n ∈ Sa2S, and by Theorem 1 [4], S is a semilattice of Archimedean semigroups.
Now by Theorem 3 [5] we have that → is a quasi-order. Assume that (a, b) ∈

√
J .

Then a ∈ Σ1(b) and b ∈ Σ1(a) and by transitivity of → we have that Σ1(a) = Σ1(b).
Thus (a, b) ∈ σ1. Therefore,

√
J ⊆ σ1 ⊆ σ, and since σ is the smallest semilattice

congruence on S, we obtain that
√

J = σ1.

(ii) =⇒ (i). We have that
√

J = σ1 =
√

σ1, so by Theorem 1 we obtain that√
J is a semilattice congruence.

(i) =⇒ (iii). This is obvious.
(iii) =⇒ (ii). Let S be a semilattice Y of

√
J -simple semigroups Sα, α ∈ Y , and

let � be the corresponding semilattice congruence. Since the �-classes are semilattice

indecomposable semigroups, we then have that � = σ1 (= σ). By Theorem 1 we
have that

√
J ⊆ σ1. Let (a, b) ∈ σ1, a ∈ Sα, b ∈ Sβ , α, β ∈ Y . Then a → b and
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b → a, whence α = β. Thus a, b ∈ Sα and so (a, b) ∈
√

J . Hence, σ1 ⊆
√

J , so√
J = σ1. �

Theorem 3. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice (band) of nil-extensions of simple semigroups;

(ii) τ(J ) is a semilattice (band) congruence;

(iii) τ(J ) =
√

J = σ1; (τ(J ) =
√

J ⊆ σ1)

(iv) (∀a ∈ S)(∀b ∈ S1)(ab, a2b) ∈ τ(J ).

�����. (i) =⇒ (ii). Let S be a semilattice Y of nil-extensions of simple
semigroups Sα, α ∈ Y and let � be the corresponding semilattice congruence. Then

for (a, b) ∈ � there exists n ∈ �+ such that anJ bn. Thus � ⊆ τ(J ). If (a, b) ∈
τ(J ), then anJ bn, for some n ∈ �+. If a ∈ Sα, b ∈ Sβ , α, β ∈ Y , then by Lemma 9

[4] we have that α = β, so a�b. Hence τ(J ) ⊆ �. Therefore, τ(J ) = �, i.e. τ(J )
is a semilattice congruence.

(ii) =⇒ (iii). Let τ(J ) be a semilattice congruence. Since τ(J ) ⊆
√

J , we then

have that S is a semilattice of
√

J -simple semigroups. By Theorem 2 we obtain
that

τ(J ) ⊆
√

J = σ1(= σ),

whence we conclude that (iii) holds.

(iii) =⇒ (ii). By Theorem 2 we have that
√

J is a semilattice congruence.

Therefore, τ(J ) is also a semilattice congruence.

(ii) =⇒ (iv). This is obvious.
(iv) =⇒ (i). From (iv) it follows that for every a ∈ S there exists n ∈ �+ such that

anJ a2n, i.e. S is an intra-π-regular semigroup. On the other hand, for any a, b ∈ S

there exist n ∈ Z+ such that (ab)n ∈ Sa2S. By Theorem 1, [4] S is a semilattice of
Archimedean semigroups. Now by Theorem 2.12 [12] we have that S is a semilattice

of nil-extensions of simple semigroups. �

Corollary 1. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of left simple semigroups;

(ii) τ(L ) =
√

L = σ1;

(iii) τ(L ) is a semilattice congruence;

(iv) (∀a, b ∈ S)(ab, ba2) ∈ τ(L ).

Corollary 2. The following conditions an a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of groups;

(ii) τ(H ) is a semilattice congruence;

(iii) τ(H ) =
√

H = σ1;
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(iv) (∀a, b ∈ S)(ab, (ba)2) ∈ τ(H ).

By a right regular band we mean a band satisfying the identity xyx = yx [7]. By

the following theorem we describe semigroups in which τ(L ) is a band congruence.

Theorem 4. A semigroup S is a right regular band of nil-extensions of left simple

semigroups if and only if τ(L ) is a band congruence on S.

�����. Let S by a right regular band Y of nil-extensions of left simple semi-

groups Sα, α ∈ Y . It is clear that τ(L ) is reflexive and symmetric. If (a, b) ∈ τ(L ),
then a, b ∈ Sα, for some α ∈ Y , and by this it follows that τ(L ) is a transitive

relation. Also, for any x ∈ S we have that ax, bx ∈ Sβ , for some β ∈ Y . Thus
(ax, bx) ∈ τ(L ), so τ(L ) is a right congruence. Similarly we obtain that τ(L ) is

a left congruence. Therefore, τ(L ) is a congruence relation on S. Since S is left
π-regular we have that τ(L ) is a band congruence.

Conversely, let τ(L ) be a band congruence. Then S is left π-regular and τ(L )-
classes are left Archimedean and left π-regular subsemigroups of S, so these are

nil-extensions of left simple semigroups. Further, for every x, y ∈ S there exists
n ∈ �+ such that

(xy)nL (xy)2nL (yx)2n−1y.

Since L ⊆ τ(L ), we have that

(xy)nτ(L )(yx)2n−1y

whence

xyτ(L )(xy)nτ(L )(yx)2n−1y.

From this it follows that

xyxτ(L )(yx)2nτ(L )yx.

Hence, S/τ(L ) is a right regular band and S is a right regular band of nil-extensions
of left simple semigroups. �

In a similar way we can prove the following two theorems:

Theorem 5.
√

H is a band congruence on a semigroup S if and only if S is a

band of
√

H -simple semigroups.

Theorem 6. The following conditions on a semigroup S are equivalent:

(i) τ(H ) is a band congruence;

(ii) S is a band of nil-extensions of groups;

(iii) (∀a, b ∈ S)abτ(H )a2bτ(H )ab2.
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Problems. We state the following problems: (i) Desribe bands of
√

J - (
√

L -)

simple semigroups, (ii) Describe semigroups in which
√

X , X ∈ {J , D , L , R, H },
is a congruence.
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[5] M. Ćirić and S.Bogdanović: Semilattice decompositions of semigroup. Semigroup Forum
52 (1996), 119–132.

[6] A.H.Clifford and G.B.Preston: The algebraic theory of semigroups. Vol 1, Amer. Math.
Soc., 1961.

[7] D.W.Miller: Some aspects of Green’s relations on periodic semigroups. Czechoslovak
Math. J. 33 (108) (1983), 537–544.

[8] M.Petrich: Lectures in semigroups. Akad. Verlag, Berlin, 1977.
[9] M.Petrich: Semigroup certain of whose subsemigroups have identities. Czechoslovak
Math. J. 16 (91) (1966), 186–198.

[10] B.Ponděliček: A certain equivalence on a semigroup. Czechoslovak Math. J. 21 (95)
(1971), 109–117.

[11] M.S. Putcha: Semigroups in which a power of each element lies in a subgroup. Semigroup
Forum 5 (1973), 354–361.

[12] M.S. Putcha: Semilattice decompositions of semigroups. Semigroup Forum 6 (1973),
12–34.

[13] J.T. Sedlock: Green’s relations on a periodic semigroup. Czechoslovak Math. J. 19 (94)
(1969), 318–322.

[14] L.N. Shevrin: Theory of epigroups I. Mat. Sbornik 185 (1994), no. 8, 129–160. (In
Russian.)

[15] T.Tamura: On Putcha’s theorem concerning semilattice of Archimedean semigroups.
Semigroup Forum 4 (1972), 83–86.

Authors’ addresses: ������ �������	
��, University of Niš, Faculty of Economics,
Trg JNA 11, 18000 Niš, Yugoslavia, e-mail: root@eknux.eknfak.ni.ac.yu; 
�����	
��
�
��, University of Niš, Faculty of Philosophy, Ćirila i Metodila 2, 18000 Niš, Yugoslavia,
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